

TABLE OF CONTENTS

o 1 2T TSP XX
AUGIENCE DESCIIPHON. c....vvviseeeccct ettt s ettt b et bt e e s bbbt s s s s e e st et e bbb b XX
Compatibility and Conformance t0 STANAANGS............coeeririi bbb XX
OFGANIZALION.......cocvtcecveiet ettt s bbb bbb s et b et b s bbb st bbb s s bbbt bbb bbb bbb s bt nan XXi
Hardware and SOftWare CONSITAINES. ... ettt XXii
CONVENTIONS. ...t vttt ettt et s e s b £ b8 28588588 s bt s bt r b ren XXii
=T 11T XXiii
RElAtEA PUDIICAIIONS........cviieeiicis bbb XXiV

Chapter 1.Fortran, C, and C++ Data TYPES.....c.ccourmrmrrmrereresmsmsmssssssssssssssesessssssss s sssssssessssssssssssssssssssssessssssssssssssssssssssssaes 1
1.1, FOMIAN DAA TYPES..oer ittt bbbt 1

111, FOMIAN SCAIAIS. .. .evviiieicieiete ettt et 1
1.1.2. FORTRAN 77 Aggregate Data Type EXIENSIONS........ccoveiiiiriciniinieinerceinesee e 3
1.1.3. Fortran 90 Aggregate Data Types (DEMVEA TYPES).......curiurrrruierrieiiineieireieseiseissessstsse s sssssssessessssesssssssesns 3
1.2. € AN CHF DA TYPES.cerreeiieiretreieieieie ettt bbb bbb bbb bbbttt 4
1.2.1. € @NGA CHF SCAIAS......cviieirieiieiiis ettt b bbbt 4
1.2.2. C and C++ AGgregate Data TYPES.......cciiieiriiirie et 5
1.2.3. Class and Object Data LAYOUL..........c.cccriieiiciecce ettt 6
1.2.4. AGGregate AlIGNMENL.........ciiieere bbb 6
1.2.5. Bit-fIeld AlIGNMENL........ciiicecicicees et bbbttt s bbbt n st b s 7
1.2.6. Other Type Keywords in € @nd CH........c.ciiiiiriiieieieeei et 8

Chapter 2.Command-Line Options REfEIENCE........cccurerererienersrrisinsressss s nnsnes 9

2.1. PGl Compiler Option SUMMAIY........c.iurireiieirieieissiesseessiesesssse s ssssessesss st st st sss st s st s ssssesssssnsessssssessnsnnens 9
2.1.1. BUIld-Related PGl OPHONS.ciiuierieieriieriieiierieices ettt 9
2.1.2. PGl Debug-Related Compiler OPtONS.........ccviiuriieiiiniierieinsieisiseesetss ettt 12
2.1.3. PGl Optimization-Related Compiler OPHONS..........ociriiiriiriererierese e 12
2.1.4. PGI Linking and Runtime-Related Compiler OptioNS...........cccoeininiiiniesncesssse s 13

2.2. C and C+ COMPIIEr OPHONS.......cuereerierireeeereieireieeie ettt eb bbb bbbt s et 13

2.3. Generic PGl COMPIIEr OPHONS.........ccoiieiiiieieicie ettt bbb bbb bbb bbb 15
2.3, SRR AR R bRt 15

DIEFAUIL. ..t 15
USBQE.... ettt 15
DTt 0] o] PR ETTE PR 15
REIGLEA OPHONS......eviise ettt ettt bbbt bbb s bttt et r s 15
2.3.2. ..o bbb bbbt 15
DEFAUIL. .. ettt bbbttt 15
USBQE. .. ettt 16
[1=T Yo7 4]0} OO P TP 16
REIALEA OPHONS...... et bbb bbbt 16
2.3.3. F8CC. ettt R bR R R ARt E bbbt 16
D) - T TSP STRTR 16

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs i

USBQE.... ettt 16
T4 1o] 3T 17
REIGIEA OPHONS......vviiise ettt bbb bbb b b s st ettt et n s 17
2.34. BAYNAMIC.....eu ittt bbb bR bbbt 17
DIBIAUIL. ...t R 17
USBQE. .. ettt 17
DTt o103 TR TTOTTRRRPN 17
REIALEA OPHONS ... et bbb bbbt 18
2.3.5. -BSTATIC. ...ttt bbb 18
I 7 | TSRS 18
U0 1 TSR TTTTSTRTT 18
LS4 (1o] OSSP 18
REIAIEA OPHIONS .. .vuiiciiieciei ettt s b s bbb n bbbt snnes 18
2.3.6. BSHAIIC_PGi..vrvevrereieietee e 18
I 7 | TP 18
USBGE 1.ttt ettt bR R £ £ R R £ R R £ R E £ AR SR b £ bbb R bt 19
DIBSCIIPLON. ...ttt bbb 19
REIAIEA OPHONS.viii bbbttt bbb bbb n ettt n s 19
2.3.7. DYIESWADIO. ... cvererceeree ettt ettt s bbb s s bR bR R R 19
DIBIAUIL. ...t 19
USBQE... ettt 19
DT o 010 TR 19
REIAIEA OPHIONS. ...ttt st et e e et en et 20
2.3.8. =G£SR R £ RS R bbbttt 20
) 7 | TSR TR 20
USBGE. .-ttt RS 20
DESCIIPHION. ...ttt ettt bbb bbb bbb s AR b bbb b b s Rt ettt b n s s e s 20
REIGLEA OPHONS...... vttt 20
2,310, mCote et R SRR E SRR RS R ettt ettt s 20
) 7 TP 20
USBE. 1. ettt ettt E bR AR bbbt 20
DIBSCIIPHON. ...ttt 21
REIAIEA OPHONS. ...ttt b bbbttt aen s 21
2.310. “RAIG>. ..ottt R SRR R R 21
DIBIAUIL. ... bRt 21
SYNEAX .1ttt S RS E RS R bbb 21
0T o TR 21
DESCTIPHION. ...ttt e b bbb b s b bbb AR b s A AR bbb bbb e e R bbbttt n s s e s 21
REIAIEA OPHONS.... et bbbt 21
2,300, mDee SRR SRR R AR AR AR 22
YN 1ttt R RS R R AR ARt 22
DIBIAUIL. ...t 22

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs ii

LTSy (1o] OO U PSP 22
REIAIEA OPHONS .. .vuiiciiieciei ettt ettt s bbbt a e et n et s nnis 22
2,312, SAIYIUN ettt s AR R E R A AR R AR R SRt £ e E Rt ettt 22
I 7 TP 23
USBGE 1.ttt R R R AR bR b bRt 23
DIBSCIIPHON. ...ttt 23
REIAIEA OPHONS.viii et b bR bbb bt s ettt n et s 23
2,313, AAIYSHAINC. ...t 23
DIBIAUIL. ... 23
USBQE. .. ettt 23
DT 010U 23
REIAIEA OPHONS. ...ttt et et e s e et ee et rnnas 23
2.3 14, -AYNAMICHD.......ooceciiecieicts bbb Rt n et 23
DIEFAUIE. ...ttt R SRR R b e ne e 23
USBGE. ...ttt SRR 24
DESCTIPHION. ...ttt et b et bbb bbb b bR R e AR R bbb bbb s e Rt ettt b et n e s e s 24
REILEA OPHONS...... ettt 24
2 T 1 T =TT 24
I 7 OO STT 24
USBE. 1.ttt bbb Rt 24
IS0 1o] ST 24
T (=Yoo o110 3PP 24
2 T L T TSSOSO 24
DIBIAUIL. ...t 24
USBQE.... ettt 25
DIBSCIIPHION. ...t 25
REIGIEA OPHONS......vcviiiectce bbbttt bbbttt b b s s bbbt et n s 25
T - T TP 25
DIBIAUIL. ...t 25
USBQE. .. ettt 25
DTt o103 TR TROTTRRRPN 25
REIGLEA OPHONS...... ettt 25
2,318, BSOS, vttt R R R RS ene 26
2.3.19. —lAGCNECK. ... ettt 26
DIBIAUIL. ... bRt 26
USBQE.... ettt 26
LTS0S TSP 26
REIGIEA OPHONS......vciiiccccce bbb b bbb bbb s bbb bbb b s e bbbttt et s 26
2.3.20. FIAGS. .ttt bbb 26
DBIAUIL. ...ttt bRt 26
USBQE. .. ettt 26
DESCIIPHION. ...ttt et bbb bR bR AR R AR bt bbb ettt et s en e s e 26

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs iv

REIAIEA OPHONS. ...ttt s bbb s ettt e 26

2.3.27. ABDICu ettt bbb R RS R R bbb b ettt 27
DBIAUIL. ... bR 27
USBGE 1.ttt ettt et ettt R e RS RS £ R SR £ E AR AR AR £ R SRR A e R R R Rt R e n e 27
REIGLEA OPHONS...... ettt bbbt 27

2.3.22. APIC.. ettt Rt 27

2.3.23, 10t a AR AR AR R bR bbb bbbt 27
DIBIAUIL. ...ttt 27
S0 ettt 27
DTt oo TR TROTTRRRPN 27
REIAIEA OPHONS. ... ettt ettt nne 28

2.3.24. “QOPE. iR AR AR ARt e e ARt st e e e AR sttt s s 28
1) 7 | TSP 28
0T o TP 28
DESCIIPHION. ...ttt et bbb bbb bbb b s s R A bbb bbb s e R bbbt b et n s e e s 28
REIAIEA OPHONS. ...ttt 28

2.3.25, mGTTIDS. ...ttt 28
I 7 RSP 28
USBGE 1+ ettt s AR R R SRR R E bR 29
DIBSCIIPHON. ...ttt 29
REIAIEA OPHONS.vvii ettt b bbb s sttt a et s 29

2.3.26. “NEIP... ettt bbb R bR bR bbbttt b et ns 29
DIBIAUIL. ...t bRt 29
USBQE.... ettt 29
DT Tof oo TR 29
REIAIEA OPHONS. ...ttt s bbb et en et n e 30

2.3.27. Lo AR bR bR bbb bbbt 30
DIBFAUIE. ...ttt R SRR Rt 31
YN 1ttt R R R R8RSR bbbt 31
USBGE 1.ttt R R R AR AR bR E bRt R et 31
DIBSCIIPHON. ...ttt 31
REIAIEA OPHONS.vvii sttt b bbb ettt a s 3

2.3.28. -i2, 4, =8ttt 32
DIBIAUIL. ... 32
USBQE.... ettt 32
DT Tof 010N 32
REIAIEA OPHONS. ...ttt e et s et e e e e ee et ennas 32

I G - b TSP TRT 32
DIBFAUIE. ...ttt R R R s Rt e e n e n e 32
RS- OO OTRPTO 32
USBGE 1.ttt ettt R R R R £ £ AR AR R £ R b AR e R bbb bRt 33
DIBSCIIPLON. ...ttt 33
REIAIEA OPHONS.vviii ettt bbb bbbttt nen s 34

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs v

USBQE.... ettt 34
T4 1o] 3T 34
REIGIEA OPHONS......vviiise ettt bbb bbb b b s st ettt et n s 34
2.3.37. LR bR R bR bbb bbb 34
DIBIAUIL. ...t R 34
YNttt f RS R RS AR R ARt 34
USBGE. 1. ettt ettt bbb R R R bbb bbb 34
DIBSCIIPHON. ...ttt 35
REIAIEA OPHONS. ...t bbbt a bbbt e ettt a et 35
2.3.32, -ISIOTANY> ...ttt b et b bbb R bbbttt 35
RS ORI 35
LS4 (1o] OSSP 35
T (=0 o o110 3T 35
2.3.33. Ml R et 35
2.3.34, Ml bbb R bbbt bbb bbbt 36
DBIAUIL. ...ttt bbbt 36
USBQE. .. ettt 36
DESCIIPHION. ...ttt et bbb bRt b A A e AR bbb bbbt ettt s n e s e 36
REIALEA OPHONS...... ettt 36
2.3.3D. TMB2. Rt 36
USBQE... ettt 36
DT o 010 TR 36
REIAIEA OPHIONS. ...ttt st et e e et en et 36
2.3.30. “MBA.......o ettt 36
USBQE.... ettt 37
DIBSCIIPHION. ...t 37
REIGIEA OPHONS......vcviiiectce bbbttt bbbttt b b s s bbbt et n s 37
TR 1 N oo o bR 37
2.3.38. -MCMOUEITMEAIUM. ...ttt ettt 43
USBQE. .. ettt 43
DTt o103 TR TROTTRRRPN 43
REIGLEA OPHONS...... ettt 43
2.3.39. -MOAUIE KMOGUIBLIFS..........iiiiiietei ettt 44
1) 7 | TSR 44
U0 1= TSP 44
LS4 (1o] TSP 44
T (=0 o 0110 3T 44
2,340, “MIP.ceiiiteitie ettt SRR AR bbbt 44
) 7 | TP 44
USBGE 1.ttt ettt R R R R £ £ AR AR R £ R b AR e R bbb bRt 44
DIBSCIIPLON. ...ttt 45
REIAIEA OPHONS.vviii ettt bbb bbbttt nen s 45

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs vi

) 7 | TSR S T 45
U= o1 TP 45
DESCIIPHION. ...ttt et bbb bbb bbb bbb s AR A bbb bbb s e Rt ettt b s n e s e s 46
REIGLEA OPHONS...... ettt bbbt 46
2,342, -ORIBVEID ...ttt SRS R AR 46
) 7 TP 46
1 CH OO TSP PSPPSR 46
S0 ettt 46
DTt oo TR TROTTRRRPN 46
REIAIEA OPHONS. ... ettt ettt nne 47
2,343, 201t R R R AR R R R bR 48
1) 7 | TSP 48
16 TP 48
USBGE 1.ttt es et ee et et et AR R AR A £ R R £ RS eE AR R SRR £ R R e R R e AR R e e n e st 48
REIAIEA OPHONS. ...ttt 48
2.384, “PC..oirieiieiete et bbb R RS R bbbttt en 48
SNBSS SRR R SRR 48
DESCIIPHION. ...ttt et bbb bRt b A A e AR bbb bbbt ettt s n e s e 48
REIALEA OPHONS...... ettt 50
2.345, —PEABNTC.c.ceeeiee et R ettt R R bbb s 50
I 7 | TR 50
U0 1TSS 50
REIAIEA OPHIONS. ...ttt st et e e et en et 50
2,348, “P.rvteer ittt s AR 51
) 7 | TSR TR 51
USBGE: .ttt RS 51
DESCIIPHION. ...ttt ettt bbb bbb bbb s AR b bbb b b s Rt ettt b n s s e s 51
REIGLEA OPHONS...... vttt 51
2,347, -PGCHHDS. ... Rttt 51
) 7 TP 51
USBE. 1. ettt ettt E bR AR bbbt 51
DIBSCIIPHON. ...ttt 51
REIAIEA OPHONS. ...ttt b bbbttt aen s 51
T o oS TR 52
DIBIAUIL. ... bRt 52
USBQE.... ettt 52
LTS0S TSP 52
REIGIEA OPHONS......vciiiccccce bbb b bbb bbb s bbb bbb b s e bbbttt et s 52
2.3.49. -PGFOONDS. ..ottt 52
DBIAUIL. ...ttt bRt 52
USBQE. .. ettt 52
DESCIIPHION. ...ttt et bbb bR bR AR R AR bt bbb ettt et s en e s e 52

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs vii

2.3.50. -RAIMBCIONY™ ..ottt 53
07 o TP 53
DESCIIPHION. ...ttt et bbb bbb bbb bbb s AR A bbb bbb s e Rt ettt b s n e s e s 53
REIGLEA OPHONS...... ettt bbbt 53

2 T X OO OP PSSP 53
) 7 TP 53
USBGE. 1. ettt ettt bbb R R R bbb bbb 53
DIBSCIIPHON. ...ttt 53
REIAIEA OPHONS. ...t bbbt a bbbt e ettt a et 53

2.3.52. -4 @NG “T8.....eeee ettt R R SRRttt et 53
U0 1 TSR TTTTSTRTT 54
LS4 (1o] OSSP 54
T (=0 o o110 3T 54

2 T X T TP 54
RS- OO PSPPSR 54
USBGE 1.ttt ettt bR R £ £ R R £ R R £ R E £ AR SR b £ bbb R bt 54
DIBSCIIPLON. ...ttt bbb 54
REIAIEA OPHONS.viii bbbttt bbb bbb n ettt n s 54

2,354, SRR AR RS R R R R Attt nen 54
DIBIAUIL. ...t 55
USBQE... ettt 55
DT o 010 TR 55
REIAIEA OPHIONS. ...ttt st et e e et en et 55

R T 1 T TR b5
) 7 | TSR TR 55
USBGE. .-ttt RS 55
DESCIIPHION. ...ttt ettt bbb bbb bbb s AR b bbb b b s Rt ettt b n s s e s 55
REIGLEA OPHONS...... vttt 55

2.3.56. =SNAIEA........eueeiceiicie et R R E ARttt 55
) 7 TP 55
USBE. 1. ettt ettt E bR AR bbbt 56
DIBSCIIPHON. ...ttt 56
REIAIEA OPHONS. ...ttt b bbbttt aen s 56

TR 1o TSR 56
DIBIAUIL. ... bRt 56
USBQE.... ettt 56
Do 010 T TTSTTRRRPN 56
REIGIEA OPHONS......vciiiccccce bbb b bbb bbb s bbb bbb b s e bbbttt et s 56

2.3.58. “SIlBNL......cviieieeeiiets ettt R ARttt 56
DBIAUIL. ...ttt bRt 56
USBQE. .. ettt 56
DESCIIPHION. ...ttt et bbb bR bR AR R AR bt bbb ettt et s en e s e 57

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs viii

REIAIEA OPHONS. ...ttt s bbb s ettt e 57

R TS To] =1 T ST OTT 57
DBIAUIL. ... bR 57
USBGE 1.ttt ettt et ettt R e RS RS £ R SR £ E AR AR AR £ R SRR A e R R R Rt R e n e 57
DIBSCIIPHON. ... vttt bR 57
REIGIEA OPHONS......veviii et ettt a bbbt b e st ettt et n s 57

2.3.80. =STACK. ...evvereeieiets ettt et R Rt R ettt 57
DIBIAUIL. ...ttt 57
SNttt eSS SRR R R R ARt 57
USBQE... ettt ettt sttt R R R bbb b s AR R R AR ARt A AR e AR bbbt e AR ARttt s s e e 58
LS4 (1o] TSRS 58
T (=Yoo o110 3 TP 58

2.3.61. -ta=tesla(tesla_suboptions),NOSE...........ccriiiiiric e 59
DIBIAUIL. ...t 59
USBGE 1.ttt es et ee et et et AR R AR A £ R R £ RS eE AR R SRR £ R R e R R e AR R e e n e st 59
DIESCIIPHION. ...ttt bbb 59
MURIDIE TAIGEES. ...ttt bbbttt bbbttt 60
RelOCAtADIE DEVICE COUE.......vvieeeriieirieieiri ettt na et en st 60
LLVM/SPIR and Native GPU Code GENEIALION.........cc.ccurieieiriieieiriieieissies ettt 61
DWARF DebUugging FOMALS.........cceuiiieiiiriieieirtiei ettt 61
REIAIEA OPHONS.vvii ettt b bbb s sttt a et s 61

2.3.82. AlMB..icvreiscteete sttt ettt ettt bt b et R R bR bR bRt b et bbbt ns 61
DIBIAUIL. ...t bRt 61
USBQE.... ettt 61
DT Tof oo TR 62
REIAIEA OPHONS. ...ttt s bbb et en et n e 62

2.3.63. -t <EAIGEII[IAIGEL...] oot 62
DIBFAUIE. ...ttt R SRR Rt 62
YN 1ttt R R R R8RSR bbbt 62
USBGE 1.ttt R R R AR AR bR E bRt R et 62
DIBSCIIPHON. ...ttt 63
REIAIEA OPHONS.vvii sttt b bbb ettt a s 64

2.3.64. -[NOJITACEDACK.covreveierieeieeet ettt 64
DIBIAUIL. ... 65
SYNEAX 11ttt S bR SRR 65
U0 1= TSP 65
LS4 (1o] TSP 65
REIAIEA OPHIONS.....vuivciiiictsi ettt s s et b bbbttt nnes 65

2,385, “Ueuiritiieiiteeie ettt R R R ARt 65
) 7 | TP 65
- OSSPSR 65
USBQE. .. ettt 65
DESCIIPHION. ...ttt et bbb bR bR AR R AR bt bbb ettt et s en e s e 65

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs ix

2.3.86. =U. R R R £ AR RS RS E bRt b et neten 66
16 ORI TRT 66
USBGE 1.ttt ettt et ettt R e RS RS £ R SR £ E AR AR AR £ R SRR A e R R R Rt R e n e 66
DIBSCIIPHON. ... vttt bR 66
REIGIEA OPHONS......veviii et ettt a bbbt b e st ettt et n s 66

2.3.67. -V[EIBASE_NUMDEI].......cvieireirieireiriiiee ettt 66
DIBIAUIL. ...ttt 66
S0 ettt 66
DTt oo TR TROTTRRRPN 67
REIAIEA OPHONS. ... ettt ettt nne 67

2.3.88. SVt bbb R SRR R bR R bR b R bbbt en 67
1) 7 | TSP 67
U1 RTTTSTSTRRTT 67
DESCIIPHION. ...ttt et bbb bbb bbb b s s R A bbb bbb s e R bbbt b et n s e e s 67
REIAIEA OPHONS. ...ttt 67

2.3.89. W ..ottt AR 67
SNBSS SRR R SRR 68
USBGE 1+ ettt s AR R R SRR R E bR 68
DIBSCIIPHON. ...ttt 68
REIAIEA OPHONS.vvii ettt b bbb s sttt a et s 68

2,370 "Wttt E RS e AR E e R R e AR E S e RS At Rt e R e et s eeneEen 68
DIBIAUIL. ...t bRt 68
USBQE.... ettt 68
DT Tof oo TR 69
REIAIEA OPHONS. ...ttt s bbb et en et n e 69

T T G TP 69
DIBFAUIE. ...ttt R SRR Rt 69
USBQE. .. ettt 69
DESCTIPHION. ...ttt et bbb s At R AR R bbb bbb st ettt s s e s e 69
REIALEA OPHONS...... et bbb 69

2,372, =Xl R AR AR AR 69
I 7 TS 69
U0 1= TSP ETTTTTRPPTN 69
TS0 1o] TSR 69
REIAIEA OPHONS.vviiiccce ettt R bbbttt ettt 70

2.4. C and C++ -specific COMPIIEr OPHONS. ...ttt ettt seens 70

2.0, AR R R AR 70
DIBFAUIE. ...ttt R R R s Rt e e n e n e 70
USBGE. ...ttt R bbb 70
DESCIIPHION. ...ttt et ettt bbb R bbb AR b e e s AR bbb bbb e e R bbbt benen s e e 70
REIALEA OPHONS......cvcicicee bbb bbb bbbt 70

24,2, mBiieeee R SRR AR R R R R R Rt s 70

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs X

USBQE.... ettt 71
T4 1o] 3T 71
REIGIEA OPHONS......vviiise ettt bbb bbb b b s st ettt et n s 7
e I S TP 71
11 OSSPSR 71
) 7 TP 71
USBGE. 1. ettt ettt bbb R R R bbb bbb 7
DIBSCIIPHON. ...ttt 71
REIAIEA OPHONS. ...t bbbt a bbbt e ettt a et 7
244, --[N0_]alterNatiVe_TOKENS.......cueeieeeireicie ettt en 72
DIBIAUIL. ...t 72
USBQE.... ettt 72
REIAIEA OPHIONS .. .vuiiciiieciei ettt s b s bbb n bbbt snnes 72
2.5, B ARt 72
I 7 | TP 72
USBGE 1.ttt ettt bR R £ £ R R £ R R £ R E £ AR SR b £ bbb R bt 72
DIBSCIIPLON. ...ttt bbb 72
REIAIEA OPHONS.viii bbbttt bbb bbb n ettt n s 72
2.8, DR bR bR bR bRt 73
DIBIAUIL. ...t 73
USBQE... ettt 73
DT o 010 TR 73
REIAIEA OPHIONS. ...ttt st et e e et en et 73
2.7, D3RR R R R R bR 73
) 7 | TSR TR 73
USBGE. .-ttt RS 73
DESCIIPHION. ...ttt ettt bbb bbb bbb s AR b bbb b b s Rt ettt b n s s e s 73
REIGLEA OPHONS...... vttt 74
24,8, w[NO_JDO0N... ...ttt b bbb b b s sttt et et s 74
) 7 TP 74
USBE. 1. ettt ettt E bR AR bbbt 74
DIBSCIIPHON. ...ttt 74
REIAIEA OPHONS. ...ttt b bbbttt aen s 74
e B To T (01 o PP 74
DIBIAUIL. ... bRt 74
USBQE.... ettt 74
Do 010 T TTSTTRRRPN 74
REIGIEA OPHONS......vciiiccccce bbb b bbb bbb s bbb bbb b s e bbbttt et s 74
e o] | 20 T 75
DBIAUIL. ...ttt bRt 75
USBQE. .. ettt 75
DESCIIPHION. ...ttt et bbb bR bR AR R AR bt bbb ettt et s en e s e 75

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs Xi

REIAIEA OPHONS. ...ttt s bbb s ettt e 75

o TR o G 0o 75
DIBIAUIE. ...t 75
USBGE 1.ttt ettt et ettt R e RS RS £ R SR £ E AR AR AR £ R SRR A e R R R Rt R e n e 75
DIBSCIIPHON. ... vttt bR 75
REIGIEA OPHONS......veviii et ettt a bbbt b e st ettt et n s 76

2.4.12. --[NO_]JCOMPIESS_NMAMES. ... cvuiverierireereereseeseeseseeseeseseeseessssesess s sess s e sese s b et b bbb bbb bbb bbbt 76
DIBIAUIL. ...ttt 76
S0 ettt 76
DTt oo TR TROTTRRRPN 76
REIAIEA OPHONS. ... ettt ettt nne 76

2.4.13. --Create_pCh fiBNAME.........cccivieeiece et a bbbttt tns 76
1) 7 | TSP 76
U1 RTTTSTSTRRTT 76
DESCIIPHION. ...ttt et bbb bbb bbb b s s R A bbb bbb s e R bbbt b et n s e e s 77
REIAIEA OPHONS. ...ttt 77

2414, —-diag_BITON SNUMDEID ...ttt e bbbt b bbbttt 77
I 7 RSP 77
DESCIIPHION. ...ttt et bbb bRt b A A e AR bbb bbbt ettt s n e s e 77
REIALEA OPHONS...... ettt 77

2.4.15. —-diag_remark SNUMDEI>.........c.oiiiiei bbbt 77
I 7 | TR 77
DT o 010 TR 77
REIAIEA OPHIONS. ...ttt st et e e et en et 77

2.4.16. -~(iag_SUPPIrESS SNUMDEIS.........cviieeieieieieieisirit ettt sttt s st e e s st b bbb ss e e s bbbt es s e e 77
) 7 | TSR TR 78
USBGE. .-ttt RS 78
DESCIIPHION. ...ttt ettt bbb bbb bbb s AR b bbb b b s Rt ettt b n s s e s 78
REIGLEA OPHONS...... vttt 78

2417, —-diag_Warning SNUMDEI>........c.cuiiieiritieirt ettt ettt bbb sttt es et 78
) 7 TP 78
USBE. 1. ettt ettt E bR AR bbbt 78
DIBSCIIPHON. ...ttt 78
REIAIEA OPHONS. ...ttt b bbbttt aen s 78

2.4.18. --diSPlAY_BITOr _NUMDET........cuieiiieitciie e bbb 79
DIBFAUIE. ... e 79
USBQE.... ettt 79
Do 010 T TTSTTRRRPN 79
REIGIEA OPHONS......vciiiccccce bbb b bbb bbb s bbb bbb b s e bbbttt et s 79

24,19, “ERNUMDELD ...ttt et s et et e bbb R bbbt 79

2.4.20. —[N0_JEXCEPLONS.cvcveveeeiii ettt et b bbb bbbttt R bbb bbb s s renis 79
) 7 TR 79
USBGE 1.ttt ettt E bR R RS E Rt b Rt 79

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs Xii

DT 010 TR 79

REIAIEA OPHONS. ...ttt ettt et ettt n e 80
2.4.21, =-gNU_VETSION SNUM>.....cviiiiiusieetsisresss st sssesesssessssssssesssssssssssesesssses s s e sas st s assesesssesesansetes s sesasansesesnsessanes 80
DIEFAUIE...... et AR R R e n e 80
USBQE... ettt 80
DESCIIPHION. ...ttt ettt bbb s b bR AR R bbb bbb s et ettt s s e s e s 80
2.4.22. —[NOJIAIGN. ... ettt R 80
DIBIAUIL. ...ttt 80
S0 ettt 80
DTt oo TR TROTTRRRPN 80
REIAIEA OPHONS. ... ettt ettt nne 80
2.4.23. Ml R 81
1) 7 | TSP 81
0T o TP 81
DESCIIPHION. ...ttt et bbb bbb bbb b s s R A bbb bbb s e R bbbt b et n s e e s 81
REIAIEA OPHONS. ...ttt 81
2A4.24, MDA bbb 81
I 7 RSP 81
USBGE 1+ ettt s AR R R SRR R E bR 81
DIBSCIIPHON. ...ttt 81
REIAIEA OPHONS.vvii ettt b bbb s sttt a et s 81
2.4.25. --0ptk_allow_dollar_in_id_Chars...........cocerierieieriees ettt 82
DIBIAUIL. ...t bRt 82
USBQE.... ettt 82
DT Tof oo TR 82
2A.26. =P R R R RRERERRb e 82
) 7 | TR 82
U= OSSO 82
DIBSCIIPHON. ...ttt 82
REIAIEA OPHONS.vvii et ettt a bbb bbb s ettt nen s 82
2427, D e bbb bbb bbb bbbt 82
DIBIAUIL. ...t 82
S0ttt 83
DT Tof o103 TP 83
REIAIEA OPHONS. ... ettt ettt s et ettt nnes 83
2.4.28. —-PON...eeie AR Rt 83
1) 7 | OSSP 83
0T o TR 83
DESCTIPHION. ...ttt e b bbb b s b bbb AR b s A AR bbb bbb e e R bbbttt n s s e s 83
REIAIEA OPHONS.... et bbbt 83
2.4.29. --pCh_air diFECIONYNAME. ...ttt ettt 83
USBQE. .. ettt 84
DESCIIPHION. ...ttt et bbb bR bR AR R AR bt bbb ettt et s en e s e 84

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs xiii

REIAIEA OPHONS. ...ttt s bbb s ettt e 84

2.4.30. —[N0_]PCN_IMESSAGES. .. e-vererererreereseerereseeeeseseessseseeseseseeseseessaeseeessesee e s e s e e s ses b e e b e e e e s e s b s e Rt s ettt ena et ensnteen 84
DTt 0] o PP EPTTTR 84
REIGIEA OPHONS......vviiise ettt bbb bbb b b s st ettt et n s 84

2.4.31. --preinClude=<filENAMES ..o 84
[1=TTor 4010} o TR 84
REIALEA OPHONS.ceeicecee bbb bbbt 85

2.4.32. —-USE_PCH filBNAME.........cviiiiieiie ettt bbb bbb bbb bbb st bbb s bt nais 85
D) - 1 TSR 85
REIAIEA OPHONS. ...t bbbt a bbbt e ettt a et 85

2.4.33. =-[NO_JUSING_SH. ... ettt et s ettt nre e 85
DIBIAUI. ...t 85
USBQE.... ettt 85
Dot 0] o] TP PTRTPRN 85
REIGIEA OPHONS......ovii sttt ettt bbb a bbbt et b st ettt et n s 85

24,34, -XAIBNAME.cviceeieeecie ettt ettt et bR bRt R bRt 86
DEFAUIL .. vttt bbbttt 86
USBQE. .. ettt 86
[1=T o740 (1o] o OO T TR 86
REIALEA OPHONS...... ettt 86

B T | 210] v o - TSRS 86
DIBIAUI. ...ttt R SRR SRRt R et en et en s 86
U0 1TSS 86
DTt o] o OO 86
T (=0 0110 3 TP 87

2.5, -M OPHONS DY CAIEGOTY.......cvieiereiiieieireieeet sttt 87

2.5.1. Code GENETAtION CONMIOIS......viviiirieeiireieiiereesi sttt ettt ss bt s sttt ns s snten 87

2.5.2. CICH+ LangUagE CONITOIS.cvuruierireiieeiieissiessetsstsse sttt sttt ettt ss s b en s ns s s 91

2.5.3. ENVIFONMENT CONEIOIS.....cocvieeeriiricieiriicisisscis ettt ettt n s nnes 92

2.5.4. Fortran Language CONOIS.ceueeiuriiririenireisiesiieieessseeesssseessssssse s sss s ss st sse st sss s sse s ssessssssesnssases 93

2.5.5. INlINING CONMOIS......covuiiieiretriieiee ettt 97

2.5.6. OptIMIZAtION CONIOIS........ciiiiiiciciei ettt et bbb bbb bbbt bbbt n e 99

2.5.7. MiISCEIANEOUS CONMIOIS.ceviieceiieicirieieis ettt ses st ses e ese et se et ees et s s s 107

Chapter 3.C++ Name Mangling........courmririninii s 114
Chapter 4.Directives and Pragmas RefEreNCE...........covinrirenriniresssssisss s nns 115
4.1. PGI Proprietary Fortran Directive and C/C++ Pragma SUMMAIY..........c.coocevieviinieeiseeseess s ssssenens 115

411, AlCOAE (NOBIHCOUE). ceueeereeircireeeseete bbb bbb 116

4.1.2. @SSOC (NOSSOC).....cvvrseerrsereessssesassesessssesssassesessssessssesassssesssesesassasesassesessssessassesessssnsssansesessssesssnsesssnsesasses 117

4.1.3. DOUNAS (MODOUNAS)......cveereetreacieireete sttt s et e ettt bbb ne st nnen 117

414, CNCAIN (NOCNCAI.... ... ceeeeeciieeie bbbt 117

4.1.5. CONCUT (MOCONCUI)....cvovretereeseeseeesetssseesesssseesesssseesesassessesassessesassessesassessesssessesssssesassessssssessesssessssssessssassesnnes 17

4.1.6. dEPChK (NOGEPCIK).......ceuvreerieireiriiireiis it 117

4.1.7. €QVCIK (NOBGVCNK)... ... cviiciiieicicee et 118

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs Xiv

4.1.8. FCON (NOFCON)....cucviieiieiiiet ettt b bbb bbb s bbb bbb a bttt 118

4.1.9. INVAMI (NOINVAITT......coevieiciie bbb 118
A000. VAR vt 118
4111, 1SEVAL (NOISTVAL).... vttt 118
o OO 118
4113, PLEIBICN. ...ttt bbb bbb bbb bbbttt 119
4114, SAFE (NOSAE)....vuceescecie iR 119
4115, SAFE_IASIVAL ... e 119
4.1.16. SAfEPLr (NOSAFEPIT). ... e cvrceeeeee bbb 120
4.1.17. SINGIE (NOSINGIE).....covuiverieiteiiiete ettt bbb b bbb b s bbb bbb s s st s b n e b anais 121
1 T (TSSOSO 121
4.1.19. UNTOI (NOUNTON......vveitciiieet ettt ea bbb bbbttt sb s bbb st s 121
4.1.20. VECIOT (NOVECION)....vvvieuceeritetees ettt bbb bbb 122
41,27, VINEE (NMOVINID).cotictsie ettt ettt ettt n st bbbt 122
4.2. Prefetch DireCtivesS @nd Pragmas..... ..o ccuerururiceeirecieirineieise ettt sttt sttt esesnnas 122
4.3, IGPRAGMA C....oooeiis st st 8 bbb 123
4.4, IGNORE_TKR DIFBCHVE. ... cvuevreeuereisiereiseessise st csssisesse et ises bbb bbb bbb bbb 123
4.4.1. IGNORE_TKR DiIr€CHVE SYNAX.....cvuueererereeeereereereeseeseeseeseisssie st ssessssesssssssssssssssessssssssssssssesssssesssssessessesens 123
4.4.2. IGNORE_TKR Directive Format REQUIFEMENLS............cc.cucviiireiriiieeiceeie ettt s 123
4.4.3. Sample Usage of IGNORE_TKR DIrECHVE.cruururiurierieiriirieirieeeeiseisieisesseeisesseeisssssee s sssesnen 124
4.5, IDEC\S DIFECHVES......ouvveiiiisiieiscie sttt sttt bbb bbb 124
4.5.1. ALIAS DIFECHVE. ... reucereeeereereeeereeseis et is e eseese st s eessesseesee e e e es s 8 e s 8 a8 E e en b eebee b es bbb srennes 124
4.5.2. ATTRIBUTES DIFBCHVE. ...vucvuvrerrieseisiseiiseie ittt bbb 125
4.5.3. DECORATE DIMBCHVE.ceueerrereereereeseieeseissesessseseseseesesseesesses st ssesse st st essass s s st as st se s ssessessesssssesssssesens 126
4.5.4, DISTRIBUTE DIMECHVE.cvrivuirriiiiieiiiissisiessiseisss st 126
Chapter 5.RuUNtimMe ENVIFONMENL.........ccoccccrrrrirercse s sa e eais 127
5.1. Linux86 and Win32 Programming MOGEL............coueiuriiriiininenieesce et 127
5.1.1. FUNCHON CalliNg SEAUENCE.coiuiieeteeecieiriee sttt ee s ne s a st b et s e 127
5.1.2. FUNCHON REIUM VAIUES........vieireiieieiii ettt 130
5.1.3. ArQUMENT PASSING.eereeeiieeieireieiei sttt es ettt sttt enas 131
5.2. Linux86-64 Programming MOGEL...........couuiuierimiiiirieicees et 134
5.2.1. FUNCHON CalliNg SEQUENCE.cvviviieieiiieietseeiet sttt 134
5.2.2. FUNCHON REIUM VAIUES........oiviiiiieiciii ittt 137
5.2.3. ATGUMENT PASSING.....cveveritiiiiiiiiicieiete sttt sttt s bbbt b bt s bbb bt s s s s 138
5.2.4. Linux86-64 FOrtran SUPPIEMENL...........coririerieirreer sttt 141
5.3. Win64 Programming MOGEL.........ccovriiiiiccces st s s 146
5.3.1. FUNCHON CalliNG SEQUENCE.oeviieiiiriie ettt 146
5.3.2. FUNCHON REIUM VAIUES........covuiiiieiiineiriieiei bbb 148
5.3.3. ArQUMENE PASSING.vuieiieritieieiriteeet sttt bbbt 149
5.3.4. Win64 FOrtran SUPPIEMENL..........couiiirieiiiriei e 152
Chapter 6.C++ Dialect SUPPOIEU........ccccoeriirirrirerccss s s a s p e e e 157
6.1. Extensions Accepted in NOrmMal Ct MOGE.........covriiieriieiieiiseese bbb 157
6.2. cfront 2.1 Compatibilify MOGE.........cuirrriiririris s 158

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XV

6.3. cfront 2.1/3.0 Compatibility MOGE..........cccviiviiieiieiicts et 159

6.4. Extensions accepted in GNU compatibility mode (PgCHt).....cveeieriiiniiieisceseeeseseess s 160
6.5. C++11 Language Features ACCEPIEA.cciieicisice sttt nns 160
6.6. C++14 Language Features ACCEPLEM. ..o ittt 164
Chapter 7.Fortran Module/Library Interfaces for Windows............cccovmnmmnmssssssssssssssenns 165
7.0, SOUMCE FlES ..ottt ettt bbbttt bbbttt s 165
7.2, DAlA TYPES.. ettt bR R R R AR R s 165
7.3. Using DFLIB, LIBM, @nd DFPORT........ccoiitriiirireiriiniieisissieeseessseessssseesssssss s sssssssssssssssssssssssssssssssssessssssesnssnns 166
T30 DFLIB....oe ettt bbbt 166
7.3.2. LIBM ettt R e 167
7.3.3. DFPORT ..ottt ettt ettt ettt £ s b £ bbbt £ s a e £ bbbt n bbbt b ettt b et 168
7.4.USING the DFWIN MOGUIE........coiiiiiicecicietessisis ettt s bbb nn e 172
7.5. Supported Libraries and MOGUIES..........c.ooierierreceercees ettt 173
TR R To LT o 2PN 173
7.5.2. COMUAIG32.....cooeieeie bbb 175
75,3, AIWDASE.....cviceiece et R et R RSttt en 175
T84, AIWINTY. oot 175
75,5, GUIB2... oot bbb bR s bbbt a s 176
T.5.8. KEIMEIBZ......eo ettt s b bbb bRttt 178
75,7, ShBIIB2......ceeee ettt ARt a bRt a s 186
T.5.8. USBI32.....eetee bbb AR 186
5T Y PR 190
75,10, WSOCKB2....oveeereiciesei ittt R Rt 190
Chapter 8.C/C++ MMX/SSE INtrINSICS....ccuirrerereeeesrrssesesisesesesssssssssssss e ss s sssssssesessssssssssssssssssssesssssssssssssssssssssnees 192
8.1, USING INtHNSIC FUNCHONS.......cviiieiiecieices ettt ss ettt bbb 192
8.1.1. ReqUIrEd HEAAEK Fil....... ettt 192
8.1.2. INTINSIC DA TYPES....cvueeeririeereieieee ettt bbb bbbttt s 193
8.1.3. INtTNSIC EXAMPIE......covcverciiiiiieeececce ettt bbbttt bbbttt n e 193
8.2, IMIMX INETINSICS. .t vuvveeeisieeerieseee sttt sss st s s e ettt st sn s 194
8.3, SSE INMTINSICS....uvureireeieeeseesiseisees et sse et ss et s et sttt 195
84, ABM INIINSICS....vvrreeeirieeirireietre sttt et st es ettt ee e st s s e bbb e s et s s e nen 199
8.5, AVX INEINSICS ...ttt bbbt 199
LT 1o T oL T T 201
0.1, DIAGNOSHC MESSAFES.cveviriiisisiietetete ettt ettt et se e s bbb e bbb s s s s e s s bbb s et ss e e e s et et et e bbb s e s s st nee 201
9.2, Phase INVOCALION MESSAGES.cuuuuriuieririiriteeseirtieiseiet it ses bbb bbb 202
9.3. Fortran Compiler EITOr MESSAQES.......coviiuiuiiriieiiere ettt sttt b s s st sa b s st aesnaes 202
0.3.1. MESSAFE FOMAL.......euctieeeeiiei ettt bbbttt 202
0.3.2. IMESSAGE LS. ..vvurveviiecieiriiieisiee sttt ettt s a bbbt 202
9.4. Fortran RUN-IME ErrOr MESSAGES........cv vttt ettt 234
0.4.1. MESSAFE FOMAL.......euieiieiieiie ettt bbbt bbbttt s 234
0.4.2. IMESSAGE LS. ..e.eceeeecieiri ettt bbbt bbb 234
Chapter 10.Contact INFOrMALION..........cccvieescriiresr s s 238

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XVi

LIST OF FIGURES

Figure 1 Internal Padding in @ STTUCIUIEc..cuiiieee e 7

Figure 2 Tail Padding in @ SHUCIUIEc.oiuiiiiierieirse s 8

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XVii

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

LIST OF TABLES

PGl Compilers and COMMANGScevuriieiiriieieiree ettt Xxiii
Representation of FOMran Data TYPESc..eierirriiiriiiseiiseeesese sttt 1
Real Data TYPE RANGESc.vviieieieieiess sttt sttt ettt s s s e sen s esee 2
Scalar TYPE AlIGNMENTuieiviicictcectee ettt bbb bbb bbb bbb bbb bt n e bns 2
CICH+ SCAlAr DALA TYPEScvvrerieirriieeiieieeseseisetsss et sss st ss bbb s ss bbb bbbt 4
SCAIAN AIGNIMENT ...ttt bttt E et £ b £ bbb bbbt n bbbt nt s 5
PGl Build-Related Compiler OPLIONScoiiierureieireeicireeiesceesre ettt 10
PGl Debug-Related Compiler OPLIONS ..o sees st sessens 12
Optimization-Related PGl Compiler OPtIONSciriiiierieirrincseseseseis e 12
Linking and Runtime-Related PGl Compiler OPtioNS ... eesssseeeees 13
C and C++ -specific COMPIlEr OPHONScviveiieisiciir ettt 14
Subgroups for -help OPLIONc.ccoviveiicectc bbb bbb bbb 30
“M OPHONS SUMMAIYcvvriviieiiiecieiieeieiet sttt ea sttt ettt enten s 37
Optimization and -0, -g, -Mvect, and -MconcUr OPLIONSccceieieiirniiene s 47
IGNORE_TKR EXMPIE ... veeeriereerceeisseie it ssee et eseessss et ess sttt sessnesen 124
REGISIEr AlIOCATIONcviee bbb 128
StaNAard STACK FIAMEc.ieice bbbttt 128
Stack Contents for Functions Returning StrUCHUNION ..o 131
Integral and POINTEr AFQUMENTSccoiiiiieriiiieiicte ettt bbb s 131
FIoating-point ATGUIMENTSc.iviiiieieieiee e ettt s st ss s nnnenenas 132
Structure and Union AFGUMENESc.ovueiiuriieiierireiiesseeseessse e esss s s s sse st ss st st ssesssassesssassen 132
REGISIEr AlIOCALION ...ttt sttt b es e 134
StaNdard STACK FFAME ...ttt 135
Register Allocation for EXAMPIE A-2 ..ottt 139

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs xviii

Table 25

Table 26

Table 27

Table 28

Table 29

Table 30

Table 31

Table 32

Table 33

Table 34

Table 35

Table 36

Table 37

Table 38

Table 39

Table 40

Table 41

Table 42

Table 43

Table 44

Table 45

Table 46

Linux86-64 Fortran FUNdamental TYPESccverrrriiicceeeie st 141
Fortran and C/C++ Data Type Compatibilitycccceevieriiiirieiiieeces et 143
Fortran and C/C++ Representation of the COMPLEX TYPEc..vuvvvuieririininenieeisiss s esnns 144
REGISIEr AlIOCALION ...ttt e s sttt b ees et 146
StaNdard STACK FFAME ..ot 147
Register Allocation for EXaMPIE A-dco ettt 150
Win64 Fortran FUNAAmENTal TYPES ..ot ss e s 152
Fortran and C/C++ Data Type Compatibilityccocoereurinieinineneeesee et 154
Fortran and C/C++ Representation of the COMPLEX TYPEc.cvvueviiiieiicesiceree et 154
Fortran Data TYPE MaPPINGS «..cveveverriiiiiriieeeteietstststss sttt s bbb ss s s sttt s s st s e snsesenesesen 165
DFLIB FUNCHON SUMMAIY ..ottt sttt sttt nes 166
LIBIM FUNCHONS ...ttt 167
DFPORT FUNCHONS ...ttt 168
DFWIN @dvapi32 FUNCHONSccueirieieirieesireieee ettt sttt nnse e snsen 173
MMX INtrinSICS (MMINTTNLAY L.ovie bbb 194
SSE INtrinSics (XMMINIFIN.NY c..cocviircic bbb 195
SSE2 Intrinsics (EMMINITN.NY ..o 196
SSE3 Intrinsics (PMMINITN.NY ..ot 198
SSSE3 Intrinsics (IMMINETN.AY ©...vvieiceee e 198
SSE4a Intrinsics (AaMMINTIN.NY ..o 198
ABM INtrinSICS (INMFN.N) ...ocvuieiecee e 199
AVX IntrinSics (IMMINTFN.AY ..o 199

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XiX

PREFACE

Thisguideis part of a set of manuals that describe how to use The Portland Group (PGI) Fortran,
C, and C++ compilers and program development tools. These compilers and tools include the
PGF77, PGF95, PGFORTRAN, PGC++, PGCC ANS C compilers, the PGPROF profiler, and
the PGDBG debugger. They work in conjunction with an x86 or x64 assembler and linker. Y ou
can use the PGI compilers and tools to compile, debug, optimize, and profile serial and parallel
applications for x86 processor-based systems.

The PGI Compiler Reference Manual is the reference companion to the PGI Compiler

User's Guide which provides operating instructions for the PGI command-level development
environment. It also contains details concerning the PGl compilers' interpretation of the Fortran
language, implementation of Fortran language extensions, and command-level compilation.
Users are expected to have previous experience with or knowledge of the Fortran programming
language. Neither guide teaches the Fortran programming language.

Audience Description

This manual isintended for scientists and engineers using the PGl compilers. To use these
compilers, you should be aware of the role of high-level languages, such as Fortran, C, and C++,
aswell as assembly-language in the software devel opment process; and you should have some
level of understanding of programming. The PGl compilers are available on avariety of x86 or
x64 hardware platforms and operating systems. Y ou need to be familiar with the basic commands
available on your system.

Compatibility and Conformance to Standards

Y our system needs to be running a properly installed and configured version of this PGI product.
For information on installing PGl compilers and tools, refer to the Release Notes and Installation
Guide included with your software.

For further information, refer to the following:

» American National Sandard Programming Language FORTRAN, ANSI X3. -1978 (1978).

» ISO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran,
Geneva, 1991 (Fortran 90).

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XX

Preface

» I1SO/IEC 1539-1 : 1997, Information technology — Programming Languages — Fortran,
Geneva, 1997 (Fortran 95).

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

» ISO/IEC 1539-1 : 2010, Information technology — Programming Languages — Fortran,
Geneva, 2010 (Fortran 2008).

» Fortran 95 Handbook Complete |ISO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» TheFortran 2003 Handbook, Adams et a, Springer, 2009.

» OpenMP Application Program Interface, Version 3.1, July 2011, http://www.openmp.org.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-4119.

» Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

» American National Standard Programming Language C, ANSI X3.159-1989.

» ISO/EC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999
(C99).

» ISO/IEC 9899:2011, Information Technology — Programming Languages — C, Geneva, 2011
(C11).

» ISO/IEC 14882:2011, Information Technology — Programming L anguages — C++, Geneva,
2011 (C++11).

Organization

Users typically begin by wanting to know how to use a product and often then find that they need
more information and facts about specific areas of the product. Knowing how as well as why you
might use certain options or perform certain tasksis key to using the PGl compilers and tools
effectively and efficiently. However, once you have this knowledge and understanding, you very
likely might find yourself wanting to know much more about specific areas or specific topics.

To facilitate ease of use, this manual contains detailed reference information about specific
aspects of the compiler, such as the details of compiler options, directives, and more. This guide
contains these sections:

Fortran, C, and C++ Data Types describes the data types that are supported by the PGI Fortran, C,
and C++ compilers.

Command-Line Options Reference provides a detailed description of each command-line option.

C++ Name Mangling describes the name mangling facility and explains the transformations of
names of entities to names that include information on aspects of the entity’ stype and afully
gualified name.

Directives and Pragmas Reference contains detailed descriptions of PGI’ s proprietary directives
and pragmas.

Runtime Environment describes the programming model supported for compiler code generation,
including register conventions and calling conventions for x86 and x64 processor-based systems.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XXi

http://www.openmp.org

Preface

C++ Dialect Supported lists more details of the version of the C++ language that PGC++
supports.

Fortran Module/Library Interfaces for Windows provides a description of the Fortran module
library interfaces that PVF supports.

C/C++ MMX/SSE Intrinsics provides tables that list the MM X Inline Intrinsics (mmintrin.h), the
SSE1 inline intrinsics (xmmintrin.h), and SSE2 inline intrinsics (emmintrin.h).

Messages provides alist of compiler error messages.

Hardware and Software Constraints

This guide describes versions of the PGl compilers that produce assembly code for x86 and
X64 processor-based systems. Details concerning environment-specific values and defaults and
system-specific features or limitations are presented in the release notes delivered with the PGI
compilers.

Conventions

This guide uses the following conventions:
italic
is used for emphasis.
Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.
Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.
filename....
élipsisindicate a repetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.
FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.
C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on wide variety of Linux, OS X and Windows
operating systems running on x86-compatible processors, and on Linux running on OpenPOWER

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XXii

Preface

processors. (Currently, the PGDBG debugger is supported on x86 only.) See the Compatibility
and Installation section on the PGI website for a comprehensive listing of supported platforms.

Support for 32-bit development is deprecated in PGl 2016 and will no longer be available as of the PGl
2017 release. PGI 2017 will only be available for 64-bit operating systems and will not include the ability to
compile 32-bit applications for execution on either 32- or 64-bit operating systems.

Terms

A number of terms related to systems, processors, compilers and tools are used throughout this
guide. For example:

AMD64 linux86 05x86 static linking
AVX linux86-64 0sx86-64 Win32

DLL 0S X shared library Win64
driver -mcmodel=small SSE Windows
dynamic library -mcmodel=medium SSE1 x64
hyperthreading (HT) MPI SSE2 x86

Intel 64 MPICH SSE3 x87

large arrays multicore SSE4A and ABM

license keys NUMA SSSE3

For a complete definition of these terms and other terms in this guide with which you may be
unfamiliar, PGl provides a glossary of terms which you can access at http://www.pgroup.com/
support/definitions.htm.

The following table lists the PGl compilers and tools and their corresponding commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command

PGF77 ANSI FORTRAN 77 pgf77

PGFORTRAN ISO/ANSI Fortran 2003 pgfortran

PGCC ISO/ANSIC11 and K&R C pgce

PGC++ ISO/ANSI C++14 with GNU compatibility | pgc++ on Linux and OS X
PGDBG Source code debugger pgdbg

PGPROF Performance profiler pgprof

In general, the designation PGI Fortran is used to refer to The Portland Group's Fortran 2003
compiler, and pgfortran is used to refer to the command that invokes the compiler. A similar
convention is used for each of the PGI compilers and tools.

For smplicity, examples of command-line invocation of the compilers generally reference the
pgfortran command, and most source code examples are written in Fortran. Usage of the

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XXiii

http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/definitions.htm
http://www.pgroup.com/support/definitions.htm

Preface

PGF77 compiler, whose features are a subset of PGFORTRAN, is similar. Usage of PGC++ and
PGCC is consistent with PGFORTRAN and PGF77, though there are command-line options and
features of these compilersthat do not apply to PGFORTRAN and PGF77, and vice versa.

There are awide variety of x86-compatible processorsin use. All are supported by the PGI
compilers and tools. Most of these processors are forward-compatible, but not backward-
compatible, meaning that code compiled to target a given processor will not necessarily execute
correctly on a previous-generation processor.

A table listing the processor options that PGl supportsis available in the Release Notes. The table
also includes the features utilized by the PGI compilers that distinguish them from a compatibility
standpoint.

In this manual, the convention isto use "x86" to specify the group of processors that are "32-hit"
but not "64-bit". The convention isto use "x64" to specify the group of processors that are both
"32-hit" and "64-bit". x86 processor-based systems can run only 32-bit operating systems. x64
processor-based systems can run either 32-bit or 64-bit operating systems, and can execute all
32-bit x86 binaries in either case. x64 processors have additional registers and 64-bit addressing
capabilities that are utilized by the PGI compilers and tools when running on a 64-bit operating
system. The prefetch, SSE1, SSE2, SSE3, and AV X processor features further distinguish the
various processors. Where such distinctions are important with respect to a given compiler option
or feature, it is explicitly noted in this manual.

The default for performing scalar floating-point arithmetic is to use SSE instructions on targets that support
SSE1 and SSE2.

Related Publications

The following documents contain additional information related to the x86 and x64 architectures,
and the compilers and tools available from The Portland Group.

» PGI Fortran Reference manual describesthe FORTRAN 77, Fortran 90/95, Fortran 2003
statements, data types, input/output format specifiers, and additional reference material
related to use of the PGI Fortran compilers.

» SystemV Application Binary Interface Processor Supplement by AT& T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

» SystemV Application Binary Interface X86-64 Architecture Processor Supplement, http://
www.x86-64.org/documentation_folder/abi.pdf.

» Fortran 95 Handbook Complete |ISO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,

1984).

IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

The C Programming Language by Kernighan and Ritchie (Prentice Hall).

C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT& T Bell

Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

v

v v VY

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs XXiv

http://www.x86-64.org/documentation_folder/abi.pdf
http://www.x86-64.org/documentation_folder/abi.pdf

Chapter 1.
FORTRAN, C, AND C++ DATA TYPES

This section describes the scalar and aggregate data types recognized by the PGI Fortran, C, and
C++ compilers, the format and alignment of each type in memory, and the range of values each
type can have on 32-hit or 64-bit operating systems.

1.1. Fortran Data Types

1.1.1. Fortran Scalars

A scalar data type holds a single value, such asthe integer value 42 or the real value 112.6.

The next table lists scalar data types, their size, format and range. Table 3 shows the range and
approximate precision for Fortran real datatypes. Table 4 shows the alignment for different scalar
datatypes. The alignments apply to all scalars, whether they are independent or contained in an
array, astructure or a union.

Table 2 Representation of Fortran Data Types

Fortran Data Type Format Range
INTEGER 2's complement integer 210231
INTEGER*2 2's complement integer -32768 to 32767
INTEGER*4 2's complement integer 20 2%
INTEGER*8 2's complement integer 2810281
LOGICAL 32-bit value true or false
LOGICAL* 8-bit value true or false
LOGICAL*2 16-bit value true or false
LOGICAL*4 32-bit value true or false
LOGICAL*8 64-bit value true or false
BYTE 2's complement -128to 127
REAL Single-precision floating point 10% t0 10%

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 1

Fortran, C, and C++ Data Types

Fortran Data Type Format Range

REAL*4 Single-precision floating point 10% 010 %
REAL*8 Double-precision floating point 107 510308 (1
DOUBLE PRECISION Double-precision floating point 1037 to 1038 ()
COMPLEX Single-precision floating point 103 10 10% ()
DOUBLE COMPLEX Double-precision floating point 107 19 10%%8
COMPLEX*16 Double-precision floating point 107 19 10%8
CHARACTER*n Sequence of n bytes

D Approximate value

Thelogical constants . TRUE. and . FALSE. are all onesand all zeroes, respectively. Internally,
the value of alogical variableistrueif the least significant bit is one and false otherwise. When
the option -Munixlogical isset, alogical variable with a non-zero value is true and with a
zerovalueisfalse.

A variable of logical type may appear in an arithmetic context, and the logical type is then treated as an
integer of the same size.

Table 3 Real Data Type Ranges

Data Type Binary Range Decimal Range Digits of Precision
REAL 2% 4928 10" 0 10% 7-8
REAL*8 2102 4 91024 10°7 to 1038 (" 15-16

Table 4 Scalar Type Alignment

This Type... ...Is aligned on this size boundary
LOGICAL*1 1-byte
LOGICAL*2 2-byte
LOGICAL*4 4-byte
LOGICAL*8 8-byte
BYTE 1-byte
INTEGER*2 2-byte
INTEGER*4 4-byte
INTEGER*8 8-byte
REAL*4 4-byte
REAL*8 8-byte
COMPLEX*8 4-byte
COMPLEX*16 8-byte

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 2

Fortran, C, and C++ Data Types

1.1.2. FORTRAN 77 Aggregate Data Type Extensions

The PGFORTRAN compiler supports de facto standard extensions to FORTRAN 77 that allow
for aggregate data types. An aggregate data type consists of one or more scalar data type objects.
Y ou can declare the following aggregate data types.

» Anarray consists of one or more elements of a single datatype placed in contiguous
locations from first to last.

» A structure can contain different data types. The members are alocated in the order they
appear in the definition but may not occupy contiguous locations.

» A unionisasinglelocation that can contain any of a specified set of scalar or aggregate
datatypes. A union can have only one value at atime. The data type of the union member to
which datais assigned determines the data type of the union after that assignment.

The alignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members. Arrays use the alignment of
their members.

Array types
align according to the alignment of the array elements. For example, an array of INTEGER*2
data aligns on a 2-byte boundary.

Structures and Unions
align according to the alignment of the most restricted data type of the structure or union. In
the next example, the union aligns on a 4-byte boundary since the alignment of ¢, the most
restrictive element, is four.

STRUCTURE /astr/
UNION

MAP

INTEGER*2 a ! 2 bytes
END MAP

MAP

BYTE b ! 1 byte

END MAP

MAP

INTEGER*4 c ! 4 bytes
END MAP
END UNION
END STRUCTURE

Structure alignment can result in unused space called padding. Padding between members of the

structure is called internal padding. Padding between the last member and the end of the spaceis
called tail padding.

The offset of a structure member from the beginning of the structure is a multiple of the member's
alignment. For example, since an INTEGER*2 aligns on a 2-byte boundary, the offset of an
INTEGER*2 member from the beginning of a structure is a multiple of two bytes.

1.1.3. Fortran 90 Aggregate Data Types (Derived Types)

The Fortran 90 standard added formal support for aggregate data types. The TY PE statement
begins a derived type data specification or declares variables of a specified user-defined type. For
example, the following would define a derived type ATTENDEE:

TYPE ATTENDEE
CHARACTER (LEN=30) NAME

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 3

Fortran, C, and C++ Data Types

CHARACTER (LEN=30) ORGANIZATION
CHARACTER (LEN=30) EMAIL
END TYPE ATTENDEE

In order to declare avariable of type ATTENDEE and access the contents of such avariable,
code such as the following would be used:
TYPE (ATTENDEE) ATTLIST (100)

ATTLIST (1) $NAME = ‘JOHN DOE’

1.2. C and C++ Data Types

1.2.1. C and C++ Scalars

Table 5 lists C and C++ scalar data types, providing their size and format. The alignment of
ascalar datatypeisequal toitssize. Table 6 shows scalar alignments that apply to individual
scalars and to scalars that are elements of an array or members of a structure or union. Wide
characters are supported (character constants prefixed with an L). The size of each wide character

iS4 bytes.

Table 5 C/C++ Scalar Data Types

Size
Data Type (bytes) Format Range
unsigned char 1 ordinal 0to 255
signed char 1 2's complement integer -128t0 127
char 1 2's complement integer -12810 127
unsigned short 2 ordinal 0 to 65535
[signed] short 2 2's complement integer -32768 to 32767
unsigned int 4 ordinal 0t02%-1
[signed] int 4 2's complement integer 20 2%
[signed] long [int] (32-bit operating | 4 2's complement integer 2110231
systems and win64)
[signed] long [int] (linux86-64) 8 2's complement integer 2810254
unsigned long [int] (32-bit operating | 4 ordinal 0to 2%-1
systems and win64)
unsigned long [int] (linux86-64) 8 ordinal 0to 2%-1
[signed] long long [int] 8 2's complement integer 2510 2%
unsigned long long [inf] 8 ordinal 0to 2%-1
float 4 IEEE single-precision 10% 10 10% ()
floating-point
double 8 IEEE double-precision 1077 9 103
floating-point

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran, C, and C++ Data Types

Size
Data Type (bytes) Format Range
long double (32-bit x86) 8 IEEE double-precision 107 19 10%8
floating-point
long double 16 IEEE extended-precision 10791 10 10%9%2 ()
floating-point
bit field? (unsigned value) 11032 ordinal 0 to 25%°-1, where size is the number of bits
bits in the bit field
bit field® (signed value) 11032 | 2's complement integer -25% 10 257711 where size is the number
bits of bits in the bit field
pointer (32-bit operating system) 4 address 0to 2%-1
pointer (64-bit operating system) 8 address 0to 2%-1
enum 4 2's complement integer 210 2%

D Approximate value

@ Bit fields occupy as many bits as you assign them, up to 4 bytes, and their length need not be a
multiple of 8 bits (1 byte)

Table 6 Scalar Alignment

Data Type Alignment on this size boundary

char 1-byte boundary, signed or unsigned.
short 2-byte boundary, signed or unsigned.
int 4-byte boundary, signed or unsigned.
enum 4-byte boundary.

pointer (32-bit operating system) 4-byte boundary.

pointer (64-bit operating system) 8-byte boundary.

float 4-byte boundary.

double 8-byte boundary.

long double 8-byte boundary.

long double (64-bit operating system) 16-byte boundary.

long [int] 32-bit on Win64 4-byte boundary, signed or unsigned.
long [int] linux86-64 8-byte boundary, signed or unsigned.
long long [int] 8-byte boundary, signed or unsigned.

1.2.2. C and C++ Aggregate Data Types

An aggregate data type consists of one or more scalar data type objects. Y ou can declare the
following aggregate data types:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran, C, and C++ Data Types

array
consists of one or more elements of a single data type placed in contiguous locations from first
to last.

class
(C++ only) isaclass that defines an object and its member functions. The object can contain
fundamental datatypes or other aggregates including other classes. The class members are
alocated in the order they appear in the definition but may not occupy contiguous locations.

struct
isastructure that can contain different data types. The members are alocated in the order they
appear in the definition but may not occupy contiguous locations. When a struct is defined
with member functions, its alignment rules are the same as those for a class.

union
isasingle location that can contain any of a specified set of scalar or aggregate data types. A
union can have only one value at atime. The data type of the union member to which datais
assigned determines the data type of the union after that assignment.

1.2.3. Class and Object Data Layout

Class and structure objects with no virtual entities and with no base classes, that isjust direct data
field members, are laid out in the same manner as C structures. The following section describes
the alignment and size of these C-like structures. C++ classes (and structures as a specia case

of aclass) are more difficult to describe. Their alignment and size is determined by compiler
generated fields in addition to user-specified fields. The following paragraphs describe how
storage islaid out for more general classes. The user is warned that the alignment and size of a
class (or structure) is dependent on the existence and placement of direct and virtual base classes
and of virtual function information. The information that follows s for informational purposes
only, reflects the current implementation, and is subject to change. Do not make assumptions
about the layout of complex classes or structures.

All classes are laid out in the same general way, using the following pattern (in the sequence
indicated):

» First, storage for all of the direct base classes (which implicitly includes storage for non-
virtual indirect base classes as well):

» When the direct base classis also virtual, only enough space is set aside for a pointer to
the actual storage, which appears later.

» Inthe case of anon-virtual direct base class, enough storage is set aside for its own non-
virtual base classes, its virtual base class pointers, its own fields, and its virtual function
information, but no space is alocated for its virtual base classes.

» Next, storage for the class's own fields.

» Next, storage for virtual function information (typically, a pointer to avirtual function table).

» Finally, storage for itsvirtual base classes, with space enough in each case for its own non-
virtual base classes, virtual base class pointers, fields, and virtual function information.

1.2.4. Aggregate Alignment

The aignment of an array, a structure or union (an aggregate) affects how much space the object
occupies and how efficiently the processor can address members.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 6

Fortran, C, and C++ Data Types

Arrays
align according to the alignment of the array elements. For example, an array of short data
type aligns on a 2-byte boundary.

Structures and Unions
align according to the most restrictive alignment of the enclosing members. In the following
example, the union unl aligns on a 4-byte boundary since the alignment of ¢, the most
restrictive element, is four:

union unl {
short a; /* 2 bytes */
char b; /* 1 byte */
int c; /* 4 bytes */
}i

Structure alignment can result in unused space, called padding. Padding between members of a
structureis called internal padding. Padding between the last member and the end of the space
occupied by the structureis called tail padding. Figure 1 illustrates structure alignment. Consider
the following structure:

struct strcl {

char a; /* occupies byte 0 */

short b; /* occupies bytes 2 and 3 */
char c; /* occupies byte 4 */

int d; /* occupies bytes 8 through 11 */
}i

b HHHH a byte 0
HHHH = tyrte 4
d byrte 2

Figure 1 Internal Padding in a Structure

Figure 2 shows how tail padding is applied to a structure aligned on a doubleword (8 byte)
boundary.

struct strc2{

int ml[4]; /* occupies bytes

0 through 15 */

double m2; /* occupies bytes 16 through 23 */
short m3; /* occupies bytes 24 and 25 */

} st;

1.2.5. Bit-field Alignment

Bit-fields have the same size and alignment rules as other aggregates, with several additionsto
theserules:

» Bit-fields are allocated from right to left.

» A bit-field must entirely reside in a storage unit appropriate for its type. Bit-fields never cross
unit boundaries.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 7

Fortran, C, and C++ Data Types

» Bit-fields may share a storage unit with other structure/union members, including members
that are not bit-fields.

» Unnamed bit-field's types do not affect the alignment of a structure or union.

» Items of [signed/unsigned] long long type may not appear in field declarations on 32-hit
systems.

st.ml[0] byte 0
st.ml[1] byte 4
ast.ml[Z2] byte 8
st.ml[3] byte 12

mz2 byte 16

mZ byte 20

HHHH m3 byte 24
HHHH byte 28

Figure 2 Tail Padding in a Structure
1.2.6. Other Type Keywords in C and C++

The void datatypeis neither a scalar nor an aggregate. Y ou can use void or void* asthe return
type of afunction to indicate the function does not return avalue, or as a pointer to an unspecified
data type, respectively.

The const and volatile type qualifiers do not in themsel ves define data types, but associate
attributes with other types. Use const to specify that an identifier is a constant and is not to be
changed. Use volatile to prevent optimization problems with data that can be changed from
outside the program, such as memory-mapped I/O buffers.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 8

Chapter 2.
COMMAND-LINE OPTIONS REFERENCE

A command-line option allows you to specify specific behavior when a program is compiled and
linked. Compiler options perform avariety of functions, such as setting compiler characteristics,
describing the object code to be produced, controlling the diagnostic messages emitted, and
performing some preprocessor functions. Most options that are not explicitly set take the default
settings. This reference section describes the syntax and operation of each compiler option. For
easy reference, the options are arranged in alphabetical order.

For an overview and tips on options usage and which options are best for which tasks, refer to the
‘Using Command-line Options’ section of the PGl Compiler Userr’s Guide, which also provides
summary tables of the different options.

This section uses the following notation:

[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (])
separates the choices.

Horizontal ellipsesindicate that zero or more instances of the preceding item are valid.

2.1. PGI Compiler Option Summary

The following tables include all the PGl compiler options that are not language-specific. The
options are separated by category for easier reference.

For a complete description of each option, refer to the detailed information later in this section.

2.1.1. Build-Related PGl Options

The options included in the following table pertain to the initial building of your program or
application.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 9

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

Table 7 PGI Build-Related Compiler Options

Option Description

-# Display invocation information.

—### Shows but does not execute the driver commands (same as the option ~dryrun).
-acc Enable OpenACC directives.

-Bdynamic Compiles for and links to the shared object version of the PGI runtime libraries.

-Bstatic pgi

Compiles for and links to the static version of the PGI runtime libraries.

-c Stops after the assembly phase and saves the object code in filename. o.

-D<args> Defines a preprocessor macro.

-dryrun Shows but does not execute driver commands.

—-drystdinc Displays the standard include directories and then exits the compiler.

—-dynamiclib Invokes the libtool utility program provided by OS X to create the dynamic library.
Supported only with —-m32 on 32-bit drivers. Refer to the libtool man page for more
information.

-E Stops after the preprocessing phase and displays the preprocessed file on the
standard output.

-F Stops after the preprocessing phase and saves the preprocessed file in
filename. f. This option is only valid for the PGI Fortran compilers.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-fpic (Linux and OS X only) Generate position-independent code.

-fPIC (Linux and OS X only) Equivalent to - fpic.

-g771ibs (Linux only) Allow object files generated by g77 to be linked into PGI main programs.

-help Display driver help message.

-I<dirname> Adds a directory to the search path for # inc1lude files.

-i2,-i4and -i8

-i2: Treat INTEGER variables as 2 bytes.

—i4: Treat INTEGER variables as 4 bytes.

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for
INTEGER* 8 operations.

-K<flag> Requests special compilation semantics with regard to conformance to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker command,
preserves the temporary file instead of deleting it.

-L<dirname> Specifies a directory to search for libraries.

-1<library> Loads a library.

-m Displays a link map on the standard output.

-M<pgflag> Selects variations for code generation and optimization.

-mcmodel=medium

(-tp k8-64and -tp p7-64 targets only) Generate code which supports the
medium memory model in the linux86-64 environment.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

10

Command-Line Options Reference

Option Description

-module <moduledir> (F90/F95 only) Save/search for module files in directory <moduledir>.

-mp[=all, align,bind, Interpret and process user-inserted shared-memory parallel programming directives.

[no]numa]

-noswitcherror Ignore unknown command line switches after printing an warning message.

-o Names the object file.

-pc <val> (-tp px/p5/p6/piii targets only) Set precision globally for x87 floating-point
calculations; must be used when compiling the main program. <wva1> may be one of
32, 64 or 80.

- -pedantic Prints warnings from included <system header files>

-pg of —gp Instrument the generated executable to produce a gprof-style gmon.out sample-
based profiling trace file; —gp is equivalent to -pg.

-pgf771libs Append PGF77 runtime libraries to the link line.

-pgf90libs Append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

-R<directory> (Linux only) Passed to the Linker. Hard code <directory> into the search path
for shared object files.

-r Creates a relocatable object file.

-rd4and -r8 -r4: Interpret DOUBLE PRECISION variables as REAL.
-r8: Interpret REAL variables as DOUBLE PRECISION.

-rc file Specifies the name of the driver's startup file.

-s Strips the symbol-table information from the object file.

-S Stops after the compiling phase and saves the assembly-language code in
filename.s.

-shared (Linux only) Passed to the linker. Instructs the linker to generate a shared object file.
Implies -fpic.

-show Display driver's configuration parameters after startup.

-silent Do not print warning messages.

-soname Pass the soname option and its argument to the linker.

-time Print execution times for the various compilation steps.

-tp <target> [,target...] Specify the type(s) of the target processor(s).

-u<symbol> Initializes the symbol table with <symbol>, which is undefined for the linker. An
undefined symbol triggers loading of the first member of an archive library.

-U<symbol> Undefine a preprocessor macro.

-V[release number] Displays the version messages and other information, or allows invocation of a
version of the compiler other than the default.

-v Displays the compiler, assembler, and linker phase invocations.

-W Passes arguments to a specific phase.

-w Do not print warning messages.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 1

Command-Line Options Reference

2.1.2. PGl Debug-Related Compiler Options

The options included in the following table pertain to debugging your program or application.

Table 8 PGI Debug-Related Compiler Options

Option Description

-C (Fortran only) Generates code to check array bounds.

-C Instrument the generated executable to perform array bounds checking at runtime.

-E Stops after the preprocessing phase and displays the preprocessed file on the
standard output.

--flagcheck Simply return zero status if flags are correct.

-flags Display valid driver options.

-9 Includes debugging information in the object module.

-gopt Includes debugging information in the object module, but forces assembly code
generation identical to that obtained when —gopt is not present on the command
line.

K<flag> Requests special compilation semantics with regard to conformance to IEEE 754.

--keeplnk If the compiler generates a temporary indirect file for a long linker command,
preserves the temporary file instead of deleting it.

-M<pgflag> Selects variations for code generation and optimization.

-pc <val> (-tp px/p5/p6/piii targets only) Set precision globally for x87 floating-point calculations;
must be used when compiling the main program. <val> may be one of 32, 64 or 80.

- s debug information for runtime traceback for use with the environment variable

[no]traceback Adds debug information for runtime traceback f ith the envi t variabl
PGI_TERM.

2.1.3. PGI Optimization-Related Compiler Options

The options included in the following table pertain to optimizing your program or application

code.

Table 9 Optimization-Related PGl Compiler Options

Option Description

-fast Generally optimal set of flags.
-fastsse Generally optimal set of flags for targets that include SSE/SSE2 capability.
-M<pgflag> Selects variations for code generation and optimization.

-mp[=all, align,bind,[noJnuma]

Interpret and process user-inserted shared-memory parallel programming directives.

-O<level>

Specifies code optimization level where <level>is 0, 1, 2, 3, or 4.

-pc <val>

(-tp px/p5/p6/piii targets only) Set precision globally for x87 floating-point calculations;
must be used when compiling the main program. <val> may be one of 32, 64 or 80.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 12

Command-Line Options Reference

2.1.4. PGl Linking and Runtime-Related Compiler Options

The options included in the following table pertain to defining parameters related to linking and
running your program or application.

Table 10 Linking and Runtime-Related PGl Compiler Options

Option Description

-Bdynamic

Compiles for and links to the DLL version of the PGI runtime libraries.

-Bstatic_pgi

Compiles for and links to the static version of the PGI runtime libraries.

-byteswapio (Fortran only) Swap bytes from big-endian to little-endian or vice versa on input/
output of unformatted data.

-fpic (Linux only) Generate position-independent code.

-fPIC (Linux only) Equivalent to - fpic.

-g771ibs (Linux only) Allow object files generated by g77 to be linked into PGI main programs.

-i2,-i4and -i8

-i2: Treat INTEGER variables as 2 bytes.

-i4: Treat INTEGER variables as 4 bytes.

-i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for
INTEGER* 8 operations.

-K<flag>

Requests special compilation semantics with regard to conformance to IEEE 754.

-M<pgflag>

Selects variations for code generation and optimization.

-mcmodel=medium

(-tp k8-64and -tp p7-64 targets only) Generate code which supports the
medium memory model in the linux86-64 environment.

-shared (Linux only) Passed to the linker. Instructs the linker to generate a shared object file.
Implies -fpic.
-soname Pass the soname option and its argument to the linker.

ta=tesla(:tesla suboptions)
host

Specify the target accelerator.

-tp <target> [,target...]

Specify the type(s) of the target processor(s).

2.2. C and C++ Compiler Options

There are alarge number of compiler options specific to the PGCC and PGC++ compilers,
especially PGC++. The next table lists several of these options, but is not exhaustive. For a
complete list of available options, including an exhaustive list of PGC++ options, use the -help
command-line option. For further detail on a given option, use -help and specify the option
explicitly. The majority of these options are related to building your program or application.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 13

Command-Line Options Reference

Table 11 C and C++ -specific Compiler Options

Option Description

-A (pgct+ only) Accept proposed ANSI C++, issuing errors for non-
conforming code.
-a (pgct+ only) Accept proposed ANSI C++, issuing warnings for non-

conforming code.

--[no_]alternative_tokens

(pgc++ only) Enable/disable recognition of alternative tokens. These
are tokens that make it possible to write C++ without the use of the , ,
[, 1,4#, & and ~ and characters. The alternative tokens include the
operator keywords (e.g., and, bitand, etc.) and digraphs. The default is
--no_alternative_tokens.

-B Allow C++ comments (using //) in C source.

--[no_]bool (pgc++ only) Enable or disable recognition of bool. The default value is --
bool.

--[no_]builtin Do/don’t compile with math subroutine builtin support, which causes

selected math library routines to be inlined. The default is --builtin.

--compress_names

pgct+ only) Create a precompiled header file with the name filename.

-d<arg>

--dependencies (see -M)

pgc++ only) Print makefile dependencies to stdout.

--dependencies_to_file filename

(
(pgcc only) Prints additional information from the preprocessor.
(
(

pgc++ only) Print makefile dependencies to file £i1ename.

--display_error_number

(pgc++ only) Display the error message number in any diagnostic
messages that are generated.

--diag_error<number>

(pgct+ only) Override the normal error severity of the specified diagnostic
messages.

--diag_remark<number>

(pgct+ only) Override the normal error severity of the specified diagnostic
messages.

--diag_suppress<number>

(pgc++ only) Override the normal error severity of the specified diagnostic
messages.

--diag_warning<number>

(pgc++ only) Override the normal error severity of the specified diagnostic
messages.

-e<number>

(pgc++ only) Set the C++ front-end error limit to the specified <number>.

--[no_]exceptions

(pgc++ only) Disable/enable exception handling support. The default is --
exceptions

--gnu_version <num>

(pgct+ only) Sets the GNU C++ compatibility version.

--[no]llalign (pgct+ only) Do/don't align longlong integers on integer boundaries. The
default is --llalign.

-M Generate make dependence lists.

-MD Generate make dependence lists.

-MD filename (pgct++ only) Generate make dependence lists and print them to file

filename.

--optk_allow_dollar_in_id_chars

(pgc++ only) Accept dollar signs in identifiers.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

14

Command-Line Options Reference

Option Description

-P Stops after the preprocessing phase and saves the preprocessed file in
filename.i.

--pch (pgc++ only) Automatically use and/or create a precompiled header file.

--preinclude=<filename> (pgc++ only) Specify file to be included at the beginning of compilation so

you can set system-dependent macros, types, and so on.

--[no_]using_std (pgct+ only) Enable/disable implicit use of the std namespace when
standard header files are included.

-X filename (pgct+ only) Generate cross-reference information into file £i1ename.

2.3. Generic PGI Compiler Options

The following descriptions are for all the PGI options. For easy reference, the options are
arranged in alphabetical order. For alist of options by tasks, refer to the tables in the beginning of
this section.

2.3.1.#

Displays the invocations of the compiler, assembler and linker.

Default

The compiler does not display individual phase invocations.

Usage

The following command-line requests verbose invocation information.
$ pgfortran -# prog.f

Description

The -# option displays the invocations of the compiler, assembler and linker. These invocations
are command-lines created by the driver from your command-line input and the default value.

Related options

-Minfo[=option [,option,...]], -V[release_number], -v

2.3.2. -Hith

Displays the invocations of the compiler, assembler and linker, but does not execute them.

Default

The compiler does not display individual phase invocations.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 15

Command-Line Options Reference

Usage

The following command-line requests verbose invocation information.
$ pgfortran -### myprog.f

Description

Use the -### option to display the invocations of the compiler, assembler and linker but not to
execute them. These invocations are command lines created by the compiler driver from the rc
files and the command-line options.

Related options

-#, -dryrun, -Minfo[=option [,option,...]], -V[release_number]

2.3.3. -acc

Enables OpenACC directives.

Default
The compiler enables OpenACC directives.

Syntax

—acc[=[no]autopar| [no]required|strict|verystrict]

[noJautopar
Enable [default] loop autoparall€lization within acc parallel. The default isto autopar, that is,
to enable loop autoparallelization.

[no]required
Instructs the compiler to issue acompiler error if the compute regionsfail to accelerate. The
default is required.

strict
Instructs the compiler to issue warnings for non-OpenACC accelerator directives.

verystrict
Instructs the compiler to fail with an error for any non-OpenACC accelerator directive.

Usage

The following command-line requests that OpenACC directives be enabled and that the issue an
error for any non-OpenA CC accelerator directive.

$ pgfortran -acc=verystrict -g prog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 16

Command-Line Options Reference

Description

The -acc option enables OpenACC directives. Y ou can use the suboptions to specify loop
autoparallelization, how the compiler reports compute regions failures to accelerate, and whether
to issue awarning or an error for non-OpenACC accelerator directives.

Starting in PGI 14.1, you control the OpenACC compiler behavior related to accelerator code
generation failures with the requi red suboption. The OpenACC compilers now issue a
compile-time error if accelerator code generation fails. In previous rel eases, the compiler would
issue awarning, then generate code to run the compute kernel on the host. This previous behavior
generates incorrect results if the compute kernels are inside a data region and the host and

device memory values are inconsistent. Y ou can enable the old behavior by using the -acc
norequired switch.

Related options
-0, -ta=tedla(tesla_suboptions),host

2.3.4. -Bdynamic

Compilesfor and links to the shared object version of the PGI runtime libraries.

Default

The compiler uses static libraries.

Usage

On Windows, you can createthe DLL obj1.d11 anditsimport library obj1.1ib using the
following series of commands:

% pgfortran -Bdynamic -c objectl.f
% pgfortran -Mmakedll objectl.obj -o objl.dll

Then compile the main program using this command:
$ pgfortran -# prog.f

For a complete example in Windows, refer to the example: ‘Build aDLL: Fortran’ in the
‘Creating and Using Libraries section of the PGl Compiler User’s Guide.

Description

Use this option to compile for and link to the shared object version of the PGI runtime libraries.
Thisflag isrequired when linking with any DLL built by the PGI compilers. For Windows, this
flag corresponds to the /MD flag used by Microsoft’s ¢l compilers.

n On Windows, -Bdynamic must be used for both compiling and linking.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 17

Command-Line Options Reference

When you use the PGI compiler flag -Bdynami c to create an executable that links to the shared
object form of the runtime, the executable built is smaller than one built without -Bdynamic.
The PGI runtime shared object(s), however, must be available on the system where the executable
isrun. The -Bdynami c flag must be used when an executable is linked against a shared object
built by the PGI compilers.

Related options
-Bstatic, -Mmakedl|

2.3.5. -Bstatic

Compilesfor and links to the static version of the PGI runtime libraries.

Default

The compiler uses static libraries.

Usage

The following command line explicitly compiles for and links to the static version of the PGI
runtime libraries:

[

% pgfortran -Bstatic -c objectl.f

Description

Y ou can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

n On Windows, -Bstatic must be used for both compiling and linking.

For more information on using static libraries on Windows, refer to ‘ Creating and Using Static
Libraries on Windows' inthe ‘ Creating and Using Libraries’ section of the PGI Compiler User’s
Guide.

Related options
-Bdynamic, -Bstatic_pgi

2.3.6. -Bstatic_pgi

Linux only.Compiles for and links to the static version of the PGI runtime libraries. Implies
-Mnorpath.

Default

The compiler uses static libraries.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 18

Command-Line Options Reference

Usage

The following command line explicitly compiles for and links to the static version of the PGI
runtime libraries:

% pgfortran -Bstatic -c objectl.f

Description

Y ou can use this option to explicitly compile for and link to the static version of the PGI runtime
libraries.

On Linux, -Bstatic pgi results in code that runs on most Linux systems without requiring a
Portability package.

For more information on using static libraries on Windows, refer to ‘ Creating and Using Static
Libraries on Windows' in the ‘ Creating and Using Libraries' section of the PGI Compiler User's
Guide.

Related options

-Bdynamic, -Bstatic

2.3.7. -byteswapio

Swaps the byte-order of datain unformatted Fortran data files on input/outpuit.

Default

The compiler does not byte-swap data on input/output.

Usage

The following command-line requests that byte-swapping be performed on input/output.
$ pgfortran -byteswapio myprog.f

Description

Usethe -byteswapio option to swap the byte-order of datain unformatted Fortran datafiles on
input/output. When this option is used, the order of bytesis swapped in both the data and record
control words; the latter occurs in unformatted sequential files.

Y ou can use this option to convert big-endian format data files produced by most legacy RISC
workstations to the little-endian format used on x86/x64 or OpenPOWER systems on the fly
during file reads/writes.

This option assumes that the record layouts of unformatted sequential access and direct access
files are the same on the systems. It further assumes that the | EEE representation is used for
floating-point numbers. In particular, the format of unformatted data files produced by PGI

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 19

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

Fortran compilersisidentical to the format used on Sun and SGI workstations; this format allows
you to read and write unformatted Fortran data files produced on those platforms from a program
compiled for an x86/x64 or OpenPOWER platform using the -byteswapio option.

Related options

None.

2.3.8.-C

(Fortran only) Generates code to check array bounds.

Default

The compiler does not enable array bounds checking.

Usage

In this example, the compiler instruments the executable produced from myprog. £ to perform
array bounds checking at runtime:
$ pgfortran -C myprog.f

Description

Use this option to enable array bounds checking. If an array is an assumed size array, the bounds
checking only appliesto the lower bound. If an array bounds violation occurs during execution,
an error message describing the error is printed and the program terminates. The text of the error
message includes the name of the array, the location where the error occurred (the source file and
the line number in the source), and information about the out of bounds subscript (its value, its
lower and upper bounds, and its dimension).

Related options

-Mbounds, -Mnobounds

2.39.-c

Halts the compilation process after the assembling phase and writes the object code to afile.

Default

The compiler produces an executable file and does not use the -c option.

Usage

In this example, the compiler produces the object file myprog. o in the current directory.
$ pgfortran -c myprog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 20

Command-Line Options Reference

Description

Use the -c option to halt the compilation process after the assembling phase and write the object
codeto afile. If theinput fileis filename. £, the output fileis filename. o.

Related options

-E, -Mkeepasm, -0, -S

2.3.10. -d<arg>

Prints additional information from the preprocessor. [Valid only for ¢ (pgcc)]

Default

No additional information is printed from the preprocessor.

Syntax
-d[D|I|M|N]

-dD
Print macros and values from source files.
-dl
Print include file names.
-dM
Print macros and values, including predefined and command-line macros.
-dN
Print macro names from source files.

Usage

In the following example, the compiler prints macro names from the source file.
$ pgfortran -dN myprog.f

Description

Use the -d<arg> option to print additional information from the preprocessor.

Related options
-E,-D, -U

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 21

Command-Line Options Reference

23.11.-D

Creates a preprocessor macro with a given value.

You can use the -D option more than once on a compiler command line. The number of active macro
definitions is limited only by available memory.

Syntax

-Dname [=value]

Where name is the symbolic name and value is either an integer value or a character string.

Default

If you define a macro name without specifying a value, the preprocessor assigns the string 1 to
the macro name.

Usage

In the following example, the macro PATHLENGTH has the value 256 until a subsequent
compilation. If the -D option isnot used, PATHLENGTH is set to 128.
S pgfortran -DPATHLENGTH=256 myprog.F

The sourcetext inmyprog. F isthis:

#ifndef PATHLENGTH
#define PATHLENGTH 128
#endif SUBROUTINE SUB CHARACTER*PATHLENGTH path

END
Description

Use the -D option to create a preprocessor macro with a given value. The value must be either an
integer or a character string.

Y ou can use macros with conditional compilation to select source text during preprocessing. A
macro defined in the compiler invocation remains in effect for each module on the command line,
unless you remove the macro with an #undef preprocessor directive or with the -U option. The
compiler processes al of the -U optionsin acommand line after processing the -D options.

Related options
-U

2.3.12. -dryrun

Displays the invocations of the compiler, assembler, and linker but does not execute them.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 22

Command-Line Options Reference

Default

The compiler does not display individual phase invocations.

Usage

The following command line requests verbose invocation information.
$ pgfortran -dryrun myprog.f

Description

Use the -dryrun option to display the invocations of the compiler, assembler, and linker but not
have them executed. These invocations are command lines created by the compiler driver from
the rc files and the command-line supplied with -dryrun.

Related options
-Minfo[=option [,option,...]], -V[release_number], -##

2.3.13. -drystdinc

Displays the standard include directories and then exits the compiler.

Default

The compiler does not display standard include directories.

Usage

The following command line requests a display for the standard include directories.
$ pgfortran -drystdinc myprog.f

Description

Usethe -drystdinc option to display the standard include directories and then exit the
compiler.

Related options

None.

2.3.14. -dynamiclib

Invokesthe 1ibtool utility program provided by OS X to create adynamic library. Supported
only with -m32 on 32-bit drivers.

Default

The compiler does not invoke the libtool utility.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 23

Command-Line Options Reference

Usage

The following command line builds a dynamic library:
% pgfortran -dynamiclib world.f90 -o world.dylib

Description

Use the -dynamiclib option to invoke the 1ibtool utility program provided by OS X to create a
dynamic library. For a complete example, refer to * Creating and Using Dynamic Libraries on OS
X' inthe PGl Compiler User’s Guide.

For more information on 1ibtool, refer tothe 1ibtool man page.

Related options
-Bdynamic, -Bstatic

2.3.15.-E

Halts the compilation process after the preprocessing phase and displays the preprocessed output
on the standard output.

Default

The compiler produces an executablefile.

Usage

In the following example the compiler displays the preprocessed myprog. £ on the standard
output.
$ pgfortran -E myprog.f

Description

Use the -E option to halt the compilation process after the preprocessing phase and display the
preprocessed output on the standard output.

Related options
-C, -¢, -Mkeepasm, -0, -F, -S

2.3.16. -F

Stops compilation after the preprocessing phase.

Default

The compiler produces an executablefile.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 24

Command-Line Options Reference

Usage

In the following example the compiler produces the preprocessed filemyprog. £ in the current
directory.
$ pgfortran -F myprog.F

Description

Use the -F option to halt the compilation process after preprocessing and write the preprocessed
output to afile. If theinput fileis filename. F, then the output fileis filename. f.

Related options
-c, -E, -Mkeepasm, -0, -S

2.3.17. -fast

Enables vectorization with SIMD instructions, cache alignment, and flushz for 64-bit targets.

Default

The compiler enables vectorization with SIMD instructions, cache alignment, and flushz.

Usage

In the following example the compiler produces vector SIMD code when targeting a 64-bit
machine.

$ pgfortran -fast vadd.f95

Description

When you use this option, agenerally optimal set of optionsis chosen for targets that support
SIMD capability. In addition, the appropriate -tp option is automatically included to enable
generation of code optimized for the type of system on which compilation is performed. This
option enables vectorization with SIMD instructions, cache alignment, and flushz.

Auto-selection of the appropriate -t p option means that programs built using the - fastsse optionon a
given system are not necessarily backward-compatible with older systems.

n C/C++ compilers enable -Mautoinline with -fast.

Related options

-O<level>, -Munroll[=option [,option...]], -Mnoframe, -Mscalarsse, -M[no]vect[=option
[,option,...]], -Mcache_align, -tp <target>[,target...], - M[no]autoinline[=option[,option,...]]

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 25

Command-Line Options Reference

2.3.18. -fastsse

Synonymous with -fast.

2.3.19. --flagcheck

Causes the compiler to check that flags are correct and then exit without any compilation
occuring.

Default

The compiler begins a compile without the additional step to first validate that flags are correct.

Usage

In the following example the compiler checks that flags are correct, and then exits.
$ pgfortran --flagcheck myprog.f

Description

Use this option to make the compiler check that flags are correct and then exit. If flags are all
correct then the compiler returns a zero status. No compilation occurs.

Related options

None.

2.3.20. -flags

Displays valid driver options on the standard output.

Default

The compiler does not display the driver options.

Usage

In the following example the user requests information about the known switches.
$ pgfortran -flags

Description

Use this option to display driver options on the standard output. When you use this option with
-v, in addition to the valid options, the compiler lists options that are recognized and ignored.

Related options
#, -HHH, -V

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 26

Command-Line Options Reference

2.3.21. -fpic

(Linux only) Generates position-independent code suitable for inclusion in shared object
(dynamically linked library) files.
Default

The compiler does not generate position-independent code.

Usage

In the following exampl e the resulting object file, myprog . o, can be used to generate a shared
object.
$ pgfortran -fpic myprog.f

(Linux only) Use the -fpic option to generate position-independent code suitable for inclusion in
shared object (dynamically linked library) files.

Related options

-shared,-fPI C,-R<directory>

2.3.22. fPIC
(Linux only) Equivalent to - fpic. Provided for compatibility with other compilers.
2.3.23. -9

Instructs the compiler to include symbolic debugging information in the object module.

Default

The compiler does not put debugging information into the object module.

Usage

In the following example, the object filemyprog. o contains symbolic debugging information.
$ pgfortran -c -g myprog.f

Description

Use the -g option to instruct the compiler to include symbolic debugging information in the object
module. Debuggers, such as PGDBG, require symbolic debugging information in the object
module to display and manipulate program variables and source code.

If you specify the —-g option on the command-line, the compiler sets the optimization level to -O0
(zero), unless you specify the -0 option. For more information on the interaction between the

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 27

Command-Line Options Reference

-g and -0 options, refer to the -0 entry. Symbolic debugging may give confusing resultsif an
optimization level other than zero is selected.

n Including symbolic debugging information increases the size of the object module.

Related options
-O<level>, -gopt

2.3.24. -gopt

Instructs the compiler to include symbolic debugging information in the object file, and to
generate optimized code identical to that generated when -g is not specified.

Default

The compiler does not put debugging information into the object module.

Usage

In the following example, the object filemyprog. o contains symbolic debugging information.
$ pgfortran -c -gopt myprog.f

Description

Using -g aters how optimized code is generated in ways that are intended to enable or improve
debugging of optimized code. The -gopt option instructs the compiler to include symbolic
debugging information in the object file, and to generate optimized code identical to that
generated when -g is not specified.

Related options
-g, -M<pgflag>

2.3.25. -g77libs

(Linux only) Used on the link line, this option instructs the pgfortran driver to search the
necessary g77 support libraries to resolve references specific to g77 compiled program units.

The g77 compiler must be installed on the system on which linking occurs in order for this option to
function correctly.

Default

The compiler does not search g77 support libraries to resolve references at link time.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 28

Command-Line Options Reference

Usage

The following command-line requests that g77 support libraries be searched at link time:
$ pgfortran -g771ibs myprog.f g77 object.o

Description

(Linux only) Usethe -g771ibs option on the link lineif you are linking g77-compiled program
units into a pgfortran-compiled main program using the pgfortran driver. When this option is
present, the pgfortran driver searches the necessary g77 support libraries to resolve references
specific to g77 compiled program units.

Related options
-pgf77libs

2.3.26. -help

Used with no other options, -he1p displays options recognized by the driver on the standard
output. When used in combination with one or more additional options, usage information for
those optionsis displayed to standard output.

Default

The compiler does not display usage information.

Usage

In the following example, usage information for -Minline is printed to standard output.

$ pgcc -help -Minline

-Minline[=1lib:<inlib>|<func>|except:<func> | name:<func>|size:<n>|levels:<n>]
Enable function inlining lib:<extlib>Use extracted functions from extlib
<func>Inline function func except:<func>Do not inline function func
name:<func>Inline function func size:<n>Inline only functions smaller than n
levels:<n>Inline n levels of functions -Minline Inline all functions that were
extracted

In the following example, usage information for -help shows how groups of options can be listed

or examined according to function.

$ pgcc -help -help
-help[=groups|asm|debug|language|linker|opt|other|
overall |phase|prepro|suffix|switch|target|variable]

Description

Use the -help option to obtain information about available options and their syntax. Y ou can use
-help in one of three ways:

» Use -help with no parametersto abtain alist of al the available options with a brief one-
line description of each.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 29

Command-Line Options Reference

» Add aparameter to -help to restrict the output to information about a specific option. The
syntax for thisusageisthis:
-help <command line option>

» Add aparameter to -help to restrict the output to a specific set of options or to a building
process. The syntax for this usage isthis:
—help=<subgroup>

The following table lists and describes the subgroups available with -help.

Table 12 Subgroups for -help Option

Use this -help option To get this information...

-help=asm A list of options specific to the assembly phase.

-help=debug A list of options related to debug information generation.

-help=groups A list of available switch classifications.

-help=language A list of language-specific options.

-help=linker A list of options specific to link phase.

-help=opt A list of options specific to optimization phase.

-help=other A list of other options, such as ANSI conformance pointer aliasing for C.

-help=overall Alist of options generic to any PGI compiler.

-help=phase Alist of build process phases and to which compiler they apply.

-help=prepro A list of options specific to the preprocessing phase.

-help=suffix Alist of known file suffixes and to which phases they apply.

-help=switch A list of all known options; this is equivalent to usage of -help without any parameter.

-help=target A list of options specific to target processor.

-help=variable Alist of all variables and their current value. They can be redefined on the command line
using syntax VAR=VALUE.

For more examples of -help, refer to ‘Help with Command-line Options'.

Related options
-#, -#H###, -show, -V[release_number], -flags

2.3.27. -

Adds a directory to the search path for files that are included using either the INCLUDE
statement or the preprocessor directive #include.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 30

Command-Line Options Reference

Default
The compiler searches only certain directories for included files.

» For gee-libincludes: /usr/1ib64/gcc-11ib
» For systemincludes./usr/include

Syntax
—-Idirectory

Where directory is the name of the directory added to the standard search path for include files.

Usage

In the following example, the compiler first searches the directory mydi r and then searches the
default directories for include files.
$ pgfortran -Imydir

Description

Adds adirectory to the search path for files that are included using the INCLUDE statement or
the preprocessor directive #include. Use the -1 option to add a directory to the list of where to
search for the included files. The compiler searches the directory specified by the -1 option before
the default directories.

The Fortran INCLUDE statement directs the compiler to begin reading from another file. The
compiler uses two rulesto locate thefile:

» If thefile name specified in the INCLUDE statement includes a path name, the compiler
begins reading from thefile it specifies.

» If no path nameis provided in the INCLUDE statement, the compiler searches (in order):
1. Any directories specified using the -1 option (in the order specified)
2. Thedirectory containing the source file
3. Thecurrent directory

For example, the compiler appliesrule (1) to the following statements:

INCLUDE '/bob/include/filel' (absolute path name)
INCLUDE '../../filel' (relative path name)

and rule (2) to this statement:
INCLUDE 'filel'

Related options

-Mnostdinc

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 31

Command-Line Options Reference

2.3.28. -2, -i4, -i8

Treat INTEGER and LOGICAL variables as either two, four, or eight bytes.

Default
The compiler treats INTERGER and LOGICAL variables as four bytes.

Usage

In the following example, using the -8 switch causes the integer variables to be treated as 64 hits.
$ pgfortran -i8 int.f

int. f isafunction similar to this;

int.f
print *, "Integer size:", bit size(i)
end

Description

Use this option to treat INTEGER and LOGICAL variables as either two, four, or eight bytes.
INTEGER* 8 values not only accupy 8 bytes of storage, but operations use 64 hits, instead of 32
bits.

» -i2: Treat INTEGER variables as 2 bytes.
» -i4: Treat INTEGER variables as 4 bytes.

» -i8: Treat INTEGER and LOGICAL variables as 8 bytes and use 64-bits for INTEGER* 8
operations.

Related options

None.

2.3.29. -K<flag>

Requests that the compiler provide special compilation semantics with regard to conformance to
|IEEE 754.

Default

The default is -Knoieee and the compiler does not provide special compilation semantics.

Syntax
-K<flag>

Where flag is one of the following:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 32

Command-Line Options Reference

ieee Perform floating-point operations in strict conformance with the IEEE 754 standard. Some optimizations are
disabled, and on some systems a more accurate math library is linked if -Kieee is used during the link
step.

noieee Default flag. Use the fastest available means to perform floating-point operations, link in faster non-lEEE
libraries if available, and disable underflow traps.

PIC or pic (Linux only) Generate position-independent code. Equivalent to - £pi c. Provided for compatibility with
other compilers.

trap=option Controls the behavior of the processor when floating-point exceptions occur.
[,option]... Possible options include:
fp

align (ignored)
inv

denorm

divz

ovf

unf

inexact

Usage

In the following example, the compiler performs floating-point operations in strict conformance
with the |EEE 754 standard

$ pgfortran -Kieee myprog.f
Description

Use -K to instruct the compiler to provide special compilation semantics.

-Ktrap isonly processed by the compilers when compiling main functions or programs. The
options inv, denorm, divz, ovf, unf, and inexact correspond to the processor’ s exception
mask bits: invalid operation, denormalized operand, divide-by-zero, overflow, underflow, and
precision, respectively.

Normally, the processor’ s exception mask bits are on, meaning that floating-point exceptions
are masked — the processor recovers from the exceptions and continues. If a floating-point
exception occurs and its corresponding mask bit is off, or "unmasked", execution terminates with
an arithmetic exception (C's SIGFPE signal).

-Ktrap=fp isequivalent to -Ktrap=inv, divz, ovf.

The PGI compilers do not support exception-free execution for -Kt rap=inexact. The purpose of this
hardware support is for those who have specific uses for its execution, along with the appropriate signal

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 33

Command-Line Options Reference

. handlers for handling exceptions it produces. It is not designed for normal floating point operation code
support.

Related options

None.

2.3.30. --keeplnk

(Windows only.) Preserves the temporary file when the compiler generates a temporary indirect
filefor along linker command.

Usage

In the following example the compiler preserves each temporary file rather than deleting it.
$ pgfortran --keeplnk myprog.f

Description

If the compiler generates atemporary indirect file for along linker command, use this option to
instruct the compiler to preserve the temporary file instead of deleting it.

Related options

None.

2.3.31.-L

Specifies adirectory to search for libraries.

Multiple -L options are valid. However, the position of multiple -L options is important relative to -l options
supplied.

Default

The compiler searches the standard library directory.

Syntax

-Ldirectory

Where directory isthe name of the library directory.

Usage

In the following example, the library directory is /11ib and the linker links in the standard
libraries required by PGFORTRAN from this directory.

$ pgfortran -L/1lib myprog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 34

Command-Line Options Reference

In the following example, the library directory /1ib is searched for thelibrary file 1ibx.a and
both the directories /1ib and /1ibz are searched for 1iby.a.

$ pgfortran -L/lib -1x -L/libz -ly myprog.f

Description

Use the -L option to specify adirectory to search for libraries. Using -L allows you to add
directories to the search path for library files.

Related options

-1

2.3.32. -I<library>

Instructs the linker to load the specified library. The linker searches <library>in addition to the
standard libraries.

n The linker searches the libraries specified with -l in order of appearance before searching the standard
libraries.

Syntax

-llibrary
Where library isthe name of the library to search.

Usage: In the following example, if the standard library directory is /11ib the linker loads the
library /1ib/1ibmylib.a, in addition to the standard libraries.
S pgfortran myprog.f -lmylib

Description

Use this option to instruct the linker to load the specified library. The compiler prepends the
characterslib to the library name and adds the .a extension following the library name. The linker
searches each library specified before searching the standard libraries.

Related options
L

2.3.33.-M

Generate make dependence lists. You can use -MD, filename (pgct+ only) to generate make
dependence lists and print them to the specified file.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 35

Command-Line Options Reference

2.3.34.-m

Displays alink map on the standard output.

Default

The compiler does display the link map and does not use the -m option.

Usage

When the following example is executed on Windows, pgfortran creates alink map in thefile
myprog.map.
$ pgfortran -m myprog.f

Description
Use this option to display alink map.

» On Linux, the map iswritten to stdout.

» On Windows, the map iswritten to a . map file whose name depends on the executable. If
the executable ismyprog. £, the map fileisinmyprog.map.

Related options

-C, -0,-S,-U

2.3.35. -m32

Use the 32-bit compiler for the default processor type.

Usage

When the following example is executed, pgfortran uses the 32-bit compiler for the default
processor type.
$ pgfortran -m32 myprog.f

Description

Use this option to specify the 32-bit compiler as the default processor type.

Related options
-m64

2.3.36. -m64

Use the 64-bit compiler for the default processor type.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 36

Command-Line Options Reference

Usage

When the following example is executed, pgfortran uses the 64-bit compiler for the default
processor type.
$ pgfortran -mé64 myprog.f

Description
Use this option to specify the 64-bit compiler as the default processor type.

Related options
-m32

2.3.37. -M<pgflag>

Selects options for code generation. The options are divided into the following categories:

Code generation Fortran Language Controls Optimization
Environment C/C++ Language Controls Miscellaneous
Inlining

The following table lists and briefly describes the options alphabetically and includes afield
showing the category. For more details about the options as they relate to these categories, refer
to *-M Options by Category’ on page 113.

Table 13 -M Options Summary

poflag Description Category

allocatable=95|03 Controls whether to use Fortran 95 or Fortran 2003 semantics in Fortran Language
allocatable array assignments.

anno Annotate the assembly code with source code. Miscellaneous
[noJautoinline When a C/C++ function is declared with the inline keyword, inline it | Inlining

at-02.
[noJasmkeyword Specifies whether the compiler allows the asm keyword in C/C++ C/C++ Language

source files (pgcc and pgc++ only).

[no]backslash Determines how the backslash character is treated in quoted strings | Fortran Language
(Fortran only).

[no]bounds Specifies whether array bounds checking is enabled or disabled. Miscellaneous

--[no_]builtin Do/don't compile with math subroutine builtin support, which causes | Optimization

selected math library routines to be inlined (pgcc and pgc++ only).

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 37

Command-Line Options Reference

pgflag Description Category
byteswapio Swap byte-order (big-endian to little-endian or vice versa) during /O | Miscellaneous
of Fortran unformatted data.
cache_align Where possible, align data objects of size greater than or equal to 16 | Optimization
bytes on cache-line boundaries.
chkfpstk Check for internal consistency of the x87 FP stack in the prologue of | Miscellaneous
a function and after returning from a function or subroutine call (-tp
px/p5/p6/piii targets only).
chkptr Check for NULL pointers (pgf95, pgfortran only). Miscellaneous
chkstk Check the stack for available space upon entry to and before the Miscellaneous
start of a parallel region. Useful when many private variables are
declared.
concur Enable auto-concurrentization of loops. Multiple processors or cores | Optimization
will be used to execute parallelizable loops.
cpp Run the PGI cpp-like preprocessor without performing subsequent Miscellaneous
compilation steps.
cray Force Cray Fortran (CF77) compatibility (Fortran only). Optimization
cuda Enables CUDA Fortran. Fortran Language
[no]daz Do/don't treat denormalized numbers as zero. Code Generation
[no]dclchk Determines whether all program variables must be declared (Fortran | Fortran Language
only).
[no]defaultunit Determines how the asterisk character ("") is treated in relation to Fortran Language
standard input and standard output, regardless of the status of /0
units 5 and 6. (Fortran only).
[no]depchk Checks for potential data dependencies. Optimization
[no]dse Enables [disables] dead store elimination phase for programs Optimization
making extensive use of function inlining.
[no]dlines Determines whether the compiler treats lines containing the letter Fortran Language
"D" in column one as executable statements (Fortran only).
dll Link with the DLL version of the runtime libraries (Windows only). Miscellaneous
dollar,char Specifies the character to which the compiler maps the dollar sign Fortran Language
code(Fortran only).
[no]dwarf Specifies not to add DWARF debug information. Code Generation
dwarf1 When used with -g, generate DWARF1 format debug information. Code Generation

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

38

Command-Line Options Reference

pgflag Description Category

dwarf2 When used with -g, generate DWARF2 format debug information. Code Generation

dwarf3 When used with -g, generate DWARF3 format debug information. Code Generation

extend Instructs the compiler to accept 132-column source code; otherwise | Fortran Language
it accepts 72-column code (Fortran only).

extract invokes the function extractor. Inlining

[nolf[=option] Perform certain floating point intrinsic functions using relaxed Optimization
precision.

fixed Instructs the compiler to assume F77-style fixed format source code | Fortran Language
(pgf95, pgfortran only).

[no]flushz Do/don't set SSE flush-to-zero mode Code Generation

[no]fpapprox Specifies not to use low-precision fp approximation operations. Optimization

free Instructs the compiler to assume F90-style free format source Fortran Language
code(pgf95, pgfortran only).

func32 The compiler aligns all functions to 32-byte boundaries. Code Generation

geebug(s] Matches behavior of certain gcc bugs Miscellaneous

info Prints informational messages regarding optimization and code Miscellaneous
generation to standard output as compilation proceeds.

inform Specifies the minimum level of error severity that the compiler Miscellaneous
displays.

inline Invokes the function inliner. Inlining

[noliomutex Determines whether critical sections are generated around Fortran I/ | Fortran Language
O calls(Fortran only).

[nolipa Invokes interprocedural analysis and optimization. Optimization

keepasm Instructs the compiler to keep the assembly file. Miscellaneous

largeaddressaware [Win64 only] Generates code that allows for addresses greater than | Code Generation

2GB, using RIP-relative addressing.

[no]large_arrays

Enables support for 64-bit indexing and single static data objects of
size larger than 2GB.

Code Generation

Ifs Links in libraries that allow file 1/O to files of size larger than 2GB on | Environment
32-bit systems (32-bit Linux only).
list Specifies whether the compiler creates a listing file. Miscellaneous

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

39

Command-Line Options Reference

poflag Description Category

[no]loop32 Aligns [does not align] innermost loops on 32 byte boundaries with Code Generation
-tp barcelona

[no]ire Enable [disable] loop-carried redundancy elimination. Optimization

[nojm128 Recognizes [ignores] __m128, __m128d, and __m128i datatypes. Code Generation
(C only)

[no]m128 Instructs the compiler to treat floating-point constants as float data C/C++ Language
types (pgcc and pge++ only).

maked|l Generate a dynamic link library (DLL).(Windows only). Miscellaneous

makeimplib Passes the -def switch to the librarian without a deffile, when used Miscellaneous
without -def : de f£i1e.(Windows only)

mpi=option Link to MP! libraries: MPICH, SGlI, or Microsoft MP! libraries Code Generation

neginfo Instructs the compiler to produce information on why certain Miscellaneous
optimizations are not performed.

noframe Eliminates operations that set up a true stack frame pointer for Optimization
functions.

noi4 Determines how the compiler treats INTEGER variables(Fortran Optimization
only).

nomain When the link step is called, don’t include the object file that calls the | Code Generation
Fortran main program.(Fortran only).

noopenmp When used in combination with the -mp option, the compiler ignores | Miscellaneous
OpenMP parallelization directives or pragmas, but still processes
SGl-style parallelization directives or pragmas.

nopgdlimain Do not link the module containing the default DllMain() into the Miscellaneous
DLL(Windows only).

norpath On Linux, do not add -rpath paths to the link line. Miscellaneous

nosgimp When used in combination with the -mp option, the compiler ignores | Miscellaneous
SGl-style parallelization directives or pragmas, but still processes
OpenMP directives or pragmas.

[no]stddef Instructs the compiler to not recognize the standard preprocessor Environment
macros.

nostdinc Instructs the compiler to not search the standard location for include | Environment
files.

nostdlib Instructs the linker to not link in the standard libraries. Environment

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

40

Command-Line Options Reference

pgflag Description Category

[noJonetrip Determines whether each DO loop executes at least once(Fortran Language
only).

novintr Disable idiom recognition and generation of calls to optimized vector | Optimization
functions.

pfi Instrument the generated code and link in libraries for dynamic Optimization
collection of profile and data information at runtime.

pre Read a pgfi.out trace file and use the information to enable or guide | Optimization
optimizations.

[no]pre Force [disable] generation of non-temporal moves and prefetching. | Code Generation

[no]prefetch Enable [disable] generation of prefetch instructions. Optimization

preprocess Perform cpp-like preprocessing on assembly language and Fortran | Miscellaneous
input source files.

prof Enable Compiler feedback and modify DWARF sections. Code Generation

[no]r8 Determines whether the compiler promotes REAL variables and Optimization
constants to DOUBLE PRECISION(Fortran only).

[no]r8intrinsics Determines how the compiler treats the intrinsics CMPLX and Optimization
REAL(Fortran only).

[no]recursive Allocate [do not allocate] local variables on the stack; this allows Code Generation
recursion. SAVEd, data-initialized, or namelist members are always
allocated statically, regardless of the setting of this switch(Fortran
only).

[no]reentrant Specifies whether the compiler avoids optimizations that can prevent | Code Generation

code from being reentrant.

[no]ref_externals

Do [do not] force references to names appearing in EXTERNAL
statements(Fortran only).

Code Generation

safeptr

Instructs the compiler to override data dependencies between
pointers and arrays (pgcc and pgc++ only).

Optimization

safe_lastval

In the case where a scalar is used after a loop, but is not defined
on every iteration of the loop, the compiler does not by default
parallelize the loop. However, this option tells the compiler it is safe
to parallelize the loop. For a given loop, the last value computed for
all scalars make it safe to parallelize the loop.

Code Generation

[no]save

Determines whether the compiler assumes that all local variables
are subject to the SAVE statement(Fortran only).

Fortran Language

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

41

Command-Line Options Reference

poflag Description Category

[no]scalarsse Do [do not] use SSE/SSE2 instructions to perform scalar floating- Optimization
point arithmetic.

schar Specifies signed char for characters (pgcc and pgc++ only — also C/C++ Language

see uchar).

[no]second_underscore

Do [do not] add the second underscore to the name of a Fortran
global if its name already contains an underscore(Fortran only).

Code Generation

[no]signextend Do [do not] extend the sign bit, if it is set. Code Generation

[no]single Do [do not] convert float parameters to double parameter characters | C/C++ Language
(pgcc and pgct+ only).

[noJsmart Do [do not] enable optional post-pass assembly optimizer. Optimization

[no]smartalloc[=huge| huge:<n>| | Add a call to the routine mallopt in the main routine. Supports large | Environment

hugebss] TLBs on Linux and Windows.
Tip To be effective, this switch must be specified
when compiling the file containing the Fortran, C,
or C++ main program.
standard Causes the compiler to flag source code that does not conform to Fortran Language
the ANSI standard(Fortran only).
[no]stride0 Do [do not] generate alternate code for a loop that contains an Code Generation
induction variable whose increment may be zero(Fortran only).
uchar Specifies unsigned char for characters (pgcc and pge++ only —also | C/C++ Language
see schar).
unix Uses UNIX calling and naming conventions for Fortran Code Generation
subprograms(Fortran for Win32 only).
[noJunixlogical Determines how the compiler treats logical values.(Fortran only). Fortran Language
[noJunroll Controls loop unrolling. Optimization
[noJupcase Determines whether the compiler preserves uppercase letters in Fortran Language
identifiers.(Fortran only).
varargs Forces Fortran program units to assume calls are to C functions with | Code Generation
a varargs type interface (pg£77, pg£95, and pgfortran only).
[no]vect Do [do not] invoke the code vectorizer. Optimization

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

42

Command-Line Options Reference

2.3.38. -mcmodel=medium

(For use only on 64-bit Linux targets) Generates code for the medium memory model in the
linux86-64 execution environment. Implies -Mlarge arrays.

Default: The compiler generates code for the small memory model.

Usage

The following command line requests position independent code be generated, and the option
-mcmodel=medium be passed to the assembler and linker:

$ pgfortran -mcmodel=medium myprog.f

Description

The default small memory model of the linux86-64 environment limits the combined areafor a
user’ s object or executable to 1GB, with the Linux kernel managing usage of the second 1GB of
address for system routines, shared libraries, stacks, and so on. Programs are started at a fixed
address, and the program can use a single instruction to make most memory references.

The medium memory model alows for larger than 2GB data areas, or .bss sections. Program
units compiled using either -mcmodel=medium Or -fpic require additional instructions to
reference memory. The effect on performance is a function of the data-use of the application.
The -mcmode1=medium switch must be used at both compile time and link time to create 64-
bit executables. Program units compiled for the default small memory model can be linked into
medium memory model executables as long as they are compiled with the option -fpic, or
position-independent.

The linux86-64 environment provides static libxxx.a archive libraries, that are built both
with and without -fpic, and dynamic libxxx.so shared object libraries that are compiled
with - fpic. Using the link switch -mcmodel=medium impliesthe - fpic switch and utilizes
the shared libraries by default. The directory sPG1/1inux86-64/<rel>/1ib containsthe
libraries for building small memory model codes; and the directory SPGI/1inux86-64/
<rel>/1ibso contains shared librariesfor building both -fpic and -mcmodel=medium
executables.

-mcmodel=medium -fpic is not allowed to create shared libraries. However, you can create static
archive libraries (.a) that are - fpic.

Related options
-Mlarge_arrays

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 43

Command-Line Options Reference

2.3.39. -module <moduledir>

Allows you to specify a particular directory in which generated intermediate . mod files should be
placed.

Default

The compiler places . mod filesin the current working directory, and searches only in the current
working directory for pre-compiled intermediate . mod files.

Usage

The following command line requests that any intermediate module file produced during
compilation of myprog. £ be placed in the directory mymods; specifically, thefile . /mymods/
myprog.mod is used.

$ pgfortran -module mymods myprog.f

Description

Use the -module option to specify a particular directory in which generated intermediate .mod
files should be placed. If the -module <moduledir> optionispresent, and USE statements
are present in a compiled program unit, then <moduledir> is searched for . mod intermediate files
prior to asearch in the default local directory.

Related options

None.

2.3.40. -mp

Instructs the compiler to interpret user-inserted OpenM P shared-memory parallel programming
directivesand pragmas, and to generate an executable file which will utilize multiple processorsin
a shared-memory parallel system.

Default

The compiler interprets user-inserted shared-memory parallel programming directives and
pragmas when linking. To disable this option, use the -nomp option when linking.

Usage

The following command line requests processing of any shared-memory directives present in
myprog. f.
$ pgfortran -mp myprog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 44

Command-Line Options Reference

Description

Use the -mp option to instruct the compiler to interpret user-inserted OpenM P shared-memory
paralel programming directives and to generate an executable file which utilizes multiple
processors in a shared-memory parallel system.

The suboptions are one or more of the following:
align
Forces loop iterations to be allocated to OpenMP processes using an algorithm that maximizes
alignment of vector sub-sections in loops that are both parallelized and vectorized for SSE.
This alocation can improve performance in program units that include many such loops. It
can also result in load-balancing problems that significantly decrease performance in program
units with relatively short loops that contain alarge amount of work in each iteration. The
numa suboption uses libnuma on systems where it is avail able.
allcores
Instructs the compiler to target all available cores. Y ou specify this suboption at link time.
bind
Instructs the compiler to bind threads to cores. Y ou specify this suboption at link time.
[nolnuma
Uses [does not use] libnuma on systems whereiit is available.

For a detailed description of this programming model and the associated directivesand pragmas,
refer to Section 9, ‘Using OpenMP’ of the PGI Compiler User's Guide.

Related options

-Mconcur[=option [,option,...]], -M[no]vect[=option [,option,...]]

2.3.41. -noswitcherror

Issues warnings instead of errors for unknown switches. Ignores unknown command line
switches after printing a warning message.

Default

The compiler prints an error message and then halts.

Usage

In the following example, the compiler ignores unknown command line switches after printing a
warning message.

$ pgfortran -noswitcherror myprog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 45

Command-Line Options Reference

Description

Use this option to instruct the compiler to ignore unknown command line switches after printing
an warning message.

n Tip You can configure this behavior in the siterc file by adding: set NOSWITCHERROR=1.

Related options

None.

2.3.42. -O<level>

Invokes code optimization at the specified level.

Default

The compiler optimizes at level 2.

Syntax

-0 [level]

Where leve is an integer from 0 to 4.

Usage

In the following example, since no -O option is specified, the compiler sets the optimization to
level 1.

$ pgfortran myprog.f

In the following example, since no optimization level is specified and a-O option is specified, the
compiler sets the optimization to level 2.

$ pgfortran -0 myprog.f

Description

Use this option to invoke code optimization.Using the PGI compiler commands with the -Olevel
option (the capital O isfor Optimize), you can specify any of the following optimization levels:
-00

Level zero specifies no optimization. A basic block is generated for each language statement.
-01

Level one specifieslocal optimization. Scheduling of basic blocksis performed. Register

alocation is performed.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 46

Command-Line Options Reference

-O
When no level is specified, level two global optimizations are performed, including traditional
scalar optimizations, induction recognition, and loop invariant motion. No SIMD vectorization
is enabled.

-02
Level two specifies global optimization. This level performs all level-one local optimization
aswell aslevel-two global optimization described in -O. In addition, thislevel enables
more advanced optimizations such as SIMD code generation, cache alignment, and partial
redundancy elimination.

-03
Level three specifies aggressive global optimization. Thislevel performsall level-one
and level-two optimizations and enables more aggressive hoisting and scalar replacement
optimizations that may or may not be profitable.

-O4
Level four performs all level-one, level-two, and |level-three optimizations and enables
hoisting of guarded invariant floating point expressions.

The following table shows the interaction between the -0 option, -g option, -Mvect, and
-Mconcur options.

Table 14 Optimization and -O, -g, -Mvect, and -Mconcur Options

Optimize Option Debug Option -M Option Optimization Level
none none none 1

none none -Mvect 2

none none -Mconcur 2

none -g none 0

-0 none or -g none 2

-Olevel none or -g none level

-Olevel <2 none or -g -Mvect 2

-Olevel < 2 none or -g -Mconcur 2

Unoptimized code compiled using the option -00 can be significantly slower than code generated
at other optimization levels. Like the -Mvect option, the -Munro11 option sets the optimization
level to level-2 if no -0 or —g options are supplied. The —-gopt option is recommended for
generation of debug information with optimized code. For more information on optimization,
refer to the * Optimizing and Parallelizing’ section of the PGI Compiler User’s Guide.

Related options
-9, -M<pgflag>, -gopt

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 47

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

2.343. -0

Names the executable file. Use the -0 option to specify the filename of the compiler object file.
Thefinal output isthe result of linking.

Default

The compiler creates executable filenames as needed. If you do not specify the -o option, the
default filename is the linker output file a . out.

Syntax

-o filename

Where filename is the name of the file for the compilation output. The filename should not have a
. £ extension.

Usage

In the following example, the executable fileisnyprog instead of the default
a.outmyprog.exe.

S pgfortran myprog.f -o myprog

Related options
-c, -E, -F, -S

2.3.44. -pc

n This option is available only for -tp px/p5/p6/piii targets.

Allows you to control the precision of operations performed using the x87 floating point unit, and
their representation on the x87 floating point stack.

Syntax

-pc { 32 | 64 | 80 }

Usage
$ pgfortran -pc 64 myprog.f
Description

The x87 architecture implements a floating-point stack using eight 80-bit registers. Each register
uses bhits 0-63 as the significant, bits 64—78 for the exponent, and bit 79 is the sign hit. This 80-

bit real format is the default format, called the extended format. When values are loaded into the
floating point stack they are automatically converted into extended real format. The precision of

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 48

Command-Line Options Reference

the floating point stack can be controlled, however, by setting the precision control bits (bits 8
and 9) of the floating control word appropriately. In this way, you can explicitly set the precision
to standard | EEE double-precision using 64 bits, or to single precision using 32 hits.

According to Intel documentation, this only affects the x87 operations of add, subtract, multiply,
divide, and square root. In particular, it does not appear to affect the x87 transcendental
instructions.

The default precision is system dependent. To ater the precision in agiven program unit, the
main program must be compiled with the same -pc option. The command line option -pc val
lets the programmer set the compiler’ s precision preference.

Valid valuesfor va are:

32 single precision 64 double precision 80 extended precision

Extended Precision Option — Operations performed exclusively on the floating-point stack
using extended precision, without storing into or loading from memory, can cause problems
with accumul ated values within the extra 16 bits of extended precision values. This can lead to
answers, when rounded, that do not match expected results.

For example, if the argument to sin isthe result of previous calculations performed on the
floating-point stack, then an 80-bit value used instead of a 64-bit value can result in slight
discrepancies. Results can even change sign due to the sin curve being too close to an x-intercept
value when evaluated. To maintain consistency in this case, you can assure that the compiler
generates code that calls afunction. According to the x86 ABI, afunction call must push its
arguments on the stack (in this way memory is guaranteed to be accessed, even if the argument is
an actual constant). Thus, even if the called function simply performs the inline expansion, using
the function call as awrapper to sin has the effect of trimming the argument precision down to the
expected size. Using the -Mnobuiltin option on the command line for C accomplishes this task
by resolving all math routinesin the library 11ibm, performing afunction call of necessity. The
other method of generating a function call for math routines, but one that may still produce the
inline instructions, is by using the -Kieee switch.

A second exampleillustrates the precision control problem using a section of code to determine
machine precision:

program find precision

w = 1.0

100 w=w+w

y=w+1l

Z=y—W

if (z .gt. 0) goto 100
C now w is just big enough that | ((w+l)-w)-1] >= 1

print*,w
end

In this case, where the variables are implicitly real* 4, operations are performed on the floating-
point stack where optimization removes unnecessary |oads and stores from memory. The general
case of copy propagation being performed follows this pattern:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 49

Command-Line Options Reference

y =2.0 + a

Instead of storing x into a, then loading ato perform the addition, the value of x can be left on
the floating-point stack and added to 2.0. Thus, memory accesses in some cases can be avoided,
leaving answers in the extended real format. If copy propagation is disabled, stores of all left-
hand sides will be performed automatically and reloaded when needed. Thiswill have the effect
of rounding any results to their declared sizes.

The find_precision program has a value of 1.8446744E+19 when executed using default
(extended) precision. If, however, -Kieee is set, the value becomes 1.6777216E+07 (single
precision.) This differenceis dueto the fact that -Kieee disables copy propagation, so al
intermediate results are stored into memory, then reloaded when needed. Copy propagation is
only disabled for floating-point operations, not integer. With this particular example, setting the
-pc switch will also adjust the resullt.

The -Kieee switch also has the effect of making function calls to perform all transcendental
operations. Except when the -Mnobuiltin switchissetin C, the function still produces the x86
machine instruction for computation, and arguments are passed on the stack, which resultsin a
memory store and load.

Finally, -Kieee also disablesreciprocal division for constant divisors. That is, for /b with
unknown aand constant b, the expression is usually converted at compile time to a* (1/b), thus
turning an expensive divide into arelatively fast scalar multiplication. However, numerical
discrepancies can occur when this optimization is used.

Understanding and correctly using the -pc, -Mnobuiltin, and -Kieee switches should enable
you to produce the desired and expected precision for calculations which utilize floating-point
operations.

Related options
-K<flag>, Mnobuiltin

2.3.45. --pedantic

Prints warnings from included <system header files>.

Default

The compiler prints the warnings from the included system header files.

Usage

In the following example, the compiler prints the warnings from the included system header files.

$ pgc++ --power myprog.cc

Related options

None.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 50

Command-Line Options Reference

2.3.46. -pg

(Linux only) Instructs the compiler to instrument the generated executable for gprof-style
gmon . out sample-based profiling tracefile.

Default

The compiler does not instrument the generated executable for gprof-style profiling.

Usage:

In the following example the program is compiled for profiling using pgdbg or gprof.
$ pgfortran -pg myprog.c

Description

Use this option to instruct the compiler to instrument the generated executable for gprof-

style sample-based profiling. Y ou must use this option at both the compile and link steps. A
gmon.out styletraceis generated when the resulting program is executed, and can be analyzed
using gprof.

Related options

None.

2.3.47. -pgc++libs

Instructs the compiler to append C++ runtime libraries to the link line for programs built using
either PGF77 or PGF90.

Default

The C/C++ compilers do not append the C++ runtime libraries to the link line.

Usage

In the following example the C++ runtime libraries are linked with an object file compiled with
pgf77.

$ pgf90 main.f90 mycpp.o -pgc++libs

Description

Use this option to instruct the compiler to append C++ runtime libraries to the link line for
programs built using either PGF77 or PGF90.

Related options
-pgf90libs, -pgf77libs

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 51

Command-Line Options Reference

2.3.48. -pgf77libs

Instructs the compiler to append PGF77 runtime librariesto the link line.

Default

The C/C++ compilers do not append the PGF77 runtime libraries to the link line.

Usage

In the following example a . ¢ main program is linked with an object file compiled with pg£77.
$ pgcc main.c myf77.0 -pgf771libs

Description

Use this option to instruct the compiler to append PGF77 runtime libraries to the link line.

Related options
-pgc++libs, -pgf90libs

2.3.49. -pgf90libs

Instructs the compiler to append PGF90/PGF95/PGFORTRAN runtime libraries to the link line.

Default

The C/C++ compilers do not append the PGFO0/PGF95/PGFORTRAN runtime libraries to the
link line.

Usage

In the following example a . ¢ main program is linked with an object file compiled with
pgfortran.
$ pgcc main.c myf95.0 -pgf90libs

Description

Use this option to instruct the compiler to append PGF90/PGF95/PGFORTRAN runtime libraries
to the link line.

Related options
-pgc++libs, -pgf 77libs

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 52

Command-Line Options Reference

2.3.50. -R<directory>

(Linux only) Instructs the linker to hard-code the pathname <directory>into the search path for
generated shared object (dynamically linked library) files.

n There cannot be a space between R and <directory>.

Usage

In the following example, at runtime the a.out executabl e searches the specified directory, in this
case /home/Joe/myso, for shared abjects.
$ pgfortran -R/home/Joe/myso myprog.f

Description

Use this option to instruct the compiler to pass information to the linker to hard-code the
pathname <directory> into the search path for shared object (dynamically linked library) files.

Related options
-fpic, -shared

2.3.91.r

Linux only.Creates a relocatable object file.

Default

The compiler does not create a relocatable object file and does not use the -r option.

Usage

In this example, pgfortran creates a rel ocatable object file.
$ pgfortran -r myprog.f

Description
Use this option to create a relocatable object file.

Related options
-C, -O<level>, -S, -U

2.3.52. -r4 and -r8

Interprets DOUBLE PRECISION variables as REAL (-r4), or interprets REAL variables as
DOUBLE PRECISION (-r8).

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 53

Command-Line Options Reference

Usage

In this example, the double precision variables are interpreted as REAL.

$ pgfortran -r4 myprog.f

Description

Interpret DOUBLE PRECISION variables as REAL (-r4) or REAL variables as DOUBLE
PRECISION (-r8).

Related options

-2, -i4, -i8, -Mnor8

2.3.53. -rc

Specifies the name of the driver startup configuration file. If the file or pathname supplied is not a
full pathname, the path for the configuration file loaded is relative to the $DRIVER path (the path
of the currently executing driver). If afull pathname is supplied, that file is used for the driver
configuration file.

Syntax

-rc [path] filename

Where path is either arelative pathname, relative to the value of $DRIVER, or afull pathname
beginning with "/". Filename is the driver configuration file.
Usage

In the following example, thefile .pgfortranrctest, relativeto /usr/pgi/linux86/bin,
the value of $DRIVER, isthe driver configuration file.

$ pgfortran -rc .pgfortranrctest myprog.f

Description

Use this option to specify the name of the driver startup configuration file. If the file or pathname
supplied is not afull pathname, the path for the configuration file loaded is relative to the
$DRIVER path —the path of the currently executing driver. If afull pathname is supplied, that
fileis used for the driver configuration file.

Related options

-show

2.3.94.-s

(Linux only) Strips the symbol-table information from the executable file.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 54

Command-Line Options Reference

Default

The compiler includes all symbol-table information and does not use the -s option.

Usage

In this example, pgfortran strips symbol-table information from the a . out. executablefile.
$ pgfortran -s myprog.f

Description

Use this option to strip the symbol-table information from the executable.

Related options

-C, -0, -u

2.3.95. -S

Stops compilation after the compiling phase and writes the assembly-language output to afile.

Default

The compiler doesnot retain a . s file.

Usage

In this example, pgfortran produces the filemyprog. s in the current directory.
$ pgfortran -S myprog.f

Description

Use this option to stop compilation after the compiling phase and then write the assembly-
language output to afile. If theinput fileis filename. £, then the output fileis filename.s.

Related options
-C, -E, -F, -Mkeepasm, -0

2.3.56. -shared

(Linux only) Instructs the compiler to passinformation to the linker to produce a shared object
(dynamically linked library) file.

Default

The compiler does not pass information to the linker to produce a shared object file.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 55

Command-Line Options Reference

Usage

In the following example the compiler passes information to the linker to produce the shared
object filemyso. so.

$ pgfortran -shared myprog.f -o myso.so

Description

Use this option to instruct the compiler to pass information to the linker to produce a shared
object (dynamically linked library) file.

Related options

-fpic, -R<directory>

2.3.57. -show

Produces driver help information describing the current driver configuration.

Default

The compiler does not show driver help information.

Usage

In the following example, the driver displays configuration information to the standard output
after processing the driver configuration file.
$ pgfortran -show myprog.f

Description

Use this option to produce driver help information describing the current driver configuration.

Related options
-V[release_number], -v, -###, -help, -rc

2.3.98. -silent
Do not print warning messages.

Default

The compiler prints warning messages.

Usage

In the following example, the driver does not display warning messages.
$ pgfortran -silent myprog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 56

Command-Line Options Reference

Description

Use this option to suppress warning messages.

Related options

-v, -V[release_number], -w

2.3.59. -soname

(Linux only) The compiler recognizes the -soname option and passes it through to the linker.

Default

The compiler does not recognize the -soname option.

Usage

In the following example, the driver passes the soname option and its argument through to the
linker.

$ pgfortran -soname library.so myprog.f

Description

Use this option to instruct the compiler to recognize the -soname option and pass it through to the
linker.

Related options

None.

2.3.60. -stack

(Windows only) Allows you to explicitly set stack properties for your program.

Default

If -stack isnot specified, then the defaults are as followed:

Win32
Settingis-stack:2097152, 2097152, which is approximately 2MB for reserved and
committed bytes.

Win64

No default setting

Syntax

-stack={ (reserved bytes) [, (committed bytes)] }{, [no]lcheck }

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 57

Command-Line Options Reference

Usage

The following example demonstrates how to reserve 524,288 stack bytes (512KB), commit
262,144 stack bytes for each routine (256K B), and disable the stack initialization code with the
nocheck argument.

$ pgfortran -stack=524288,262144,nocheck myprog.f

Description

Use this option to explicitly set stack properties for your program. The -stack option takes one
or more arguments: (reserved bytes), (committed bytes), [no]check.

reserved bytes
Specifies the total stack bytes required in your program.

committed bytes
Specifies the number of stack bytes that the Operating System will allocate for each routinein
your program. This value must be less than or equal to the stack reserved bytes value.

Default for this argument is 4096 bytes.

[no]check
Instructs the compiler to generate or not to generate stack initialization code upon entry of
each routine. Check is the default, so stack initialization code is generated.

Stack initialization code is required when aroutine's stack exceeds the committed bytes size.
When your committed bytesis equal to the reserved bytes or equal to the stack bytes required
for each routine, then you can turn off the stack initialization code using the -stack=nocheck
compiler option. If you do this, the compiler assumes that you are specifying enough committed
stack space; and therefore, your program does not have to manage its own stack size.

For more information on determining the amount of stack required by your program, refer to
-Mchkstk compiler option, described in ‘ Miscellaneous Controls'.

-stack=(reserved bytes), (committed bytes) are linker options.
-stack=[no]check is a compiler option.

If you specify —~stack= (reserved bytes), (committed bytes) onyour compile line, itis
only used during the link step of your build. Similarly, -stack=[no] check can be specified on your link
line, but it's only used during the compile step of your build.

Related options
-Mchkstk

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 58

Command-Line Options Reference

2.3.61. -ta=tesla(tesla_suboptions),host

Defines the target accelerator and the type of code to generate. Thisflag isvalid for Fortran, C,
and C++ on supported platforms.

There are three major suboptions:

tesla(:tesla suboptions)

host

Default

The compiler uses -ta=tesla, host.

Usage

In the following example, teslais the accelerator target architecture and the accelerator generates
code for compute capability 3.0.
$ pgfortran -ta=tesla,cc30

Description

Use this option to select the accelerator target and, optionally, to define the type of code to
genertate.

The -ta flag has the following options:

teda
Select the tesla accelerator target. This option has the following tesla-suboptions:
cc30
Generate code for compute capability 3.0.
cc35
Generate code for compute capability 3.5.
cc3x
Generate code for the lowest 3.x compute capability possible.
cc3+
Is equivalent to cc3x.
[noldebug
Enablg[disable] debug information generation in device code.
fastmath
Use routines from the fast math library.
[no]flushz
Enable]disable] flush-to-zero mode for floating point computations in the GPU code
generated forPGI Accelerator model compute regions.
keep
Keep the kernel files.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 59

Command-Line Options Reference

kepler
is equivalent to cc3x.
kepler+
is equivalent to cc3+.
llvm
Generate code using the [lvm-based back-end.
[noldebug
Enable]disable] GPU debug information generation.
[no]lineinfo
Enable[disable] GPU line information generation.
maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates
no limit.
nofma
Do not generate fused multiply-add instructions.
noL1
Preventsthe use of L1 hardware data cache to cache global variables.
pin+
isequivalent to cc3+.
[nojrdc
Generate [do not generate] rel ocatable device code.
[no]required
Generate [do not generate] a compiler error if accelerator device code cannot be generated.
tesla
isequivalentto -ta=tesla, cc2+
host
Usethe host option to generate code to execute OpenACC regions on the host.

The -ta=host flag has no suboptions.

Multiple Targets

When host is one of the multiple targets, such as-ta=tesla, host, theresult is generated code
that can be run with or without an attached accelerator.

Relocatable Device Code

A rdc optionisavailable for the -ta and -Mcuda flags that specifiesto generate rel ocatable
device code. Starting in PGI 14.1, the default code generation and linking mode for NVIDIA-
target OpenACC and CUDA Fortran is rdc, relocatable device code.

Y ou can disable the default and enable the old behavior and non-rel ocatable code by specifying
any of thefollowing: ~-ta=tesla:nordc, -Mcuda=nordc.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 60

Command-Line Options Reference

LLVM/SPIR and Native GPU Code Generation
For accelerator code generation, PGl 2016 has two options.

» Inlegacy mode, which continues to be the default, PGI generates low-level CUDA C or
OpenCL code.

» Beginning in PGI 14.1, PGI can generate an LLVM-based intermediate representation.
To enable this code generation, use -ta=tesla:11vm on NVIDIA Teslahardware.
-ta=tesla:11lvmimpliesand requires CUDA 5.5 or higher.

PGI’ s debugging capability for Teslausesthe LLVM back-end.

DWARF Debugging Formats

PGI 2016 hasinitia support for generating dwarf information in GPU code. To enable dwarf
generation, just asin host code, you use the -g option.

Dwarf generation requires use of the LLVM code generation capabilities. Further, it is possible
to generate dwarf information and debug on the host, device, or both. Further, for NVIDIA, the
LLVM code generation requires CUDA 5.5.

If you don't want —g to apply to both targets, PGI supports the debug and nodebug suboptions.
For example:

-acc -gimplies-ta=tesla,host -00 -gonthehostand -g 11vm onthe devicewith
cudab.5.

-acc -ta=tesla:debug impliesdebug on the device; use llvm and cudab.5

-acc -g -ta=tesla:nodebug impliesdebug on the host and no llvm code generation

Related options
#

2.3.62. -time

Print execution times for various compilation steps.

Default

The compiler does not print execution times for compilation steps.

Usage

In the following example, pgfortran prints the execution times for the various compilation steps.
$ pgfortran -time myprog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 61

Command-Line Options Reference

Description

Use this option to print execution times for various compilation steps.

Related options
-#

2.3.63. -tp <target>[,target...]

Sets the target processor.

Default

The PGI compilers produce code specifically targeted to the type of processor on which the
compilation is performed. In particular, the default isto use all supported instructions wherever
possible when compiling on a given system.

The default target processor is auto-selected depending on the processor on which the
compilation is performed. Y ou can specify atarget processor to compile for a different processor
type, such asto select a more generic processor, allowing the code to run on more system types.
Specifying two or more target processors enables unified binary code generation, where two

or more versions of each function may be generated, each version optimized for the specific
instruction set available in each target processor.

Executables created on a given system without the -t p flag may not be usable on previous
generation systems. For example, executables created on an Intel Sandybridge processor may use
instructions that are not available on earlier Intel Nehalem or Intel P7 systems.

The -tp flag interacts with the -m32 / -m64 flags to select atarget processor and 32-bit or 64-hbit
code generation. Specifying -tp shanghai -32 compiles 32-bit code that is optimized for the
AMD Shanghai processor, while specifying -tp shanghai -64 compiles 64-bit code. The -
tp shanghai -32 flagisegivalent tothetwo flags: -tp shanghai -m32 . Specifying -tp
shanghai without a-m32 / -m64 flag compiles for a 32-hit target if the PGI 32-bit compilers
are on your path, and for a 64-bit target if the PGl 64-bit compilers are on your path.

Syntax

The syntax for 64-bit and 32-bit targets is ssimilar, even though the target information varies.

Syntax for 64-bit targets:
-tp {k8-64 | k8-64e | p7-64 | core2-64 | x64}

Syntax for 32-bit targets:
-tp {k8-32 | p7-32 | core2-32}

Usage

In the following example, pgfortran sets the target processor to a 64-bit Intel Nehalem processor:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 62

Command-Line Options Reference

$ pgfortran -tp=nehalem-64 myprog.f

Description

Use this option to set the target architecture. By default, the PGI compiler uses all supported
instructions wherever possible when compiling on a given system.

Processor-specific optimizations can be specified or limited explicitly by using the -tp option.
Thus, it is possible to create executables that are usable on previous generation systems.

The following list contains the possible suboptions for -tp and the processors that each
suboption isintended to target. Options without a bit-length suffix use the current width
associated with the driver on your path.

barcelona
generate code for AMD Opteron/Quadcore and compatible processors. The

bulldozer
Generate either 32-bit or 64-bit code for AMD Bulldozer and compatible processors. 32- or
64-bit depends on the driver on your path.

core2

generate code for Intel Core 2 Duo and compatible processors.
haswell

generate code that is usable on any Haswell processor-based system.
istanbul

generate code that is usable on any Istanbul processor-based system.
k8

generate code hat is usable on any AMD64 and compatible processor.
k8-64e

generate 64-bit code for AMD Opteron Revision E, AMD Turion, and compatible processors.
nehalem
generate code that is usable on any Nehalem processor-based system.
p7
generate code for Pentium 4 and compatible processors.
penryn
generate code for Intel Penryn Architecture and compatible processors.
piledriver
generate code that is usable on any Piledriver processor-based system.
px
generate code that is usable on any x86 processor-based system.
sandybridge
Generate either 32-bit or 64-bit code for Intel Sandy Bridge and compatible processors. 32- or
64-bit depends on the driver on your path.
shanghai
generate code that is usable on any AMD Shanghai processor-based system.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 63

Command-Line Options Reference

X64
generate 64-bit unified binary code including full optimizations and support for both AMD
and Intel x64 processors.

Refer to the PGl Release Notes for a concise list of the features of these processors that
distinguish them as separate targets when using the PGI compilers and tools.

Using -tp to Generate a Unified Binary

Different processors have differences, some subtle, in hardware features such as instruction
sets and cache size. The compilers make architecture-specific decisions about such things as
instruction selection, instruction scheduling, and vectorization. Any of these decisions can
have significant effects on performance and compatibility. PGl unified binaries provide a low-
overhead means for a single program to run well on a number of hardware platforms.

Y ou can use the -t p option to produce PGI Unified Binary programs. The compilers generate,
and combine into one executable, multiple binary code streams, each optimized for a specific
platform. At runtime, this one executable senses the environment and dynamically selects the
appropriate code stream.

The target processor switch, -tp , accepts a comma-separated list of 64-bit targets and will
generate code optimized for each listed target. For example, the following switch generates
optimized code for three targets: k8-64, p7-64, and core2-64.

Syntax for optimizing for multiple targets:
-tp k8-64,p7-64,core2-64

The-tp k8-64 and -tp k8-64e optionsresult in generation of code supported on and
optimized for AMD x64 processors, whilethe -tp p7-64 option results in generation of code
that is supported on and optimized for Intel x64 processors. Performance of k8-64 or k8-64e code
executed on Intel x64 processors, or of p7-64 code executed on AMD x64 processors, can often
be significantly less than that obtained with a native binary.

The special -tp x64 optionisequivalentto -tp k8-64,p7-64 . Thisswitch produces PGI
Unified Binary programs containing code streams fully optimized and supported for bothAMD64
and Intel 64 processors.

For more information on unified binaries, refer to the section " Processor-Specific Optimization
and the Unified Binary’ in the PGI Compiler User’s Guide.

Related options

All -M<pgflag> optionsthat control environments, aslisted in Environment Controls

2.3.64. -[no]traceback

Adds debug information for runtime traceback for use with the environment variable PGI TERM.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 64

Command-Line Options Reference

Default
The compiler enables traceback for FORTRAN and disables traceback for C and C++.

Syntax
—-traceback
Usage

In this example, pgfortran enables traceback for the program myprog. £.
$ pgfortran -traceback myprog.f

Description

Use this option to enable or disable runtime traceback information for use with the environment
variable PGI_TERM.

Setting set TRACEBACK=0FF; insiterc Of .mypg*rc aso disables default traceback.

Using ON instead of OFF enables default traceback.

Related options

None.

2.3.65. -u

Initializes the symbol-table with <symbol>, which is undefined for the linker. An undefined
symbol triggers loading of the first member of an archive library.

Default
The compiler does not use the -u option.

Syntax

—usymbol

Where symbol is a symbolic name.

Usage

In this example, pgfortran initializes symbol-table with test.
$ pgfortran -utest myprog.f

Description

Use this option to initialize the symbol-table with <symbol>, which is undefined for the linker.
An undefined symbol triggers loading of the first member of an archive library.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 65

Command-Line Options Reference

Related options

-C, -0, -S
2.3.66. -U

Undefines a preprocessor macro.
Syntax

-Usymbol

Where symbol is a symbolic name.

Usage

The following examples undefine the macro test.

S pgfortran -Utest myprog.F
$ pgfortran -Dtest -Utest myprog.F

Description

Use this option to undefine a preprocessor macro. Y ou can also use the #undef pre-processor
directive to undefine macros.

Related options

-D, Mnostddef

2.3.67. -V[release_number]

Displays additional information, including version messages. Further, if arelease number
is appended, the compiler driver attempts to compile using the specified release instead of the
default release.

n There can be no space between -v and release number.

Default

The compiler does not display version information and uses the rel ease specified by your path to
compile.

Usage

The following command-line shows the output using the -v option.

[)

% pgfortran -V myprog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 66

Command-Line Options Reference

The following command-line causes pgcc to compile using the 5.2 release instead of the default
release.

[)

% pgcc -V5.2 myprog.c

Description

Use this option to display additional information, including version messages or, if a
release_number is appended, to instruct the compiler driver to attempt to compile using the
specified release instead of the default release.

The specified release must be co-installed with the default release, and must have arelease
number greater than or equal to 4.1, which was the first release that supported this functionality.

Related options

-Minfo[=option [,option,...]], -v

2.3.68. -v

Displays the invocations of the compiler, assembler, and linker.

Default

The compiler does not display individual phase invocations.

Usage

In the following example you use -v to see the commands sent to compiler tools, assembler, and
linker.
$ pgfortran -v myprog.f90

Description

Use the -v option to display the invocations of the compiler, assembler, and linker. These
invocations are command lines created by the compiler driver from the files and the -W options
you specify on the compiler command-line.

Related options

-dryrun, -Minfo[=option [,option,...]], -V[release_number], -W

2.3.69. -W

Passes arguments to a specific phase.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 67

Command-Line Options Reference

Syntax

-W{0 | a | 1 },option[,option...]

You cannot have a space between the -W and the single-letter pass identifier, between the identifier and
the comma, or between the comma and the option.

(the number zero) specifies the compiler.
a
specifies the assembler.

(lowercase letter 1) specifiesthe linker.

option
isastring that is passed to and interpreted by the compiler, assembler or linker. Options
separated by commas are passed as separate command line arguments.

Usage

In the following example the linker loads the text segment at address 0xffc00000 and the data
segment at address 0xffe00000.
$ pgfortran -wWl,-k,-t,0xffc00000,-d,0xffe00000 myprog.f

Description

Use this option to pass arguments to a specific phase. Y ou can use the -W option to specify
options for the assembler, compiler, or linker.

A given PGI compiler command invokes the compiler driver, which parses the command-line,
and generates the appropriate commands for the compiler, assembler, and linker.

Related options

-Minfo[=option [,option,...]], -V[release_number], -v

2.3.70. -w

Do not print warning messages.

Default

The compiler prints warning messages.

Usage

In the following example no warning messages are printed.
$ pgfortran -w myprog.f

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 68

Command-Line Options Reference

Description

Use the -w option to not print warning messages. Sometimes the compiler issues many warning
in which you may have no interest. Y ou can use this option to not issue those warnings.

Related options

-silent

2.3.71. -Xs

Use legacy standard mode for C and C++.

Default

None.

Usage

In the following example the compiler uses legacy standard mode.
$ pgcc -Xs myprog.c

Description

Use this option to use legacy standard mode for C and C++. Further, this option implies -
dlias=traditional.

Related options
-dias, -Xt

2.3.72. -Xt

Use legacy transitional mode for C and C++.

Default

None.

Usage

In the following example the compiler uses legacy transitional mode.
$ pgcc -Xt myprog.c

Description

Use this option to use legacy transitional mode for C and C++. Further, this option implies -
dlias=traditional.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 69

Command-Line Options Reference

Related options

-dlias, -Xs

2.4. C and C++ -specific Compiler Options

There are alarge number of compiler options specific to the PGCC and PGC++ compilers,
especially PGC++. This section provides the details of several of these options, but is not
exhaustive. For acomplete list of available options, including an exhaustive list of PGC++
options, use the -he1p command-line option. For further detail on agiven option, use -help
and specify the option explicitly

24.1.-A

(pgc++ only) Instructs the PGC++ compiler to accept code conforming to the |SO C++ standard,
issuing errors for non-conforming code.

Default

By default, the compiler accepts code conforming to the standard C++ Annotated Reference
Manual.

Usage

The following command-line requests | SO conforming C++.
$ pgc++ -A hello.cc

Description

Use this option to instruct the PGC++ compiler to accept code conforming to the ISO C++
standard and to issues errors for non-conforming code.

Related options

-a,-b, -+p

24.2.-a

(pgc++ only) Instructs the PGC++ compiler to accept code conforming to the |SO C++ standard,
issuing warnings for non-conforming code.

Default

By default, the compiler accepts code conforming to the standard C++ Annotated Reference
Manual.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 70

Command-Line Options Reference

Usage
The following command-line requests 1SO conforming C++, issuing warnings for non-
conforming code.
$ pgct++ -a hello.cc
Description
Use this option to instruct the PGC++ compiler to accept code conforming to the ISO C++
standard and to issues warnings for non-conforming code.
Related options
-A-b

2.4.3. -alias

select optimizations based on type-based pointer aliasrulesin C and C++.

Syntax
—alias=[ansi|traditional]
Default

None.

Usage

The following command-line enables optimizations.
$ pgc++ -alias=ansi hello.cc

Description

Use this option to select optimizations based on type-based pointer alias rulesin C and C++.
ans
Enable optimizations using ANSI C type-based pointer disambiguation
traditional
Disable type-based pointer disambiguation
Related options

-Xt

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 71

Command-Line Options Reference

2.4.4. --[no_]alternative_tokens

(pgc++ only) Enables or disables recognition of alternative tokens. These are tokens that make
it possible to write C++ without the use of the commac(,) , [,], #, &, *, and characters. The
aternative tokens include the operator keywords (e.g., and, bitand, etc.) and digraphs.

Default

The default behavior is--no_alternative tokens, that is, to disable recognition of alternative
tokens.

Usage

The following command-line enables alternative token recognition.

$ pgct+ --alternative tokens hello.cc

(pgc++ only) Use this option to enable or disable recognition of aternative tokens. These tokens
make it possible to write C++ without the use of the commal(,), [,], #, &, *, and characters. The
aternative tokens include digraphs and the operator keywords, such as and, bitand, and so on.
The default behavior is disabled recognition of alternative tokens. --no_alternative tokens.

Related options

None.

24.5.-B

(pgcc and pgc++ only) Enables use of C++ style comments starting with // in C program units.

Default
The PGCC ANSI and K&R C compiler does not allow C++ style comments.

Usage

In the following example the compiler accepts C++ style comments.
$ pgcc -B myprog.cc

Description

Use this option to enable use of C++ style comments starting with // in C program units.

Related options
-Mcpp[=option [,option,...]]

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 72

Command-Line Options Reference

24.6.-b

(pgc++ only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of
anachronisms.

Default

The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage

In the following example the compiler accepts cfront constructs.
$ pgc++ -b myprog.cc

Description

Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by
the AT& T C++ Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options
--cfront_2.1,-b3,--cfront_3.0,-+p,-A

2.4.7.-b3

(pgc++ only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of
anachronisms.

Default

The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage

In the following example, the compiler accepts cfront constructs.
$ pgc++ -b3 myprog.cc

Description

Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by
the AT& T C++ Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 73

Command-Line Options Reference

Related options
--cfront_2.1,-b,--cfront_3.0,-+p,-A

2.4.8. --[no_]bool

(pgc++ only) Enables or disables recognition of boal.

Default

The compile recognizes bool: --bool.

Usage

In the following example, the compiler does not recognize bool.

$ pgc++ --no_bool myprog.cc

Description

Use this option to enable or disable recognition of bool.

Related options

None.

2.4.9. ~[no_]builtin

Compile with or without math subroutine builtin support.

Default

The default isto compile with math subroutine support: --builtin.

Usage

In the following example, the compiler does not build with math subroutine support.

$ pgct++ --no builtin myprog.cc

Description

Use this option to enable or disable compiling with math subroutine builtin support. When you
compile with math subroutine builtin support, the selected math library routines are inlined.

Related options

None.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 74

Command-Line Options Reference

2.4.10. --cfront_2.1

(pgc++ only) Enables compilation of C++ with cfront 2.1 compatibility and acceptance of
anachronisms.

Default

The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage

In the following example, the compiler accepts cfront constructs.
$ pgc++ --cfront 2.1 myprog.cc

Description

Use this option to enable compilation of C++ with cfront 2.1 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by
the AT& T C++ Language System (cfront release 2.1).

This option also enables acceptance of anachronisms.

Related options
-b,-b3,--cfront_3.0,-+p,-A

2.4.11. --cfront_3.0

(pgc++ only) Enables compilation of C++ with cfront 3.0 compatibility and acceptance of
anachronisms.

Default

The compiler does not accept cfront language constructs that are not part of the C++ language
definition.

Usage

In the following example, the compiler accepts cfront constructs.
$ pgc++ --cfront 3.0 myprog.cc

Description

Use this option to enable compilation of C++ with cfront 3.0 compatibility. The compiler then
accepts language constructs that, while not part of the C++ language definition, are accepted by
the AT& T C++ Language System (cfront release 3.0).

This option also enables acceptance of anachronisms.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 75

Command-Line Options Reference

Related options
--cfront_2.1,-b,-b3,-+p,-A

2.4.12. --[no_]Jcompress_names

Compresses long function namesin the file.

Default

The compiler does not compress names. --n0_Compress_names.

Usage

In the following example, the compiler compresses long function names.

$ pgct++ --ccmpress names myprog.cc

Description

Use this option to specify to compress long function names. Highly nested template parameters
can cause very long function names. These long names can cause problems for older assemblers.
Users encountering these problems should compile al C++ code, including library code with —-
compress_ names. Libraries supplied by PGl work with --compress_names.

Related options

None.

2.4.13. --create_pch filename

(pgc++ only) If other conditions are satisfied, create a precompiled header file with the specified
name.

n If --pch (automatic PCH mode) appears on the command line following this option, its effect is erased.

Default

The compiler does not create a precompiled header file.

Usage

In the following example, the compiler creates a precompiled header file, hdr1.
$ pgc++ --create pch hdrl myprog.cc

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 76

Command-Line Options Reference

Description

If other conditions are satisfied, use this option to create a precompiled header file with the
specified name.

Related options

--pch

2.4.14. --diag_error <number>

(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default

The compiler does not override normal error severity.

Description

Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options

--diag_remark <number>,--diag_suppress <number>,--diag_warning <number>,--
display_error_number

2.4.15. --diag_remark <number>

(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default

The compiler does not override normal error severity.

Description

Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options

--diag_error <number>,--diag_suppress <number>,--diag_warning <number>,--
display_error_number

2.4.16. --diag_suppress <number>

(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 77

Command-Line Options Reference

Default

The compiler does not override normal error severity.

Usage

In the following example, the compiler overrides the normal error severity of the specified
diagnostic messages.

$ pgct+ --diag suppress error tag prog.cc

Description

Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.

Related options

--diag_error <number>,--diag_remark <number>,--diag_warning <number>,--
display_error_number

2.4.17. --diag_warning <number>

(pgc++ only) Overrides the normal error severity of the specified diagnostic messages.

Default

The compiler does not override normal error severity.

Usage
In the following example, the compiler overrides the normal error severity of the specified
diagnostic messages.
$ pgct+ --diag suppress an_error tag myprog.cc
Description
Use this option to override the normal error severity of the specified diagnostic messages. The
message(s) may be specified using a mnemonic error tag or using an error number.
Related options

--diag_error <number>,--diag_remark <number>,--diag_suppress <number>,--
display_error_number

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

78

Command-Line Options Reference

2.4.18. --display_error_number

(pgc++ only) Displays the error message number in any diagnostic messages that are generated.
The option may be used to determine the error number to be used when overriding the severity of
a diagnostic message.

Default

The compiler does not display error message numbers for generated diagnostic messages.

Usage

In the following example, the compiler displays the error message number for any generated
diagnostic messages.

$ pgct+ --display error number myprog.cc

Description

Use this option to display the error message number in any diagnostic messages that are
generated. Y ou can use this option to determine the error number to be used when overriding the
severity of adiagnostic message.

Related options

--diag_error <number>,--diag_remark <number>,--diag_suppress <number>,--diag_warning
<number>

2.4.19. -e<number>

(pgc++ only) Set the C++ front-end error limit to the specified <number>.

2.4.20. --[no_]exceptions
(pgc++ only) Enables or disables exception handling support.

Default

The compiler provides exception handling support: --exceptions.

Usage

In the following example, the compiler does not provide exception handling support.

$ pgc++ --no_exceptions myprog.cc

Description
Use this option to enable or disable exception handling support.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 79

Command-Line Options Reference

Related options

--[nojzc_eh

2.4.21. --gnu_version <num>
(pgc++ only) Setsthe GNU C++ compatibility version.

Default

The compiler uses the latest version.

Usage

In the following example, the compiler setsthe GNU version to 4.3.4.

$ pgc++ --gnu version 4.3.4 myprog.cc

Description

Use this option to set the GNU C++ compatibility version to use when you compile.

2.4.22. --[no]llalign

(pgc++ only) Enables or disables alignment of long long integers on long long boundaries.

Default

The compiler alignslong long integers on long long boundaries: --llalign.

Usage

In the following example, the compiler does not align long long integers on long long boundaries.
$ pgct++ --nollalign myprog.cc

Description

Use this option to allow enable or disable aignment of long long integers on long long
boundaries.

Related options

-Mipa=<option>[,<option>[,...]]=align-noalign

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 80

Command-Line Options Reference

2.4.23. -M

Generates a list of make dependencies and prints them to stdout.

n The compilation stops after the preprocessing phase.

Default

The compiler does not generate alist of make dependencies.

Usage

In the following example, the compiler generates alist of make dependencies.
$ pgc++ -M myprog.cc

Description

Use this option to generate alist of make dependencies and print them to stdouit.

Related options
-MD,-P

2.4.24. -MD

Generates alist of make dependencies and prints them to afile.

Default

The compiler does not generate a list of make dependencies.

Usage

In the following example, the compiler generates alist of make dependencies and prints them to
the file myprog.d.
$ pgc++ -MD myprog.cc

Description

Use this option to generate alist of make dependencies and print them to afile. The name of the
fileis determined by the name of thefileunder compilation.dependencies file<file>.

Related options
-M,-P

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 81

Command-Line Options Reference

2.4.25. --optk_allow_dollar_in_id_chars

(pgc++ only) Accepts dollar signs ($) in identifiers.

Default

The compiler does not accept dollar signs ($) in identifiers.

Usage

In the following example, the compiler alows dollar signs ($) in identifiers.

$ pgc++ -optk allow dollar in id chars myprog.cc

Description

Use this option to instruct the compiler to accept dollar signs ($) in identifiers.

24.26.-P

Halts the compilation process after preprocessing and writes the preprocessed output to afile.

Default

The compiler produces an executablefile.

Usage

In the following example, the compiler produces the preprocessed filemyprog. i in the current
directory.
$ pgc++ -P myprog.cc

Description

Use this option to halt the compilation process after preprocessing and write the preprocessed
output to afile. If theinput fileis filename.c or filename.cc., then the output fileis
filename. 1.

Related options

-C,-c,-e<number>,-Mkeepasm,-0,-S

2.4.27. -+p

(pgc++ only) Disallow all anachronistic constructs.

Default

The compiler disallows all anachronistic constructs.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 82

Command-Line Options Reference

Usage

In the following example, the compiler disallows all anachronistic constructs.
$ pgc++ —-+p myprog.cc

Description

Use this option to disallow all anachronistic constructs.

Related options

None.

2.4.28. --pch

(pgc++ only) Automatically use and/or create a precompiled header file.

If -use_pch or --create_pch (manual PCH mode) appears on the command line following this option, this
option has no effect.

Default

The compiler does not automatically use or create a precompiled header file.

Usage

In the following example, the compiler automatically uses a precompiled header file.
$ pgc++ --pch myprog.cc

Description

Use this option to automatically use and/or create a precompiled header file.

Related options

--create_pch filename,--pch_dir directoryname,--use_pch filename

2.4.29. --pch_dir directoryname

(pgc++ only) Specifies the directory in which to search for and/or create a precompiled header
file.

The compiler searches your PATH for precompiled header files/ use or create a precompiled
header file.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 83

Command-Line Options Reference

Usage

In the following example, the compiler searchesin the directory myhdrdi r for a precompiled
header file.

$ pgct+ --pch dir myhdrdir myprog.cc
Description

Use this option to specify the directory in which to search for and/or create a precompiled
header file. Y ou may use this option with automatic PCH mode (--pch) or manual PCH mode
(--create_pch or --use_pch).

Related options

--create_pch filename,--pch,--use_pch filename

2.4.30. --[no_]pch_messages

(pgc++ only) Enables or disables the display of a message indicating that the current compilation
used or created a precompiled header file.

The compiler displays a message when it uses or creates a precompiled header file.
In the following example, no message is displayed when the precompiled header file located in
myhdrdir isused in the compilation.
$ pgct+ --pch dir myhdrdir --no pch messages myprog.cc
Description
Use this option to enable or disable the display of a message indicating that the current
compilation used or created a precompiled header file.
Related options

--pch_dir directoryname

2.4.31. --preinclude=<filename>

(pgc++ only) Specifies the name of afile to be included at the beginning of the compilation.

In the following example, the compiler includesthefile incl file.c at the beginning of the
compilation. me

$ pgct+ --preinclude=incl file.c myprog.cc

Description

Use this option to specify the name of afileto be included at the beginning of the compilation.
For example, you can use this option to set system-dependent macros and types.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 84

Command-Line Options Reference

Related options

None.

2.4.32. --use_pch filename

(pgc++ only) Uses a precompiled header file of the specified name as part of the current
compilation.

n If --pch (automatic PCH mode) appears on the command line following this option, its effect is erased.

Default
The compiler does not use a precompiled header file.

In the following example, the compiler uses the precompiled header file, hdr1 as part of the
current compilation.
$ pgct+ --use pch hdrl myprog.cc

Use a precompiled header file of the specified name as part of the current compilation. If --pch
(automatic PCH mode) appears on the command line following this option, its effect is erased.

Related options
--create_pch filename,--pch_dir directoryname,--[no_]pch_messages

2.4.33. --[no_]using_std

(pgc++ only) Enables or disables implicit use of the std namespace when standard header files are
included.

Default

The compiler uses std namespace when standard header files are included: --using_std.

Usage

The following command-line disables implicit use of the std namespace:

$ pgct+ --no_using std hello.cc

Description

Use this option to enable or disable implicit use of the std namespace when standard header files
areincluded in the compilation.

Related options
-M[no] stddef

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 85

Command-Line Options Reference

2.4.34. -Xfilename

(pgc++ only) Generates cross-reference information and places output in the specified file.
Syntax:
-Xfoo

where foo isthe specified file for the cross reference information.

Default

The compiler does not generate cross-reference information.

Usage

In the following example, the compiler generates cross-reference information, placing it in the
filexreffile.

$ pgct++ -Xxreffile myprog.cc

Description

Use this option to generate cross-reference information and place output in the specified file. This
isan EDG option.

Related options

None.

2.4.35. --[no]zc_eh

(Linux only)Generates zero-overhead exception regions.

Default

The compiler generates zero-overhead exception regions. To use exception handling with setjmp
and longjmp, use the --nozc_eh flag.

Usage

The following command-line enables zero-overhead exception regions:

$ pgc++ --zc_eh ello.cc

Description

Use this option to generate zero-overhead exception regions. The --zc_eh option defers the cost of
exception handling until an exception isthrown. For a program with many exception regions and
few throws, this option may lead to improved run-time performance.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 86

Command-Line Options Reference

To use exception handling with setjmp and longjmp, use the --nozc_eh flag.

The --zc_eh option is available only on newer Linux systems that supply the system unwind libraries in
libgcc_eh.

Related options

--[no_]exceptions,--[no]zc_eh

2.5. -M Options by Category

This section describes each of the options available with -M by the categories:

Code Generation Fortran Language Controls Optimization Environment

C/C++ Language Controls Inlining Miscellaneous

The following sections provide detailed descriptions of several, but not al, of the -M<pgflag>
options. For a complete alphabetical list of all the options, refer to Table 13. These options are
grouped according to categories and are listed with exact syntax, defaults, and notes concerning
similar or related options.

For the latest information and description of a given option, or to see all available options, use the
-help command-line option, described in -help.

2.5.1. Code Generation Controls

This section describes the -M<pgf1ag> options that control code generation.

Default: For arguments that you do not specify, the default code generation controls are these:

nodaz norecursive nosecond_underscore
noflushz noreentrant nostride0
largeaddressaware noref_externals signextend

Related options: -p, -1, -1, -1, -U.

The following list provides the syntax for each -M<pgf1lag> option that controls code
generation. Each option has a description and, if appropriate, any related options.

-Mdaz
Set |EEE denormalized input values to zero; there is a performance benefit but misleading
results can occur, such as when dividing asmall normalized number by a denormalized
number. To take effect, this option must be set for the main program.

-Mnodaz
Do not treat denormalized numbers as zero.

To take effect, this option must be set for the main program.

-Mnodwarf
Specifies not to add DWARF debug information.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 87

Command-Line Options Reference

To take effect, this option must be used in combination with -g.

-Mdwarfl
Generate DWARFL format debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf2
Generate DWARF2 format debug information.

To take effect, this option must be used in combination with -g.

-Mdwarf3
Generate DWARF3 format debug information.

To take effect, this option must be used in combination with -g.

-Mflushz
Set SSE flush-to-zero mode; if a floating-point underflow occurs, the value is set to zero.

To take effect, this option must be set for the main program.

-Mnoflushz
Do not set SSE flush-to-zero mode; generate underflows. To take effect, this option must be
set for the main program.

-Mfunc32
Align functions on 32-byte boundaries.

-Minstrument[=functions] (linux86-64 only)
Generate additional code to enable instrumentation of functions. The option
-Minstrument=functions isthesameas -Minstrument.

Implies -Minfo=ccff and -Mframe.

-Mlargeaddressaware=[N0]
[Win64 only] Generates code that allows for addresses greater than 2 GB, using RIP-relative
addressing.

Use-Mlargeaddressaware=no for adirect addressing mechanism that restricts the total
addressable memory.

n Do not use -Mlargeaddressaware=no if the object file will be placed in a DLL.

If -Mlargeaddressaware=no isused to compile any object file, it must also be used when
linking.

-Mlarge arrays
Enable support for 64-bit indexing and single static data objects larger than 2 GB in size. This
option is the default in the presence of -mcmode 1=medium. It can be used separately together
with the default small memory model for certain 64-bit applications that manage their own
memory space.

For more information, refer to the * Programming Considerations for 64-Bit Environments
section of the PGl Compiler User’s Guide.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 88

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

-Mnolarge arrays
Disable support for 64-bit indexing and single static data objects larger than 2 GB in size.
When this option is placed after -mcmodel=medium on the command line, it disables use of
64-bit indexing for applications that have no single data object larger than 2 GB.

For more information, refer to the * Programming Considerations for 64-Bit Environments
section of the PGl Compiler User’s Guide.

-Mnomain
Instructs the compiler not to include the object file that calls the Fortran main program as
part of the link step. This option is useful for linking programs in which the main program is
written in C/C++ and one or more subroutines are written in Fortran (Fortran only).
-Mmpi=option
-Mmpi addsthe include and library options to the compile and link commands necessary to
build an MPI application using MPI header filesand libraries.

To use -Mmp1i, you must have aversion of MPI installed on your system.
This option tells the compiler to use the headers and libraries for the specified version of MPI.
The -Mmpi options are as specified:

» -Mmpi=mpich — Selectsthe default MPICH v3 libraries on Linux and OS X.

» -Mmpi=mpichl —Thisoption has been deprecated. It continuesto direct the compiler
to include the appropriate MPICH1 header files and to link against the correct MPICH1
libraries but only if you set the environment variable MPIDIR to the root of an MPICH1
installation.

» -Mmpi=mpich2 — Thisoption has been deprecated. It continuesto direct the compiler
to include the appropriate MPICH2 header files and to link against the correct MPICH2
libraries but only if you set the environment variable MPIDIR to the root of an MPICH2
installation.

» -Mmpi=mvapichl — Thisoption hasbeen deprecated. It continues to direct the compiler
to include the appropriate MV APICH1 header files and to link against the correct
MVAPICHL1 libraries but only if you set the environment variable MPIDIR to the root of
an MVAPICHL1 installation.

For more information on these options, refer to the ‘ Using MPI section of the PGl Compiler
User's Guide.

On Linux and OS X, you can set the environment variable MPIDIR to override the default locations
that the compiler looks to find the MPI directory.

-M[no]movnt
Instructs the compiler to generate nontempora move and prefetch instructions even in cases
where the compiler cannot determine statically at compile-time that these instructions will be
beneficial.

-M[no]pre
enables [disables] partia redundancy elimination.

-Mprof[=0ption[,option,...]]
Set performance profiling options. Use of these options changes which sections are included
in the binary. These sections can be read by PGPROF.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 89

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

The option argument can be any of the following:

[no]ccff
Enable [disable] common compiler feedback format, CCFF, information.
dwarf
Add limited DWARF symbol information sufficient for most performance profilers.
-Mrecursive
instructs the compiler to allow Fortran subprogramsto be called recursively.
-Mnorecursive
Fortran subprograms may not be called recursively.
-Mref externals
force references to names appearing in EXTERNAL statements (Fortran only).
-Mnoref externals
do not force references to names appearing in EXTERNAL statements (Fortran only).
-Mreentrant
instructs the compiler to avoid optimizations that can prevent code from being reentrant.
-Mnoreentrant
instructs the compiler not to avoid optimizations that can prevent code from being reentrant.
-Msecond_underscore
instructs the compiler to add a second underscore to the name of a Fortran global symbol if its
name already contains an underscore. This option is useful for maintaining compatibility with
object code compiled using g77, which uses this convention by default (Fortran only).
-Mnosecond _underscore
instructs the compiler not to add a second underscore to the name of a Fortran global symbol if
its name already contains an underscore (Fortran only).
-Msafe lastval
When a scalar is used after aloop, but is not defined on every iteration of the loop, the
compiler does not by default parallelize the loop. However, this option tells the compiler it's
safe to parallelize the loop. For agiven loop, the last value computed for all scalars makes it
safe to parallelize the loop.
-Msignextend
instructs the compiler to extend the sign bit that is set as aresult of converting an object of one
datatype to an object of alarger signed data type.
-Mnosignextend
instructs the compiler not to extend the sign bit that is set as the result of converting an object
of one data type to an object of alarger datatype.
-Mstack_arrays
places automatic arrays on the stack.
-Mnostack_arrays
allocates automatic arrays on the heap. -Mnostack arrays isthe default and what
traditionally has been the approach used.
-Mstride0
instructs the compiler to inhibit certain optimizations and to allow for stride O array references.
This option may degrade performance and should only be used if zero-stride induction
variables are possible.
-MnostrideO
instructs the compiler to perform certain optimizations and to disallow for stride O array
references.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 90

Command-Line Options Reference

-Mvarargs
force Fortran program units to assume procedure cals are to C functions with avarargs-type
interface (pgf77, pg£95, and pgfortran only).

2.5.2. C/C++ Language Controls

This section describes the -M<pgflag> options that affect C/C++ language interpretations by the
PGI C and C++ compilers. These options are only valid to the pgcc and pgc++ compiler drivers.

Default: For arguments that you do not specify, the defaults are as follows:

noasmkeyword nosingle
dollar,_ schar
Usage:

In this example, the compiler alows the asm keyword in the sourcefile.
$ pgcc -Masmkeyword myprog.c

In the following example, the compiler maps the dollar sign to the dot character.
$ pgcc -Mdollar, . myprog.c

In the following example, the compiler treats floating-point constants as float values.
$ pgcc -Mfcon myprog.c

In the following example, the compiler does not convert float parameters to double parameters.
$ pgcc -Msingle myprog.c

Without -Muchar or with -Mschar, the variable ch is a signed character:

char ch;
signed char sch;

If -Muchar is specified on the command line;
$ pgcc -Muchar myprog.c

char chin the preceding declaration is equivalent to:

unsigned char ch;

The following list provides the syntax for each -M<pgflag> option that controls code generation
in C/C++. Each option has a description and, if appropriate, any related options.
-M asmkeyword
instructs the compiler to allow the asm keyword in C source files. The syntax of the asm
statement is as follows:

asm("statement") ;

Where statement is alegal assembly-language statement. The quote marks are required.

The current default is to support gcc's extended asm, where the syntax of extended asm includes asm
strings. The -M[no] asmkeyword switch is useful only if the target device is a Pentium 3 or older
cpu type (-tp piii|p6]k7|athlon|athlonxp|px).

-Mnoasmkeyword
instructs the compiler not to allow the asm keyword in C source files. If you use this option
and your program includes the asm keyword, unresolved references are generated

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 91

Command-Line Options Reference

-Mdollar, char
char specifies the character to which the compiler maps the dollar sign ($). The PGCC
compiler allows the dollar sign in names; ANSI C does not allow the dollar sign in names.
-M [noleh_frame
instructs the linker to keep eh_frame call frame sections in the executable.

n The eh_frame option is available only on newer Linux systems that supply the system unwind libraries.

-M fcon
instructs the compiler to treat floating-point constants as float data types, instead of double
datatypes. This option can improve the performance of single-precision code.

-M [no]m128
instructs the compiler to recognize [ignore] ~ m128, m128d, and _m128i datatypes.
floating-point constants as float data types, instead of double data types. This option can
improve the performance of single-precision code.

-M schar
specifies signed char characters. The compiler treats "plain” char declarations as signed char.

-Msingle
do not to convert float parameters to double parameters in non-prototyped functions. This
option can result in faster code if your program uses only float parameters. However, since
ANSI C specifies that routines must convert float parameters to double parameters in non-
prototyped functions, this option results in non-ANSI conformant code.

-Mnosingle
instructs the compiler to convert float parameters to double parameters in non-prototyped
functions.

-Muchar
instructs the compiler to treat "plain” char declarations as unsigned char.

2.5.3. Environment Controls

This section describes the -M<pgflag> options that control environments.

Default: For arguments that you do not specify, the default environment option depends on your
configuration.

The following list provides the syntax for each -M<pgflag> option that controls environments.
Each option has a description and, if appropriate, alist of any related options.

-Mnostartup
instructs the linker not to link in the standard startup routine that contains the entry point
(_start) for the program.

If you use the -Mnostartup option and do not supply an entry point, the linker issues the following
error message: Warning: cannot find entry symbol _start

-M [no] smartalloc[=huge | huge:<n>|hugebss | nohuge]
adds a call to the routine mallopt in the main routine. This option supports large TLBs
on Linux and Windows. This option must be used to compile the main routine to enable
optimized malloc routines.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 92

Command-Line Options Reference

The option arguments can be any of the following:
huge
Link in the huge page runtime library.

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number of

TLB entries required to execute a program. This option is most effective on Barcelona and

Core 2 systems; older architectures do not have enough TLB entries for this option to be

beneficial. By itself, the huge suboption tries to allocate as many huge pages as required.
huge:<n>

Link the huge page runtime library and allocate n huge pages. Use this suboption to limit

the number of huge pages allocated to n.

Y ou can also limit the pages allocated by using the environment variable
PGI HUGE PAGES.
hugebss
(64-bit only) Puts the BSS section in huge pages; attemptsto put a program's uninitialized
data section into huge pages.

D This flag dynamically links the library 1ibhugetlbfs pgi evenif -Bstatic is used.

nohuge
Overrides aprevious -Msmartalloc=huge Setting.

Tip To be effective, this switch must be specified when compiling the file containing the Fortran, C, or C
++ main program.

-M [no]lhugetlb
links in the huge page runtime library.

Enables large 2-megabyte pages to be allocated. The effect is to reduce the number of TLB
entries required to execute a program. This option is most effective on Barcelona and Core 2
systems; older architectures do not have enough TLB entries for this option to be beneficial.
By itself, the huge suboption tries to allocate as many huge pages as required.

Y ou can also limit the pages allocated by using the environment variable PGI HUGE PAGES.

-M [no] stddef
instructs the compiler not to predefine any macros to the preprocessor when compiling aC
program.

-Mnostdinc
instructs the compiler to not search the standard location for include files.

-Mnostdlib
instructs the linker not to link in the standard libraries 1ibpgftnrtl.a, libm.a, libc.a,
and 1ibpgc.a inthelibrary directory 1ib within the standard directory. You can link in
your own library with the - option or specify alibrary directory with the -L option.

2.5.4. Fortran Language Controls

This section describes the -M<pgf1ag> options that affect Fortran language interpretations by
the PGI Fortran compilers. These options are valid only for the Fortran compiler drivers.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 93

Command-Line Options Reference

Default: Before looking at all the options, let's ook at the defaults. For arguments that you do not
specify, the defaults are as follows:

nobackslash nodefaultunit dollar,_ noonetrip nounixlogical

nodclchk nodlines noiomutex nosave noupcase

The following list provides the syntax for each -M<pgflag> option that affect Fortran language
interpretations. Each option has a description and, if appropriate, alist of any related options.

-Mallocatable=95|03
controls whether Fortran 95 or Fortran 2003 semantics are used in allocatable array
assignments. The default behavior is to use Fortran 95 semantics; the 03 option instructs the
compiler to use Fortran 2003 semantics.

-Mbackslash
instructs the compiler to treat the backslash as anormal character, and not as an escape
character in quoted strings.

-Mnobackslash
instructs the compiler to recognize a backslash as an escape character in quoted strings (in
accordance with standard C usage).

-Mcuda
instructs the compiler to enable CUDA Fortran.

The following suboptions exist:

D If more than one option is on the command line, all the specified options occur.

cc30

Generate code for compute capability 3.0.
cc35

Generate code for compute capability 3.5.
cc3x

Generate code for the lowest 3.x compute capability possible.
cc3+

Isequivalent to cc3x.
cc50

Generate code for compute capability 5.0.
cc60

Generate code for compute capability 6.0.
cuda7.00r 7.0

Specify the NVIDIA CUDA 7.0 version of the toolkit. Thisisthe default.
cuda7.50r 7.5

Specify the NVIDIA CUDA 7.5 version of the toolkit.
cuda8.00r 8.0

Specify the NVIDIA CUDA 8.0 version of the toolkit.

Compile with the CUDA 7.5 or CUDA 8.0 toolkit either by using the -Mcuda=7.5

or -Mcuda=8. 0 option, or by adding set DEFCUDAVERSION=7.5 0Of set
DEFCUDAVERSTON=8. 0 to the siterc file. This action generates binaries that may not work
on machines with an earlier CUDA driver.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 94

Command-Line Options Reference

pgaccelinfo prints the driver version as the first line of output.

Fora 7.0 driver: CUDA Driver Version 7000
Fora 7.5 driver: CUDA Driver Version 7050
For an 8.0 driver: CUDA Driver Version 8000

emu

Enable CUDA Fortran emulation mode.
fastmath

Use routines from the fast math library.
fermi

isequivalent to -Mcuda, cc2x
[no] flushz

Enable[disable] flush-to-zero made for floating point computations in the GPU code

generated for CUDA Fortran kernels.
generate rdc

Generate relocatabl e device code

keepbin

Keep the generated binary (.bin) file for CUDA Fortran.
keepgpu

Keep the generated GPU code for CUDA Fortran.
keepptx

Keep the portable assembly (. ptx) file for the GPU code.
kepler

iseguivalent to -Mcuda, cc3x
1llvm

Generate code using the [lvm-based back-end.
[no] debug

Enable[disable] GPU debug information generation.
[no]lineinfo
Enable[disable] GPU line information generation.
maxregcount:n
Specify the maximum number of registers to use on the GPU. Leaving this blank indicates
no limit.
nofma
Do not generate fused multiply-add instructions.
nolLl
Prevent the use of L1 hardware data cache to cache global variables.
ptxinfo
Show PTXAS informational messages during compilation.
rdc
Enable CUDA Fortran separate compilation and linking of device routines, including
device routines in Fortran modules.

To enable separate compilation and linking, include the command line option -
Mcuda=rdc on both the compile and the link steps.
-Mdclchk
instructs the compiler to require that all program variables be declared.
-Mnodclchk
instructs the compiler not to require that al program variables be declared.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 95

Command-Line Options Reference

-Mdefaultunit
instructs the compiler to treat " *" as a synonym for standard input for reading and standard
output for writing.
-Mnodefaultunit
instructs the compiler to treat " *" as a synonym for unit 5 on input and unit 6 on output.
-Mdlines
instructs the compiler to treat lines containing "D" in column 1 as executable statements
(ignoring the "D").
-Mnodlines
instructs the compiler not to treat lines containing "D" in column 1 as executabl e statements.
The compiler does not ignore the "D".
-Mdollar, char
char specifies the character to which the compiler maps the dollar sign. The compiler allows
the dollar sign in names.
-Mextend
instructs the compiler to accept 132-column source code; otherwise it accepts 72-column code.
-Mfixed
instructs the compiler to assume input source files arein FORTRAN 77-style fixed form
format.
-Mfree
instructs the compiler to assume input source files are in Fortran 90/95 freeform format.
-Miomutex
instructs the compiler to generate critical section calls around Fortran I/O statements.
-Mnoiomutex
instructs the compiler not to generate critical section calls around Fortran /O statements.
-Monetrip
instructs the compiler to force each DO loop to execute at least once. This option is useful for
programs written for earlier versions of Fortran.
-Mnoonetrip
instructs the compiler not to force each Do loop to execute at least once.
-Msave
instructs the compiler to assume that all local variables are subject to the SAVE statement.

This may allow older Fortran programsto run, but it can greatly reduce performance.

-Mnosave
instructs the compiler not to assume that all local variables are subject to the SAVE statement.
-Mstandard
instructs the compiler to flag non-ANSI-conforming source code.
-Munixlogical
directs the compiler to treat logical values astrueif the value is non-zero and false if the value
iszero (UNIX F77 convention). When -Munixlogical isenabled, alogical value or test
that isnon-zerois . TRUE ., and avalue or test that iszerois . FALSE .. In addition, the value
of alogical expression is guaranteed to be one (1) when theresult is . TRUE. .
-Mnounixlogical
directs the compiler to use the VMS convention for logical valuesfor true and false. Even
values are true and odd values are false.
-Mupcase
instructs the compiler to preserve uppercase lettersin identifiers.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 96

Command-Line Options Reference

With -Mupcase, the identifiers"x" and "x" are different. Keywords must be in lower case.

This selection affects the linking process. If you compile and link the same source code
using -Mupcase 0N one occasion and -Mnoupcase 0n another, you may get two different
executabl es — depending on whether the source contains uppercase letters. The standard
libraries are compiled using the default -Mnoupcase .

-Mnoupcase
instructs the compiler to convert al identifiers to lower case.

This selection affects the linking process. If you compile and link the same source code
using -Mupcase 0N one occasion and -Mnoupcase 0N another, you may get two different
executabl es, depending on whether the source contains uppercase letters. The standard
libraries are compiled using -Mnoupcase.

2.5.5. Inlining Controls

This section describes the -M<pgflag> options that control function inlining.

Usage: Before looking at all the options, let’slook at a couple examples. In the following
example, the compiler extracts functions that have 500 or fewer statements from the source file
myprog. f and savestheminthefileextract.il.

$ pgfortran -Mextract=500 -o extract.il myprog.f

In the following example, the compiler inlines functions with fewer than approximately 100
statementsin the source filemyprog. £.
$ pgfortran -Minline=size:100 myprog.f

Related options: -o, -Mextract

The following list provides the syntax for each -M<pgflag> option that controls function inlining.
Each option has a description and, if appropriate, alist of any related options.
- M [no]autoinline[=0ption[,option,...]]
instructs the compiler to inline [not to inline] a C/C++ function at -O2, where the option can
be any of these:
levels:n
instructs the compiler to perform n levels of inlining. The default number of levelsis 10.
maxsize:n
instructs the compiler not to inline functions of size > n. The default sizeis 100.
totalsize:n
instructs the compiler to stop inlining when the size equals n. The default sizeis 800.
-Mextract[=0ption[,option,...]]
Extracts functions from the file indicated on the command line and creates or appends to the
specified extract directory where option can be any of the following:
name:func
instructs the extractor to extract function func from the file.
size:number
instructs the extractor to extract functions with number or fewer statements from thefile.
lib:filename.ext
instructs the extractor to use directory filename.ext asthe extract directory, whichis
required to save and re-useinline libraries.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 97

Command-Line Options Reference

If you specify both name and size, the compiler extracts functions that match func, or that
have number or fewer statements. For examples of extracting functions, refer to the ‘Using
Function Inlining’ section of the PGI Compiler User’s Guide.
-Minline[=0ption[,option,...]]
instructs the compiler to pass options to the function inliner, where the option can be any of
the following:
except:func
instructs the inliner to inline al eligible functions except func, afunction in the source text.
Y ou can use acomma-separated list to specify multiple functions.
[name:]func
instructs the inliner to inline al functions in the source text that match func.

The function name should be a non-numeric string that does not contain a period. Y ou
can aso useaname: prefix followed by the function name. If name : is specified, what
followsis aways the name of afunction.

[lib:]filename.ext
instructs the inliner to inline the functions within the library file filename.ext. The
compiler assumesthat a filename.ext option containing aperiod isalibrary file.

Tip Create the library file using the -Mextract option. You can also use a 1ib: prefix followed
by the library name.

» If1ib: is specified, no period is necessary in the library name. Functions from the specified
library are inlined.

» If no library is specified, functions are extracted from a temporary library created during an
extract prepass.

levels:number
instructs the inliner to perform number levels of inlining.

The default number of function calling levelsis 1. Using alevel greater than one indicates
that function calls within inlined functions may be replaced with inlined code. This
approach allows the function inliner to automatically perform a sequence of inline and
extract processes.

[no]reshape
instructs the inliner to allow [disallow] inlining in Fortran even when array shapes do not
match. The default is-Minline=noreshape, except with -Mconcur or -mp, where the
default is-Minline=reshape, =reshape.

[size lnumber
instructs the inliner to inline functions with a statement count less than or equal to number,
the specified size. You can also useasize: prefix followed by anumber. If size: is
specified, what follows is always taken as a number.

The size number need not exactly equal the number of statementsin a selected function;
the size parameter is merely arough guage.

If you specify both func and number, the compiler inlines functions that match the function
name or have number or fewer statements.

For examples of inlining functions, refer to * Using Function Inlining’ in the PGI Compiler
User’s Guide.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 98

http://www.pgroup.com/resources/docs.htm

Command-Line Options Reference

2.5.6. Optimization Controls

This section describes the -M<pgflag> optionsthat control optimization.

Default: Before looking at all the options, let's ook at the defaults. For arguments that you do not
specify, the default optimization control options are as follows:

depchk noipa nounroll nor8
i4 nolre novect nor8intrinsics
nofprelaxed noprefetch

n If you do not supply an option to -Mvect, the compiler uses defaults that are dependent upon the target
system.

Usage: In this example, the compiler invokes the vectorizer with use of packed SSE instructions
enabled.

$ pgfortran -Mvect=sse -Mcache align myprog.f
Related options: -g, -0

The following list provides the syntax for each -M<pgf1ag> option that controls optimization.
Each option has a description and, if appropriate, alist of any related options.

-Mcache_align
Align unconstrained objects of length greater than or equal to 16 bytes on cache-line
boundaries. An unconstrained object is a data object that is not amember of an aggregate
structure or common block. This option does not affect the alignment of allocatable or
automatic arrays.

To effect cache-line alignment of stack-based local variables, the main program or function
must be compiled with -Mcache align.

-Mconcur [=option [,option,...]]
Instructs the compiler to enable auto-concurrentization of loops. If -Mconcur is specified,
multiple processors will be used to execute |oops that the compiler determines to be
paralelizable.

option isone of thefollowing:

allcores

Instructs the compiler to use all available cores. Use this option at link time.
[no]laltcode:n

Instructs the parallelizer to generate aternate serial code for parallelized [oops.

» If altcode is specified without arguments, the parallelizer determines an appropriate
cutoff length and generates seria code to be executed whenever the loop count isless
than or equal to that length.

» If altcode:n isspecified, the serial atcode is executed whenever the loop count is
less than or equal to n.

» If noaltcode isspecified, the parallelized version of the loop is always executed
regardless of the loop count.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 99

Command-Line Options Reference

cncall
Indicates that callsin parallel loops are safe to parallelize.

L oops containing calls are candidates for parallelization. Also, no minimum loop count
threshold must be satisfied before paralldlization will occur, and last values of scalars are
assumed to be safe.

[no]innermost
Instructs the parallelizer to enable parallelization of innermost loops. The default is to not
paralelize innermost loops, sinceit is usually not profitable on dual-core processors.
noassoc
Instructs the parallelizer to disable parallelization of loops with reductions.

When linking, the -Mconcur switch must be specified or unresolved references result. The
NCPUS environment variable controls how many processors or cores are used to execute
parallelized loops.

This option applies only on shared-memory multi-processor (SMP) or multicore processor-based
systems.

-Mcray[=0ption[,option,...]]
(Fortran only) Force Cray Fortran (CF77) compatibility with respect to the listed options.
Possible values of option include:
pointer
for purposes of optimization, it is assumed that pointer-based variables do not overlay the
storage of any other variable.
-Mdepchk
instructs the compiler to assume unresolved data dependencies actually conflict.
-Mnodepchk
Instructs the compiler to assume potential data dependencies do not conflict. However, if data
dependencies exist, this option can produce incorrect code.
-Mdse
Enables a dead store elimination phase that is useful for programs that rely on extensive use of
inline function calls for performance. Thisis disabled by default.
-Mnodse
Disables the dead store elimination phase. Thisis the default.
-M[no] fpapprox[=option]
Perform certain floating point operations using |ow-precision approximation.

-Mno fpapprox Specifies not to use low-precision fp approximation operations.
By default -Mfpapprox isnot used.

If -Mfpapprox isused without suboptions, it defaults to use approximate div, sqrt, and
rsqrt. The available suboptions are these:
div
Approximate floating point division
sqgrt
Approximate floating point square root
rsqrt
Approximate floating point reciprocal square root

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 100

Command-Line Options Reference

-M[no] fpmisalign
Instructs the compiler to allow (not allow) vector arithmetic instructions with memory
operands that are not aligned on 16-byte boundaries. The default is -Mnofpmisalign onal
processors.

Applicable only with one of these options: -tp barcelona oOr-tp barcelona-64 Or newer
processors.

-M[no] fprelaxed[=option]
Instructs the compiler to use [not use] relaxed precision in the calculation of some intrinsic
functions. Can result in improved performance at the expense of numerical accuracy.

The possible values for option are:
div

Perform divide using relaxed precision.
intrinsic

Enables use of relaxed precision intrinsics.
noorder

Do not alow expression reordering or factoring.
order

Allow expression reordering, including factoring.
recip

Perform reciprocal using relaxed precision.
rsqrt

Perform reciprocal square root (1/sqgrt) using relaxed precision.
sqgrt

Perform square root with relaxed precision.

With no options, -Mfprelaxed generates relaxed precision code for those operations that
generate a significant performance improvement, depending on the target processor.

The default is -Mnofprelaxed which instructs the compiler to not use relaxed precisionin
the calculation of intrinsic functions.
-Mi4
(Fortran only) instructs the compiler to treat INTEGER variables as INTEGER* 4.
-Mipa=<option>[,<option>[,...]]
Pass options to the interprocedural analyzer. Note: -Mipa ishot compatible with parallel
make environments (e.g., pmake).

-Mipa implies -02, and the minimum optimization level that can be specified in combination
with -Mipa is-02.

For example, if you specify -Mipa -01 onthe command line, the optimization level is
automatically elevated to -02 by the compiler driver. Typically, as recommended, you would
use -Mipa=fast

n As of the PGI 16.3 release, -Mipa has been disabled on Windows.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 101

Command-Line Options Reference

Many of the following suboptions can be prefaced with no, which reverses or disables the
effect of the suboption if it'sincluded in an aggregate suboption such as -Mipa=fast. The
choices of option are:
[no]align
recognize when targets of a pointer dummy are aligned. The default isnoalign.
[no]larg
remove arguments replaced by const, ptr. Thedefault isnoarg.
[no]cg
generate call graph information for viewing using the pgicg command-line utility. The
default isnocg.
[no]const
perform interprocedural constant propagation. The default is const.
except:<func>
used with in1ine to specify functions which should not be inlined. The default isto inline
all eligible functions according to internally defined heuristics. Valid only immediately
following the inline suboption.
[no] £90ptr
FO0/F95 pointer disambiguation across calls. The default isnof90ptr.
fast
choose IPA options generally optimal for the target. To see settings for -Mipa=fast ona
given target, use -help.
force
force al objects to re-compile regardless of whether IPA information has changed.
[no]globals
optimize references to global variables. The default isnoglobals.
inline[:n]
perform automatic function inlining. If the optional : n is provided, limit inlining to at most
n levels. IPA-based function inlining is performed from leaf routines upward.
ipofile
save IPA informationin an . ipo file rather than incorporating it into the object file.
jobs|[:n]
recompile n jobsin parallel and print source file names as they are compiled.
[no] keepobj
keep the optimized object files, using file name mangling, to reduce re-compiletimein
subsequent builds. The default is keepob.
[no]libc
optimize callsto certain standard C library routines. The default isnolibc.
[no]libinline
allow inlining of routines from libraries; implies -Mipa=inline. Thedefaultis
nolibinline.
[no]libopt
allow recompiling and optimization of routines from libraries using IPA information. The
defaultisnolibopt
[no]localarg
equivalent to arg plus externalization of local pointer targets. The default is
nolocalarg.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 102

Command-Line Options Reference

main:<func>
specify afunction to appear as aglobal entry point. May appear multiple times and it
disables linking.

reaggregation
Enables IPA-guided structure reaggregation, which automatically attempts to reorder
elementsin astruct, or to split structs into substructs to improve memory locality and cache
utilization.

rsqrt
Perform reciprocal square root (1/sgrt) using relaxed precision.

[no]pfo
enable profile feedback information. The nopfo optionisvalid only immediately
following the in1ine suboption. -Mipa=inline, nopfo tellsIPA toignore PFO
information when deciding what functions to inline, if PFO information is available.

[no]ptr
enable pointer disambiguation across procedure calls. The default isnoptr.

[no]pure
pure function detection. The default isnopure.

required
return an error condition if IPA isinhibited for any reason, rather than the default behavior
of linking without IPA optimization.

[no] reshape
enable [disable] Fortran inline with mismatched array shapes. Valid only immediately
following the in11ine suboption.

safe: [<function>|<library>]
declares that the named function, or al functionsin the named library, are safe. A safe
procedure does not call back into the known procedures and does not change any known
global variables.

Without -Mipa=safe, any unknown procedures cause | PA to fail.

[no] safeall
declares that all unknown procedures are safe. The default isnosafeal 1. For more
information, refer to ~-Mipa=safe.
[no] shape
perform Fortran 90 array shape propagation. The default isnoshape.
summary
only collect IPA summary information when compiling. This option prevents IPA
optimization of thisfile, but allows optimization for other files linked with thisfile.
[no]vestigial
remove uncalled (vestigial) functions. The default isnovestigial.

If you use -Mipa=vestigial in combination with -Mipa=1ibopt with PGCC, you
may encounter unresolved references at link time. These unresolved references are a result
of erroneous removal of functions by the vestigial sub-optionto -Mipa. You can work
around this problem by listing specific sub-optionsto -Mipa, not including vestigial.
-Mlre[=array | assoc | noassoc]
Enables |oop-carried redundancy elimination, an optimization that can reduce the number of
arithmetic operations and memory references in loops. The available suboptions are:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 103

Command-Line Options Reference

array
treat individual array element references as candidates for possible loop-carried
redundancy elimination. The default is to eliminate only redundant expressions involving
two or more operands.
assocC
allow expression re-association. Specifying this suboption can increase opportunities for
loop-carried redundancy elimination but may alter numerical results.
noassoc
disallow expression re-association.
-Mnolre
Disable loop-carried redundancy elimination.
-Mnoframe
Eliminate operations that set up atrue stack frame pointer for every function. With this option
enabled, you cannot perform atraceback on the generated code and you cannot access local
variables.
-Mnoi4
(Fortran only) instructs the compiler to treat INTEGER variables as INTEGER* 2.
-Mpre
Enables partial redundancy elimination.
-Mprefetch[=option [,option...]]
enables generation of prefetch instructions on processors where they are supported. Possible
values for option include:
d:m
set the fetch-ahead distance for prefetch instructionsto m cache lines.
n:p
set the maximum number of prefetch instructions to generate for a given loop to p.
nta
use the prefetch instruction.

plain
use the prefetch instruction (default).
t0
use the prefetchtO instruction.
w
use the AMD-specific prefetchw instruction.
-Mnoprefetch
Disables generation of prefetch instructions.
-M[no]propcond

Enables or disables constant propagation from assertions derived from equality conditionals.

The default is enabled.

-Mr8
(Fortran only) The compiler promotes REAL variables and constants to DOUBLE
PRECISION variables and constants, respectively. DOUBLE PRECISION elementsare 8
bytesin length.

-Mnor8
(Fortran only) The compiler does not promote REAL variables and constants to DOUBLE
PRECISION. REAL variableswill be single precision (4 bytes in length).

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 104

Command-Line Options Reference

-Mr8intrinsics
(pgf77, pgf95,andpgfortran only) Thecompiler treatsthe intrinsics CMPLX and REAL
as DCMPLX and DBLE, respectively.
-Mnor8intrinsics
(pgf77, pgf95, and pgfortran only) The compiler does not promote the intrinsics CMPLX
and REAL to DCMPLX and DBLE, respectively.
-Msafeptr[=0ption[,option,...]]
(pgcc and pgc++ only) instructs the C/C++ compiler to override data dependencies between
pointers of a given storage class. Possible values of option include:
all
assume all pointers and arrays are independent and safe for aggressive optimizations, and
in particular that no pointers or arrays overlap or conflict with each other.
arg
instructs the compiler to treat arrays and pointers with the same copyin and copyout
semantics as Fortran dummy arguments.
global
instructs the compiler that global or external pointers and arrays do not overlap or conflict
with each other and are independent.
local/auto
instructs the compiler that local pointers and arrays do not overlap or conflict with each
other and are independent.
static
instructs the compiler that static pointers and arrays do not overlap or conflict with each
other and are independent.
-Mscalarsse
Use SSE/SSE2 instructions to perform scalar floating-point arithmetic. This option isvalid
onlyonoption-tp [p7 | k8-32 | k8-64] targets.
-Mnoscalarsse
Do not use SSE/SSE2 instructions to perform scalar floating-point arithmetic; use x87
instructions instead. This option is not valid in combination with the -tp k8-64 option.
-Msmart
instructs the compiler driver to invoke a post-pass assembly optimization utility.
-Mnosmart
instructs the compiler not to invoke an AMD64-specific post-pass assembly optimization
utility.
-Munroll [=option [,option...]]
invokes the loop unroller to execute multiple instances of the loop during each iteration. This
also sets the optimization level to 2 if the level is set to less than 2, or if no -0 or —g options
are supplied. The option is one of the following:
c:m
instructs the compiler to completely unroll loops with a constant loop count less than or
equal tom, a supplied constant. If thisvalue is not supplied, the m count is set to 4.
m:<n>
instructs the compiler to unroll multi-block loops n times. This option is useful for loops
that have conditional statements. If n isnot supplied, then the default valueis 4. The
default setting is not to enable -Munrol1=m.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 105

Command-Line Options Reference

n:<n>
instructs the compiler to unroll single-block loops n times, aloop that is not completely
unrolled, or has a non-constant loop count. If n is not supplied, the unroller computes the
number of times a candidate loop is unrolled.

-Mnounroll
instructs the compiler not to unroll loops.
-M[no]vect[=option [,option,...]]

enable [disable] the code vectorizer, where option is one of the following:

altcode
Instructs the vectorizer to generate alternate code (altcode) for vectorized loops when
appropriate. For each vectorized |oop the compiler decides whether to generate altcode
and what type or types to generate, which may be any or al of: altcode without iteration
peeling, altcode with non-temporal stores and other data cache optimizations, and altcode
based on array alignments cal culated dynamically at runtime. The compiler also determines
suitable loop count and array alignment conditionals for executing the altcode. This option
is enabled by default.

noaltcode
Instructs the vectorizer to disable alternate code generation for vectorized loops.

assoc
Instructs the vectorizer to enable certain associativity conversions that can change the
results of a computation due to roundoff error. A typical optimization isto change an
arithmetic operation to an arithmetic operation that is mathematically correct, but can be
computationally different, due to round-off error.

noassoc
Instructs the vectorizer to disable associativity conversions.

cachesize:n
Instructs the vectorizer, when performing cache tiling optimizations, to assume a cache
size of n. The default is set per processor type, either using the -t p switch or auto-detected
from the host computer.

[no]gather
Instructs the vectorizer to vectorize loops containing indirect array references, such asthis
one:

sum = 0.d0
do k=d(j),d(j+1)-1

sum = sum + a(k)*b(c(k))
enddo

The default is gather.

partial
Instructs the vectorizer to enable partial 10op vectorization through innermost loop
distribution.

prefetch
Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use
of prefetch instructions.

[no] short
Instructs the vectorizer to enable [disable] short vector operations. -Mvect=short
enables generation of packed SIMD instructions for short vector operations that arise from
scalar code outside of loops or within the body of aloop iteration.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 106

Command-Line Options Reference

[no]sizelimit
Instructs the vectorizer to generate vector code for all loops where possible regardless
of the number of statementsin the loop. This overrides a heuristic in the vectorizer that
ordinarily prevents vectorization of loops with a number of statements that exceeds a
certain threshold. The default is nosizelimit.

smallvect[:n]
Instructs the vectorizer to assume that the maximum vector length isless than or equal to
n. The vectorizer uses thisinformation to eliminate generation of the stripmine loop for
vectorized loops wherever possible. If the size n is omitted, the default is 100.

n No space is allowed on either side of the colon (:).

[no]sse
Instructs the vectorizer to search for vectorizable loops and, wherever possible, make use
of SSE, SSE2, and prefetch instructions. The default isnosse.

[no]uniform
Instructs the vectorizer to perform the same optimizations in the vectorized and residual
loops.

D This option may affect the performance of the residual loop.

-Mnovect
instructs the compiler not to perform vectorization. Y ou can use this option to override a
previous instance of -Mvect on the command-line, in particular for casesin which -Mvect is
included in an aggregate option such as -fastsse.
-Mvect=[option]
instructs the compiler to enable loop vectorization, where option is one of the following:
partial
Enable partial 1oop vectorization through innermost 1oop distribution.
[no]lshort
Enable [disable] short vector operations. Enables [disables] generation of packed SIMD
instructions for short vector operations that arise from scalar code outside of loops or
within the body of aloop iteration.
simd[:{128]256}]
Specifies to vectorize using SIMD instructions and data, either 128 bits or 256 bits wide,
on processors where there is a choice.
tile
Enable tiling/blocking over multiple nested |oops for more efficient cache utilization.

-Mnovintr
instructs the compiler not to perform idiom recognition or introduce calls to hand-optimized

vector functions.

2.5.7. Miscellaneous Controls

This section describes the -M<pgflag> options that do not easily fit into one of the other
categories of -M<pgflag> options.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 107

Command-Line Options Reference

Default: Before looking at al the options, let’ slook at the defaults. For arguments that you do
not specify, the default miscellaneous options are as follows:

inform nobounds nolist warn

Related options: -m, -S, -V, -v

Usage: In the following example, the compiler includes Fortran source code with the assembly
code.
$ pgfortran -Manno -S myprog.f

In the following example, the assembler does not del ete the assembly filemyprog. s after the
assembly pass.
$ pgfortran -Mkeepasm myprog.f

In the following example, the compiler displays information about inlined functions with fewer
than approximately 20 source linesin the source filemyprog-. £.
$ pgfortran -Minfo=inline -Minline=20 myprog.f

In the following example, the compiler creates thelisting filemyprog. 1st.
$ pgfortran -Mlist myprog.f

In the following example, array bounds checking is enabled.
$ pgfortran -Mbounds myprog.f

The following list provides the syntax for each miscellaneous -M <pgflag> option. Each option
has a description and, if appropriate, alist of any related options.

-Manno

annotate the generated assembly code with source code. Implies -Mkeepasm.
-Mbounds

enables array bounds checking.

» If an array is an assumed size array, the bounds checking only applies to the lower bound.

» If an array bounds violation occurs during execution, an error message describing the
error is printed and the program terminates. The text of the error message includes the
name of the array, the location where the error occurred (the source file and the line
number in the source), and information about the out of bounds subscript (its value, its
lower and upper bounds, and its dimension).

The following is a sample error message:

PGFTN-F-Subscript out of range for array a (a.f: 2)
subscript=3, lower bound=1, upper bound=2, dimension=2

-Mnobounds
disables array bounds checking.

-Mbyteswapio
swap byte-order from big-endian to little-endian or vice versa upon input/output of Fortran
unformatted datafiles.

-Mchk£pstk (32-bit only)
instructs the compiler to check for internal consistency of the x87 floating-point stack in the
prologue of afunction and after returning from afunction or subroutine call. Floating-point
stack corruption may occur in many ways, one of which is Fortran code calling floating-point
functions as subroutines (i.e., with the CALL statement).

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 108

Command-Line Options Reference

» If the PGI_CONTINUE environment variable is set upon execution of a program compiled
with -Mchk fpstk, the stack will be automatically cleaned up and execution will
continue. Thereis a performance penalty associated with the stack cleanup.

» If PGI CONTINUE is set to verbose, the stack will be automatically cleaned up and
execution will continue after printing the warning message.

n This switch is only valid for 32-bit. On 64-bit it is ignored.

-Mchkptr
instructs the compiler to check for pointers that are dereferenced while initialized to NULL
(Fortran only).

-Mchkstk
instructs the compiler to check the stack for available space in the prologue of afunction
and before the start of a paralel region. Prints awarning message and aborts the program
gracefully if stack space is insufficient.

This option is useful when many local and private variables are declared in an OpenMP
program.

If the user also setsthe PGI STACK USAGE environment variable to any value, then the
program displays the stack space allocated and used after the program exits. For example, you
might see something similar to the following message:

thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48K B of a 8180KB allocated stack. This
information is useful when you want to explicitly set areserved and committed stack size for
your programs, such as using the -stack option on Windows.

For more information on the PGI _STACK USAGE, refer to ‘PGI_STACK_USAGE' in the
PGI Compiler User’s Guide.

-M epp[=0ption [,option,...]]
run the PGI cpp-like preprocessor without execution of any subsequent compilation steps.
This option is useful for generating dependence information to be included in makefiles.

Only one of the m, md, mm or mmd options can be present; if multiple of these options are listed, the
last one listed is accepted and the others are ignored.

The option is one or more of the following:

m
print makefile dependencies to stdout.

md
print makefile dependenciesto filename . d, wherefilenameis the root name of the input
file being processed, ignoring system include files.

mm
print makefile dependencies to stdout, ignoring system include files.

mmd
print makefile dependenciesto filename . d, wherefilenameis the root name of the input
file being processed, ignoring system include files.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 109

Command-Line Options Reference

[no]comment
do [do not] retain comments in output.
[suffix:]<suff>
use <suff> as the suffix of the output file containing makefile dependencies.
-Md11
This Windows-only flag has been deprecated. Refer to -Bdynamic. Thisflag was used to
link with the DLL versions of the runtime libraries, and it was required when linking with
any DLL built by any of The Portland Group compilers. This option implied -D_DLL, which
defines the preprocessor symbol _DLL.
-Mgeccbug[s]
instructs the compiler to match the behavior of certain gcc bugs.
-Miface[=option]
adjusts the calling conventions for Fortran, where option is one of the following:
unix
(Win32 only) uses UNIX calling conventions, no trailing underscores.
cref
uses CREF calling conventions, no trailing underscores.
mixed_str_len_arg
places the lengths of character argumentsimmediately after their corresponding argument.
Has affect only with the CREF calling convention.
nomixed_str_len_arg
places the lengths of character arguments at the end of the argument list. Has affect only
with the CREF calling convention.
-Minfo[=option [,option,...]]
instructs the compiler to produce information on standard error, where option is one of the
following:
all
instructs the compiler to produce al available -Min fo information. Implies a number of
suboptions:

-Mneginfo=accel,inline, ipa, loop, lre, mp, opt, par, vect

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append common compiler feedback format information, such as
optimization information, to the object file.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions. This
option is not useful without either the -Mextract or -Minline option.

intensity
instructs the compiler to provide informational messages about the intensity of the loop.
Specify <n> to get messages on nested loops.

» For floating point loops, intensity is defined as the number of floating point operations
divided by the number of floating point loads and stores.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 110

Command-Line Options Reference

» For integer loops, the loop intensity is defined as the total number of integer arithmetic
operations, which may include updates of loop counts and addresses, divided by the
total number of integer loads and stores.

» By default, the messages just apply to innermost loops.
ipa
instructs the compiler to display information about interprocedural optimizations.
loop
instructs the compiler to display information about loops, such as information on
vectorization.
Ire
instructs the compiler to enable LRE, loop-carried redundancy elimination, information.
mp
instructs the compiler to display information about parall€elization.
opt
instructs the compiler to display information about optimization.
par
instructs the compiler to enable parallelizer information.
pfo
instructs the compiler to enable profile feedback information.
time
instructs the compiler to display compilation statistics.
unroll
instructs the compiler to display information about loop unrolling.
vect
instructs the compiler to enable vectorizer information.
-Minform=level
instructs the compiler to display error messages at the specified and higher levels, where
level isone of the following:
fatal
instructs the compiler to display fatal error messages.
[no]file
instructs the compiler to print or not print source file names as they are compiled. The
default isto print the names. -Minform=file.
inform
instructs the compiler to display all error messages (inform, warn, severe and fatal).
severe
instructs the compiler to display severe and fatal error messages.
warn
instructs the compiler to display warning, severe and fatal error messages.
-Minstrumentation=option
specifiesthe level of instrumentation calls generated. This option implies -Minfo=ccff, -
Mframe.

option isone of the following:

level

specifiesthe level of instrumentation calls generated.
function (default)

generates instrumentation calls for entry and exit to functions.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 111

Command-Line Options Reference

Just after function entry and just before function exit, the following profiling functions are
called with the address of the current function and its call site. (Ilinux86-64 only).

void cyg profile func enter (void *this fn, void *call site);
void cyg profile func exit (void *this fn, void *call site);

In these calls, the first argument is the address of the start of the current function.

-Mkeepasm
instructs the compiler to keep the assembly file as compilation continues. Normally, the
assembler deletes this file when it is finished. The assembly file has the same filename as the
source file, but with a .s extension.
-M1ist
instructs the compiler to create alisting file. Thelisting fileis filename. 1st, wherethe
name of the sourcefileis filename. f.
-Mmakedll
(Windows only) generate adynamic link library (DLL).
-Mmakeimplib
(Windows only) generate an import library for a DLL without creating the DLL. When used
without -def:deffile, passes the switch -de £ to the librarian without a deffile.
-Mnames=lowercase|uppercase
specifies the case for the names of Fortran externals.

» lowercase - Use lowercase for Fortran externals.
» uppercase - Use uppercase for Fortran externals.

-Mneginfo[=option [,option,...]]

instructs the compiler to produce information on standard error, where option is one of the

following:

all
instructs the compiler to produce al available information on why various optimizations
are not performed.

accel
instructs the compiler to enable accelerator information.

ccff
instructs the compiler to append information, such as optimization information, to the
object file.

concur
instructs the compiler to produce al available information on why loops are not
automatically paralelized. In particular, if aloop is not parallelized due to potential data
dependence, the variable(s) that cause the potential dependence are listed in the messages
that you see when using the option -Mneginfo.

ftn
instructs the compiler to enable Fortran-specific information.

inline
instructs the compiler to display information about extracted or inlined functions. This
option is not useful without either the -Mextract or -Minline option.

ipa
instructs the compiler to display information about interprocedural optimizations.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 112

Command-Line Options Reference

loop
instructs the compiler to display information about loops, such as information on
vectorization.
Ire
instructs the compiler to enable L RE, loop-carried redundancy elimination, information.
mp
instructs the compiler to display information about parallelization.
opt
instructs the compiler to display information about optimization.
par
instructs the compiler to enable parallelizer information.
pfo
instructs the compiler to enable profile feedback information.
vect
instructs the compiler to enable vectorizer information.
-Mnolist
the compiler does not create alisting file. Thisis the default.
-Mnoopenmp
when used in combination with the -mp option, the compiler ignores OpenMP parallelization
directives or pragmas, but still processes SGI-style parallelization directives or pragmas.
-Mnosgimp
when used in combination with the -mp option, the compiler ignores SGI-style parallelization
directives or pragmas, but still processes OpenMP parallelization directives or pragmas.
-Mnopgdllmain
(Windows only) do not link the module containing the default DIIMain() into the DLL. This
flag appliesto building DLLs with the PGFORTRAN compilers. If you want to replace the
default DIIMain() routine with a custom DIIMain(), use this flag and add the object containing
the custom DIIMain() to thelink line. The latest version of the default DIIMain() used by
PGFORTRAN isincluded in the Release Notes for each release. The PGFORTRAN-specific
code in this routine must be incorporated into the custom version of DIIMain() to ensure the
appropriate function of your DLL.
-Mnorpath
(Linux only) Do not add -rpath to the link line.
-Mpreprocess
instruct the compiler to perform cpp-like preprocessing on assembly and Fortran input source
files.
-Mwritable strings
stores string constants in the writable data segment.

n Options -xs and -Xst include -Mwritable_strings.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 113

Chapter 3.
C++ NAME MANGLING

Name mangling transforms the names of entities so that the names include information on aspects
of the entity’ stype and fully qualified name. This ability is necessary since the intermediate
language into which a program is trandated contains fewer and simpler name spaces than there
are in the C++ language; specifically:

» Overloaded function names are not allowed in the intermediate language.

» Classes have their own scopesin C++, but not in the generated intermediate language. For
example, an entity x from inside a class must not conflict with an entity x from the file scope.

» Externa namesin the object code form a completely flat name space. The names of entities
with external linkage must be projected onto that name space so that they do not conflict with
one another. A function f from aclass A, for example, must not have the same external name
asafunction f from class B.

» Some names are not names in the conventional sense of the word, they're not strings of
aphanumeric characters, for example: operator=.

There are two main problems here:

1. Generating external names that will not clash.
2. Generating al phanumeric names for entities with strange namesin C++.

Name mangling solves these problems by generating external names that will not clash, and
aphanumeric names for entities with strange names in C++. It also solves the problem of
generating hidden names for some behind-the-scenes language support in such away that they
match up across separate compilations.

Y ou see mangled namesif you view filesthat are translated by PGC++ or PGCC, and you do not
use tools that demangle the C++ names. Intermediate files that use mangled names include the
assembly and object files created by the PGC++ command. To view demangled names, use the
tool pggdecode, which takes input from stdin. pggdecode demangles PGC++ names.

prompt> pggdecode

_ZN1AlgEf

A::g(float)

The name mangling algorithm for the PGC++ compiler is1A-64 ABI compliant and is described
at mentorembedded.github.io/cxx-abi. Refer to this document for a complete description of the
name mangling algorithm.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 114

mentorembedded.github.io/cxx-abi

Chapter 4.
DIRECTIVES AND PRAGMAS REFERENCE

PGI Fortran compilers support proprietary directives and pragmas. These directives and pragmas
override corresponding command-line options. For usage information such as the scope and
related command-line options, refer to the PGI Compiler User’s Guide.

This section contains detailed descriptions of PGI’ s proprietary directives and pragmas.

4.1. PGI Proprietary Fortran Directive and C/C++ Pragma
Summary

Directives (Fortran comments) and C/C++ pragmas may be supplied by the user in a source

file to provide information to the compiler. Directives and pragmas alter the effects of certain
command line options or default behavior of the compiler. They provide pragmatic information
that control the actions of the compiler in a particular portion of a program without affecting the
program as awhole. That is, while acommand line option affects the entire source file that is
being compiled, directives and pragmas apply, or disable, the effects of a command line option

to selected subprograms or to selected loopsin the source file, for example, to optimize a specific
area of code. Use directives and pragmas to tune selected routines or loops.

The Fortran directives may have any of the following forms:

'pgiSg directive

'pgi$r directive

'pgi$l directive

'pgi$ directive

where the scope indicator follows the $ and is either g (global), r (routine), or | (loop). This
indicator controls the scope of the directive, though some directives ignore the scope indicator.

n If the input is in fixed format, the comment character, !, * or C, must begin in column 1.

Directives and pragmas override corresponding command-line options. For usage information
such as the scope and related command-line options, refer to the the Using Directives and
Pragmas section of the PGl Compiler User’s Guide.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 115

http://www.pgroup.com/resources/docs.htm

Directives and Pragmas Reference

4.1.1. altcode (noaltcode)

The altcode directive or pragmainstructs the compiler to generate alternate code for vectorized
or parallelized loops.

Thenoaltcode directive or pragma disables generation of alternate code.

Scope: This directive or pragma affects the compiler only when -Mvect=sse Or -Mconcur is
enabled on the command line.

Ipgi$ altcode
Enables alternate code (altcode) generation for vectorized loops. For each loop the compiler
decides whether to generate altcode and what type(s) to generate, which may be any or all
of : altcode without iteration peeling, altcode with non-temporal stores and other data cache
optimizations, and altcode based on array alignments cal culated dynamically at runtime. The
compiler also determines suitable loop count and array alignment conditions for executing the
alternate code.

Ipgi$ altcode alignment
For avectorized loop, if possible, generates an aternate vectorized loop containing additional
aligned moves which is executed if aruntime array alignment test is passed.

Ipgi$ altcode [(n)] concur
For each auto-parallelized loop, generates an alternate serial loop to be executed if the loop
count isless than or equal to n. If nisomitted or nis 0, the compiler determines a suitable
value of n for each loop.

Ipgi$ altcode [(n)] concurreduction
Sets the loop count threshold for parallelization of reduction loops to n. For each auto-
parallelized reduction loop, generate an alternate serial loop to be executed if the loop count is
less than or equal to n. If nis omitted or nis 0, the compiler determines a suitable value of n
for each loop.

Ipgi$ altcode [(n)] nontempor al
For avectorized loop, if possible, generates an alternate vectorized |oop containing non-
temporal stores and other cache optimizations to be executed if the loop count is greater than
n. If nisomitted or nis 1, the compiler determines a suitable value of n for each loop. The
alternate code is optimized for the case when the data referenced in the loop does not al fit in
level 2 cache.

Ipgi$ altcode [(n)] noped
For a vectorized loop where iteration peeling is performed by default, if possible, generates an
alternate vectorized loop without iteration peeling to be executed if the loop count is less than
or equa to n. If nisomitted or nis 1, the compiler determines a suitable value of n for each
loop, and in some cases it may decide not to generate an alternate unpeeled loop.

Ipgi$ altcode [(n)] vector
For each vectorized loop, generates an aternate scalar loop to be executed if the loop count is
less than or equal to n. If nisomitted or nis 1, the compiler determines a suitable value of n
for each loop.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 116

Directives and Pragmas Reference

Ipgi$ noaltcode
Sets the loop count thresholds for parall€elization of al innermost loops to 0, and disables
alternate code generation for vectorized loops.

4.1.2. assoc (noassoc)

This directive or pragmatoggles the effects of the -Mvect=noassoc command-line option, an
optimization -M control.

Scope: This directive or pragma affects the compiler only when -Mvect=sse isenabled on the
command line.

By default, when scalar reductions are present the vectorizer may change the order of operations,
such as dot product, so that it can generate better code. Such transformations may change

the result of the computation due to roundoff error. The noassoc directive disables these
transformations.

4.1.3. bounds (nobounds)

This directive or pragma alters the effects of the -Mbounds command line option. This directive
enables the checking of array bounds when subscripted array references are performed. By
default, array bounds checking is not performed.

4.1.4. cncall (nocncall)

This directive or pragmaindicates that loops within the specified scope are considered for
parallelization, even if they contain calls to user-defined subroutines or functions. A nocncall
directive cancels the effect of a previous cncall.

4.1.5. concur (noconcur)

This directive or pragma alters the effects of the -Mconcur command-line option. The directive
instructs the auto-parallelizer to enable auto-concurrentization of loops.

Scope: This directive or pragma affects the compiler only when -Mconcur is enabled on the
command line.

If concur is specified, the compiler uses multiple processors to execute |oops which the
auto-parallelizer determines to be parallelizable. The noconcur directive disables these
transformations; however, use of concur overrides previous noconcur statements.

4.1.6. depchk (nodepchk)

This directive or pragma alters the effects of the -Mdepchk command line option. When
potential data dependencies exist, the compiler, by default, assumes that there is adata
dependence that in turn may inhibit certain optimizations or vectorizations. nodepchk directs the
compiler to ignore unknown data dependencies.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 117

Directives and Pragmas Reference

4.1.7. eqvchk (noeqvchk)

The egvchk directive or pragma specifies to check dependencies between EQUIVALENCE
associated elements. When examining data dependencies, hoegvchk directs the compiler to ignore
any dependencies between variables appearing in EQUIVALENCE statements.

4.1.8. fcon (nofcon)

This C/C++ pragma alters the effects of the -Mfcon (a-M Language control) command-line
option.

The pragma instructs the compiler to treat non-suffixed floating-point constants as float rather
than double. By default, all non-suffixed floating-point constants are treated as double.

n Only routine or global scopes are allowed for this C/C++ pragma.

4.1.9. invarif (noinvarif)

This directive or pragma has no corresponding command-line option. Normally, the compiler

removes certain invariant if constructs from within aloop and places them outside of the loop.
The directive noinvarif directs the compiler not to move such constructs. The directive invarif
toggles a previous noinvarif.

4.1.10. ivdep

The ivdep directive assists the compiler's dependence analysis and is equivalent to the directive
nodepchk.

4.1.11. Istval (nolstval)

This directive or pragma has no corresponding command-line option. The compiler determines
whether the last values for loop iteration control variables and promoted scalars need to be
computed. In certain cases, the compiler must assume that the last values of these variables are
needed and therefore computes their last values. The directive nolstval directs the compiler not to
compute the last values for those cases.

4.1.12. opt

The opt directive or pragma overrides the value specified by the -on command line option.

The syntax of this directive or pragmais:

'pgis$<scope> opt=<level>

where the optional <scope>isr or g and <level> is an integer constant representing the
optimization level to be used when compiling a subprogram (routine scope) or all subprogramsin
afile (global scope).

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 118

Directives and Pragmas Reference

4.1.13. prefetch

The prefetch directive or pragmathe compiler emits prefetch instructions whereby elements are
fetched into the data cache prior to first use. By varying the prefetch distance, it is sometimes
possible to reduce the effects of main memory latency and improve performance.

The syntax of this directive or pragmais:

!'Smem prefetch <varl>[,<var2>[,...]]

where <varn> isany valid variable, member, or array element reference.

4.1.14. safe (nosafe)

This C/C++ pragma has no corresponding command-line option. By default, the compiler
assumes that all pointer arguments are unsafe. That is, the storage located by the pointer can be
accessed by other pointers.

The formats of the safe pragma are:

#pragma [scope] [no]safe
#pragma safe (variable [, variable]...)

where scope is either global or routine.
» When the pragma safeis not followed by a variable name or alist of variable names:

» If the scopeisroutine, then the compiler treats al pointer arguments appearing in the
routine as safe.
» If the scopeisglobal, then the compiler treats all pointer arguments appearing in all
routines as safe.
» When the pragma safeis followed by avariable name or alist of variable names, each name
is the name of a pointer argument in the current function, and the compiler considers that
named argument to be safe.

n If only one variable name is specified, you may omit the surrounding parentheses.

4.1.15. safe_lastval

During paralelization, scalars within loops need to be privatized. Problems are possible if ascalar
is accessed outside the loop. If you know that a scalar is assigned on the last iteration of the loop,
making it safe to parallelize the loop, you use the safe |lastval directive or pragma to let the
compiler know the loop is safe to parallelize.

For example, use the following Fortran directive or C pragmato tell the compiler that for agiven
loop the last value computed for all scalars make it safe to parallelize the loop:

'pgis$l safe lastval
#pragma loop safe lastval

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 119

Directives and Pragmas Reference

The command-line option-Msafe lastval providesthe sameinformation for all loops within
the routines being compiled, essentially providing global scope.

In the following example, the value of t may not be computed on the last iteration of the loop.

doi=1, N
if(£(x(1)) > 5.0) then
t = x(1)
endif
enddo
v =t

If ascalar assigned within aloop is used outside the loop, we normally save the last value of the
scalar. Essentially the value of the scalar on the "last iteration” is saved, in this case when i=N.

If the loop is parallelized and the scalar is not assigned on every iteration, it may be difficult

to determine on what iteration t is last assigned, without resorting to costly critical sections.
Analysis allows the compiler to determine if a scalar is assigned on every iteration, thus the loop
issafeto paralelizeif the scalar is used later. An exampleloopis:

do i =

1, N
if(x
t

(i) > 0.0) then
= 2.0
else
t = 3.0
endif

y(i) =t

enddo
v = t

where t isassigned on every iteration of the loop. However, there are cases where a scalar may
be privatizable. If it isused after the loop, it is unsafe to parallelize. Examine this loop:

do i =1,N
if(x(1i) > 0.0) then
t = x(1)
y(i) =t
endif
enddo
v =t

where each use of t within the loop is reached by a definition from the same iteration. Here t is
privatizable, but the use of t outside the loop may yield incorrect results since the compiler may
not be able to detect on which iteration of the parallelized loop t isassigned last.

The compiler detects these cases. When a scalar is used after the loop, but is nhot defined on every
iteration of the loop, parallelization does not occur.

4.1.16. safeptr (nosafeptr)

The pragma safeptr directs the compiler to treat pointer variables of the indicated storage class as
safe. The pragma nosafeptr directs the compiler to treat pointer variables of the indicated storage
class as unsafe. This pragma alters the effects of the -Msa feptr command-line option.

The syntax of this pragmais:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 120

Directives and Pragmas Reference

'pgi$[] [nolsafeptr={arg|local|auto|global|staticlall}, ..
#pragma [scope] [nolsafeptr={arg|local|auto|global|staticlall}, ...

where scopeisoneof global, routine, OF loop. andthevalues 1ocal and auto are
equivalent.

» al —All pointers are safe

» arg-—Argument pointers are safe

» local —local pointers are safe

» globa —global pointers are safe

» static —static local pointers are safe

In afile containing multiple functions, the command-line option -Msafeptr might be hel pful

for one function, but can’t be used because another function in the file would produce incorrect
results. In such afile, the safeptr pragma, used with routine scope could improve performance and
produce correct results.

4.1.17. single (nosingle)

The pragma single directs the compiler not to implicitly convert float values to double non-
prototyped functions. This can result in faster code if the program uses only float parameters.

Since ANS| C specifies that floats must be converted to double, this pragma results in non-ANSI
conforming code. Valid only for routine or global scope.

4.1.18.1p

Y ou use the directive or pragma tp to specify one or more processor targets for which to generate
code.
'pgi$ tp [target]...

The tp directive or pragma can only be applied at the routine or global level. For more information about
these levels, refer to the ‘Scope of C/C++ Pragmas and Command-Line Options’ section of the PGI
Compiler User’s Guide.

Refer to -tp <target>[,target...] for alist of targets that can be used as parametersto the tp
directive.

4.1.19. unroll (nounroll)

The unroll directive or pragma enables loop unrolling while nounroll disables loop unrolling.

n The unroll directive or pragma has no effect on vectorized loops.

The unroll directive or pragmatakes arguments ¢, n and m.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 121

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Directives and Pragmas Reference

» ¢ specifiesthat ¢ complete unrolling should be turned on or off.
» n specifies single block loop unrolling.
» m specifies multi-block loop unrolling.

In addition, a constant may be specified for the ¢, n and m arguments.

» cv setsthethreshold to which ¢ unrolling applies. v is aconstant; and aloop whose constant
loop count isless than or equal to (<=) v is completely unrolled.
'pgi$ unroll = c:v

» n:vunrollssingle block loops v times.
'pgi$ unroll = n:v

» m:v unrollssingle block loops v times.

'pgi$ unroll = m:v

The directives unroll and nounroll only apply if-Munro11 is selected on the command line.

4.1.20. vector (novector)

The directive or pragma novector disables vectorization. The directive or pragma vector re-
enables vectorization after a previous novector directive. The directives vector and novector only
apply if -Mvect has been selected on the command line.

4.1.21. vintr (novintr)

The directive or pragma novintr directs the vectorizer to disable recognition of vector intrinsics.
The directive vintr is re-enables recognition of vector intrinsics after a previous novintr directive.
The directives vintr and novintr only apply if -Mvect has been selected on the command line.

4.2. Prefetch Directives and Pragmas

Prefetch instructions can increase the speed of an application substantially by bringing data into
cache so that it is available when the processor needs it. The PGI prefetch directive takes the
form:

The syntax of a prefetch directive in Fortran is as follows:

!'Smem prefetch <varl>[,<var2>[,...]]
where <varn>isany valid variable, member, or array element reference.

The syntax of a prefetch pragmain C/C++ isasfollows:

#pragma mem prefetch <varl>[,<var2>[,...]]
where <varnisany valid variable, member, or array element reference.

For examples on how to use the prefetch directive or pragma, refer to the Prefetch Directives and
Pragmas section of the PGI Compiler User’'s Guide.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 122

http://www.pgroup.com/resources/docs.htm

Directives and Pragmas Reference

4.3. I5PRAGMA C

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, and OS
X systems, an underscore is appended to Fortran global names, including names of functions,
subroutines, and common blocks. This mechanism distinguishes Fortran name space from C/C++
name space.

Y ou can use !$PRAGMA C in the Fortran program to call a C/C++ function from Fortran. The
statement would look similar to this:

! SPRAGMA C (name[,name]...)

This statement directs the compiler to recognize the routine 'name' as a C function, thus preventing the
Fortran compiler from appending an underscore to the routine name.

On Win32 systems the '$PRAGMA C as well as the attributes C and STDCALL may effect other
changes on argument passing as well as on the names of the routine.

4.4. IGNORE_TKR Directive

This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/) of the
specified dummy arguments in an interface of a procedure. The compiler also ignores the type,
kind, and/or rank of the actual arguments when checking all the specificsin ageneric call for
ambiguities.

4.4.1. IGNORE_TKR Directive Syntax

The syntax for the IGNORE_TKR directiveisthis:
!DIRS IGNORE TKR [[(<letter>) <dummy arg>] ...]

<letter>
is one or any combination of the following:

T-type K - kind R -rank

For example, KR indicates to ignore both kind and rank rules and TKR indicates to ignore the
type, kind, and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If not
specified, TKR rules are ignored for all dummy arguments in the procedure that contains the
directive.

4.4.2. IGNORE_TKR Directive Format Requirements

The following rules apply to this directive:

» IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90 pointers,
or assumed-shape arrays.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 123

Directives and Pragmas Reference

» IGNORE_TKR may appear in the body of an interface block or in the body of amodule
procedure, and may specify dummy argument names only.

» IGNORE_TKR may appear before or after the declarations of the dummy arguments it
specifies.

» If dummy argument names are specified, IGNORE_TKR applies only to those particular
dummy arguments.

» If no dummy argument names are specified, IGNORE_TKR appliesto all dummy arguments
except those that are all ocatable objects, Fortran 90 pointers, or assumed-shape arrays.

4.4.3. Sample Usage of IGNORE_TKR Directive

Consider this subroutine fragment:

subroutine example (A,B,C,D)
IDIRS IGNORE TKR A, (R) B, (TK) C, (K) D

Table 15 indicates which rules are ignored for which dummy arguments in the preceding sample
subroutine fragment:

Table 15 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank
B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so all type, kind, and rank rules are ignored.

4.5. \DEC\$ Directives

PGI Fortran compilers for Microsoft Windows support directives that help with inter-language
calling and importing and exporting routines to and from DLLs. These directives all take the
form:

!DECS$ directive

For specific format requirements, refer to the section ‘| DEC$ Directives' in the PGI Compiler
User’s Guide.

4.5.1. ALIAS Directive

This directive specifies an alternative name with which to resolve aroutine.

The syntax for the ALIAS directiveis either of the following:

!DEC$ ALIAS routine name , external name
!DEC$ ALIAS routine name : external name

Inthissyntax, external name isused asthe external name for the specified routine name.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 124

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Directives and Pragmas Reference

If external name isanidentifier name, the name (in uppercase) is used as the external name
for the specified routine name. If external name isacharacter constant, it is used as-is,
the string is not changed to uppercase, nor are blanks removed.

Y ou can aso supply an aias for aroutine using the ATTRIBUTES directive, described in the
next section:
IDECS ATTIRIBUTES ALIAS : 'alias name' :: routine name

This directive specifies an alternative name with which to resolve aroutine, asillustrated in the
following code fragment that provides external names for three routines. In this fragment, the
external namefor subl iSnamel, for sub2 iSname2, and for sub3 iSname3.

subroutine sub

IDECS alias subl , 'namel'
!DECS alias sub2 : 'name2'
IDEC$ attributes alias : 'name3' :: sub3

4.5.2. ATTRIBUTES Directive

This directive lets you specify properties for data objects and procedures.

The syntax for the ATTRIBUTES directiveisthis:
!DEC$ ATTRIBUTES <list>

where <list> is one of the following:

ALIAS: 'alias hame :: routine_name
Specifies an alternative name with which to resolve routine name.
C :: routine_name
Specifiesthat the routine routine name will have its arguments passed by value. When a
routine marked C is called, arguments, except arrays, are sent by value. For characters, only
the first character is passed. The standard Fortran calling convention is pass by reference.
DLLEXPORT :: name
Specifiesthat name is being exported fromaDLL.
DLLIMPORT :: name
Specifiesthat name is being imported from aDLL.
NOMIXED_STR_LEN_ARG
Specifies that hidden lengths are placed in sequential order at the end of thelist.

This attribute only applies to routines that are compiled with -Mi face=cref or that use the default
Windows calling conventions.

REFERENCE :: name
Specifies that the argument name is being passed by reference. Often this attribute is used
in conjunction with STDCALL, where STDCALL refers to an entire routine; then individual
arguments are modified with REFERENCE.

STDCALL :: routine_name
Specifiesthat routine routine name will have its arguments passed by value. When a
routine marked sTDCALL is called, arguments (except arrays and characters) will be sent by
value. The standard Fortran calling convention is pass by reference.

VALUE :: name
Specifies that the argument 'name'’ is being passed by value.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 125

Directives and Pragmas Reference

4.5.3. DECORATE Directive

The DECORATE directive specifies that the name specified in the ALIAS directive should have
the prefix and postfix decorations performed on it that are associated with the calling conventions
that are in effect. These declarations are the same ones performed on the name when ALIAS s
not specified.

The syntax for the DECORATE directiveisthis:
!DEC$ DECORATE

n When ALIAS is not specified, this directive has no effect.

4.5.4. DISTRIBUTE Directive

This directiveis front-end based, and tells the compiler at what point within aloop to split into
two loops.

The syntax for the DISTRIBUTE directive is either of the following:

!DECS$ DISTRIBUTE POINT
!DECS$ DISTRIBUTEPOINT

Example:

subroutine dist(a,b,n)
integer 1
integer n
integer a(*)
integer b (*)
do i = 1,n
a(i) = a(i)+2
IDECS DISTRIBUTE POINT
b(i) = b(i)*4
enddo
end subroutine

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 126

Chapter 5.
RUNTIME ENVIRONMENT

This section describes the programming model supported for compiler code generation, including
register conventions and calling conventions for x86 and x64 processor-based systems. It
addresses these conventions for processors running linux86 or Win32 operating systems, for
processors running linux86-64 operating systems, and for processors running Win64 operating
systems.

In this section we sometimes refer to word, halfword, and double word. The equivalent byte information is
word (4 byte), halfword (2 byte), and double word (8 byte).

5.1. Linux86 and Win32 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects
of an x86 processor running alinux86 or Win32 operating system. These standards must be
followed to guarantee that compilers, application programs, and operating systems written by
different people and organizations will work together. The conventions supported by the PGCC
ANSI C compiler implement the application binary interface (ABI) as defined in the System V
Application Binary Interface: Intel Processor Supplement and the System V Application Binary
Interface, listed in the Related Publications section in the Preface.

9.1.1. Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register
usage, and parameter passing.

Register Usage Conventions

The following table defines the standard for register allocation. The 32-bit x86 Architecture
provides a number of registers. All the integer registers and all the floating-point registers are
availableto all proceduresin arunning program.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 127

Runtime Environment

Table 16 Register Allocation

Type Name Purpose
General Yoeax integer return value
%edx dividend register (for divide operations)
%ecx count register (shift and string operations)
%ebx local register variable
%ebp optional stack frame pointer
%esi local register variable
%edi local register variable
%esp stack pointer
Floating-point %st(0) floating-point stack top, return value
%st(1) floating-point next to stack top
%st(...)
%st(7) floating-point stack bottom

In addition to the registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. The next table shows the stack frame organization.

Table 17 Standard Stack Frame

Position Contents Frame

4n+8 (%ebp) argument word n previous
argument words 1 to n-1

8 (%ebp) argument word 0

4 (%ebp) return address

0 (%ebp) caller's %ebp current

-4 (%ebp) n bytes of local

-n (%ebp) variables and temps

Key points concerning the stack frame include:

» Thestack is kept double word aligned.

» Argument words are pushed onto the stack in reverse order so the rightmost argument in C
call syntax has the highest address. A dummy word may be pushed ahead of the rightmost

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 128

Runtime Environment

argument in order to preserve doubleword alignment. All incoming arguments appear on the
stack, residing in the stack frame of the caller.

» Anargument’ssizeisincreased, if necessary, to make it amultiple of words. This may
require tail padding, depending on the size of the argument.

All registers on an x86 system are visible to both a calling and a called function. Registers %oebp,
%ebx, %edi, %esi, and %esp are non-volatile across function calls. Therefore, afunction must
preserve theseregisters’ valuesfor its caller. Remaining registers are volatile (scratch). If a
calling function wants to preserve such aregister value across a function call, it must save its
value explicitly.

Some registers have assigned roles in the standard calling sequence:

%esp
The stack pointer holds the limit of the current stack frame, which is the address of the stack’s
bottom-most, valid word. At all times, the stack pointer must be kept word-aligned.

% ebp
The frame pointer holds a base address for the current stack frame. Consequently, afunction
has registers pointing to both ends of its frame. Incoming arguments reside in the previous
frame, referenced as positive offsets from %ebp, while local variablesreside in the current
frame, referenced as negative offsets from %ebp. A function must preserve this register value
foritscaler.

% eax
Integral and pointer return values appear in %eax. A function that returns a structure or union
value places the address of the result in %eax. Otherwise, thisis a scratch register.

%es, %edi
These local registers have no specified role in the standard calling sequence. Functions must
preserve their values for the caller.

% ecx, % edx
Scratch registers have no specified role in the standard calling sequence. Functions do not
have to preserve their values for the caller.

%st(0)
Floating-point return values appear on the top of the floating point register stack; thereisno
difference in the representation of single or double-precision valuesin floating point registers.
If the function does not return a floating point value, then the stack must be empty.

%st(1) - %st(7)
Floating point scratch registers have no specified role in the standard calling sequence. These
registers must be empty before entry and upon exit from a function.

EFLAGS
The flags register contains the system flags, such as the direction flag and the carry flag. The
direction flag must be set to the "forward" (i.e., zero) direction before entry and upon exit
from afunction. Other user flags have no specified role in the standard calling sequence and
are not reserved.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 129

Runtime Environment

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding mode and exception
masking. Thisregister isinitialized at process initialization time and its value must be
preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual
restriction on their use of registers. Moreover, if asignal handling function returns, the process
resumes its original execution path with registers restored to their original values. Thus, programs
and compilers may freely use all registers without danger of signal handlers changing their
values.

5.1.2. Function Return Values

Functions Returning No Value

Functions that do not return a value are also called procedures or void functions. These functions
put no particular value in any register.

Functions Returning Scalars

» A function that returns an integral or pointer value placesits result in register %eax.

» A function that returns along long integer value placesits result in the registers %edx and
%eax. The most significant word is placed in %edx and the least significant word is placed in
%oeax.

» A floating-point return value appears on the top of the floating point stack. The caller must
then remove the value from the floating point stack, even if it does not use the value. Failure
of either side to meet its obligations |eads to undefined program behavior. The standard
calling sequence does not include any method to detect such failures nor to detect return
value type mismatches. Therefore, the user must declare all functions properly. Thereisno
differencein the representation of single-, double- or extended-precision values in floating-
point registers.

» A call instruction pushes the address of the next instruction (the return address) onto
the stack. The return instruction pops the address off the stack and effectively continues
execution at the next instruction after the call instruction. A function that returns a scalar or
no value must preserve the caller's registers. Additionally, the called function must remove
the return address from the stack, leaving the stack pointer (%esp) with the value it had
before the call instruction was executed.

Functions Returning Structures or Unions

If afunction returns a structure or union, then the caller provides space for the return value and
places its address on the stack as argument word zero. In effect, this address becomes a hidden
first argument.

A function that returns a structure or union also sets %eax to the value of the original address of
the caller's area before it returns. Thus, when the caller receives control again, the address of the

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 130

Runtime Environment

returned object resides in register %eax and can be used to access the object. Both the calling and
the called functions must cooperate to pass the return value successfully:

» Thecalling function must supply space for the return value and pass its address in the stack
frame;

» Thecalled function must use the address from the frame and copy the return value to the
object so supplied;

» The caled function must remove this address from the stack before returning.

Failure of either side to meet its obligation leads to undefined program behavior. The standard
function calling sequence does not include any method to detect such failures nor to detect
structure and union type mismatches. Therefore, you must declare the function properly.

The following table illustrates the stack contents when the function receives control, after the call
instruction, and when the calling function again receives control, after the ret instruction.

Table 18 Stack Contents for Functions Returning struct/union

Position After Call After Return Position
4n+8 (%esp) argument word n argument word n 4n-4 (%esp)
8 (%esp) argument word 1 argument word 1 0 (%esp)

4 (%esp) value address undefined

0 (%esp) return address

The following sections of this section describe where arguments appear on the stack. The
examplesin this section are written asif the function prologue is used.

5.1.3. Argument Passing

Integral and Pointer Arguments

As mentioned, afunction receives all its arguments through the stack; the last argument is
pushed first. In the standard calling sequence, the first argument is at offset 8(%ebp), the second
argument is at offset 12(%ebp), as previously shown in Table 18. Functions pass al integer-
valued arguments as words, expanding or padding signed or unsigned bytes and halfwords as
needed.

Table 19 Integral and Pointer Arguments

Argument Stack Address

g(1, 2, 3, (void *)0); 1 8 (%ebp)

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 131

Runtime Environment

Argument Stack Address
2 12 (%ebp)
3 16 (%ebp)
(void *) 0 20 (%ebp)

Floating-Point Arguments

The stack also holds floating-point arguments:. single-precision values use one word and double-

precision use two. The following example uses only double-precision arguments.

Table 20 Floating-point Arguments

Call Argument Stack Address
h(1.414, 1, 2.998¢10); word 0, 1.414 8 (%ebp)

word 1, 1.414 12 (%ebp)

1 16 (%ebp)

word 0 2.998e10 20 (%ebp)

word 1, 2.998e10 24 (%ebp)

Structure and Union Arguments

Structures and unions can have byte, halfword, or word alignment, depending on the constituents.
An argument’s sizeisincreased, if necessary, to make it a multiple of words. This size increase
may require tail padding, depending on the size of the argument. Structure and union arguments
are pushed onto the stack in the same manner as integral arguments. This process provides call-
by-value semantics, letting the called function modify its arguments without affecting the calling
function’s abject. In the following example, the argument, s, is a structure consisting of more than
2 words.

Table 21 Structure and Union Arguments

Call Argument Stack Address
i(1,3); 1 8 (%ebp)

word 0, s 12 (%ebp)

word 1, s 16 (%ebp)

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 132

Runtime Environment

Implementing a Stack

In general, compilers and programmers must maintain a software stack. Register %esp is the
stack pointer. Register %esp is set by the operating system for the application when the program
is started. The stack must be a grow-down stack.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space
on the stack at run-time (e.g. alloca). Some languages can also return values from aroutine
alocated on stack space below the original top-of-stack pointer. Such aroutine prevents the
calling function from using %esp-relative addressing to get at values on the stack. If the compiler
does not call routines that leave %esp in an altered state when they return, aframe pointer is not
needed and is not used if the compiler option -Mno frame is specified.

Although not required, the stack should be kept aligned on 8-byte boundaries so that 8-byte locals
are favorably aligned with respect to performance. PGI's compilers allocate stack space for each
routine in multiples of 8 bytes.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language uses a
special method to access variable-count parameters. The stdarg.h and varargs.h filesdefine
severa functions to access these parameters. A C routine with variable parameters must use the
va_start macro to set up a data structure before the parameters can be used. Theva_arg
macro must be used to access the successive parameters.

C Parameter Conversion

In C, for acalled prototyped function, the parameter type in the called function must match

the argument type in the calling function. If the called function is not prototyped, the calling
convention uses the types of the arguments but promotes char or short to int, and unsigned char

or unsigned short to unsigned int and promotes float to double, unless you use the -Msingle
option. For more information on the -Msingle option, refer to -M Options by Category. If the
called function is prototyped, the unused bits of aregister containing a char or short parameter are
undefined and the called function must extend the sign of the unused bits when needed.

Calling Assembly Language Programs
The following example shows a C program calling an assembly-language routine sum_ 3.

C Program Calling an Assembly-language Routine

/* File: testmain.c */ main () {
long 1 paral = 0x3£800000;
float f para2 = 1.0;
double d para3 = 0.5;
float f return;
extern float sum 3 (long paral, float para2, double para3);
f return = sum 3 (1 paral,f para2, d para3);
printf ("Parameter one, type long = %08x\n",1 paral);
printf ("Parameter two, type float = $f\n",f para2);
printf ("Parameter three, type double = %g\n",d para3);
printf ("The sum after conversion = %f\n",f return); }

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 133

Runtime Environment

File: sum 3.s
Computes (paral + para2) + para3
.text

.align 4

.long .ENl-sum 3+0xc8000000
.align 16

.globl sum 3
sum_3:

pushl %ebp

movl %esp, $ebp

subl $8, %esp

..EN1:

fildl 8 (%ebp)

fadds 12 (%ebp)

faddl 16 (%ebp)

fstps -4 (%ebp)

flds -4 (%ebp)

addl $8, %$esp

leave

ret

.type sum 3, @function
.size sum 3, .-sum 3

5.2. Linux86-64 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects

of an x64 processor running alinux86-64 operating system. These standards must be followed to
guarantee that compilers, application programs, and operating systems written by different people
and organizations will work together. The conventions supported by the PGCC ANSI C compiler
implement the application binary interface (ABI) as defined in the System V Application Binary
Interface: AMD64 Architecture Processor Supplement and the System V Application Binary
Interface, listed in the Related Publications section in the Preface.

The programming model used for Win64 differs from the Linux86-64 model. For more information, refer to
Win64 Programming Model.

5.2.1. Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register
usage, and parameter passing.

Register Usage Conventions

The following table defines the standard for register allocation. The x64 Architecture provides
avariety of registers. All the general purpose registers, XMM registers, and x87 registers are
visible to all proceduresin arunning program.

Table 22 Register Allocation

Purpose

General Y%rax 1st return register

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 134

Runtime Environment

Type Name Purpose
%rbx callee-saved; optional base pointer
%rcx pass 4th argument to functions
%rdx pass 3rd argument to functions; 2nd return register
%rsp stack pointer
%rbp callee-saved; optional stack frame pointer
%rsi pass 2nd argument to functions
%ordi pass 1st argument to functions
%r8 pass 5th argument to functions
%r9 pass 6th argument to functions
%r10 temporary register; pass a function's static chain pointer
%r11 temporary register
%r12-r15 callee-saved registers
XMM %xmmO0-%xmm1 pass and return floating point arguments
%oxmmz2-%xmm7 pass floating point arguments
%xmm8-%xmm15 temporary registers
x87 %st(0) temporary register; return long double arguments
%st(1) temporary register; return long double arguments

%st(2) - %st(7)

temporary registers

In addition to the registers, each function has aframe on the run-time stack. This stack grows

downward from high addresses. Table 23 shows the stack frame organization.

Table 23 Standard Stack Frame

Position Contents Frame
8n+16 (%rbp) argument eightbyte n previous
16 (%rbp) argument eightbyte 0

8 (%rbp) return address current
0 (%rbp) caller's %rbp current
-8 (%rbp) unspecified

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Runtime Environment

Position Contents Frame
0 (%rsp) variable size
-128 (%rsp) red zone

Key points concerning the stack frame:

» Theend of the input argument areais aligned on a 16-byte boundary.

» The 128-byte area beyond the location of %rsp is called the red zone and can be used for
temporary local data storage. This areais not modified by signal or interrupt handlers.

» A call instruction pushes the address of the next instruction (the return address) onto
the stack. The return instruction pops the address off the stack and effectively continues
execution at the next instruction after the call instruction. A function must preserve non-
volatile registers, aregister whose contents must be preserved across subroutine calls.
Additionally, the called function must remove the return address from the stack, leaving the
stack pointer (%rsp) with the value it had before the call instruction was executed.

All registers on an x64 system are visible to both a calling and a called function. Registers %rbx,
%rsp, %orbp, %rl2, %rl3, %rl4, and %r15 are non-volatile across function calls. Therefore,
afunction must preserve these registers values for its caller. Remaining registers are volatile
(scratch) registers, that is aregister whose contents need not be preserved across subroutine calls.
If acalling function wants to preserve such aregister value across afunction call, it must saveits
value explicitly.

Registers are used extensively in the standard calling sequence. The first six integer and pointer
arguments are passed in these registers (listed in order): %rdi, %rsi, %rdx, %rcx, %r8, %r9.
Thefirst eight floating point arguments are passed in the first eight XMM registers: %xmmo0,
%xmml, ..., Y%oxmm?7. The registers %rax and %rdx are used to return integer and pointer values.
The registers %xmmO0 and %oxmm1 are used to return floating point values.

Additional registers with assigned rolesin the standard calling sequence:

%rsp
The stack pointer holds the limit of the current stack frame, which is the address of the stack's
bottom-most, valid word. The stack must be 16-byte aligned.

%rbp
The frame pointer holds a base address for the current stack frame. Consequently, afunction
has registers pointing to both ends of its frame. Incoming arguments reside in the previous
frame, referenced as positive offsets from %rbp, while local variables reside in the current
frame, referenced as negative offsets from %rbp. A function must preserve this register value
foritscaller.

RFLAGS
The flags register contains the system flags, such as the direction flag and the carry flag. The
direction flag must be set to the "forward" (i.e., zero) direction before entry and upon exit

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 136

Runtime Environment

from afunction. Other user flags have no specified role in the standard calling sequence and
are not preserved.

Floating Point Control Word
The control word contains the floating-point flags, such as the rounding mode and exception
masking. Thisregister isinitialized at process initialization time and its value must be
preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual
restriction on their use of registers. Moreover, if asignal handling function returns, the process
resumesits original execution path with registers restored to their original values. Thus, programs
and compilers may freely use all registers without danger of signal handlers changing their
values.

5.2.2. Function Return Values

Functions Returning Scalars or No Value

» A function that returns an integral or pointer value places its result in the next available
register of the sequence %rax, %rdx.

» A function that returns afloating point value that fits in the XMM registers returns this value
in the next available XMM register of the sequence %xmm0, %xmmd1.

» An X87 floating-point return value appears on the top of the floating point stack in %st(0)
as an 80-bit X87 number. If this X87 return value is a complex number, the real part of the
valueisreturned in %st(0) and the imaginary part in %st(1).

» A function that returns a value in memory also returns the address of this memory in %rax.

» Functions that return no value (also called procedures or void functions) put no particular
valuein any register.

Functions Returning Structures or Unions

A function can use either registers or memory to return a structure or union. The size and type of
the structure or union determine how it is returned. If a structure or union is larger than 16 bytes,
itisreturned in memory allocated by the caller.

To determine whether a 16-byte or smaller structure or union can be returned in one or more
return registers, examine the first eight bytes of the structure or union. The type or types of the
structure or union’ s fields making up these eight bytes determine how these eight bytes will be
returned. If the eight bytes contain at |east one integral type, the eight bytes will be returned in
%rax even if non-integral types are aso present in the eight bytes. If the eight bytes only contain
floating point types, these eight bytes will be returned in %xmmo0.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or
types of the fields making up the second eight bytes of the structure or union. If these eight bytes
contain at least one integral type, these eight bytes will be returned in %rdx even if non-integral
types are also present in the eight bytes. If the eight bytes only contain floating point types, these
eight byteswill be returned in %xmmdl.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 137

Runtime Environment

If astructure or union is returned in memory, the caller provides the space for the return value
and passes its address to the function as a"hidden"” first argument in %rdi. This address will also
be returned in %rax.

5.2.3. Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register of the
sequence %rdi, %rsi, %rdx, %rcx, %r8, %r9. After thislist of registers has been exhausted, all
remaining integral and pointer arguments are passed to the function viathe stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM register
taken in the order from %xmmoO to Y%xmm?7. After thislist of registers has been exhausted, all
remaining float and double arguments are passed to the function via the stack.

Structure and Union Arguments

Structure and union arguments can be passed to afunction in either registers or on the stack. The
size and type of the structure or union determine how it is passed. If a structure or union is larger
than 16 bytes, it is passed to the function in memory.

To determine whether a 16-byte or smaller structure or union can be passed to afunction in one
or two registers, examine the first eight bytes of the structure or union. The type or types of the
structure or union’s fields making up these eight bytes determine how these eight bytes will be
passed. If the eight bytes contain at least one integral type, the eight bytes will be passed in the
first available general purpose register of the sequence %rdi, %orsi, %ordx, %orcx, %r8, %r9 even if
non-integral types are also present in the eight bytes. If the eight bytes only contain floating point
types, these eight bytes will be passed in the first available XMM register of the sequence from
%xmmO to Yoxmm?7.

If the structure or union is larger than eight bytes but smaller than 17 bytes, examine the type or
types of the fields making up the second eight bytes of the structure or union. If the eight bytes
contain at least one integral type, the eight bytes will be passed in the next available general
purpose register of the sequence %ordi, %rsi, %rdx, %rcx, %r8, %r9 even if non-integral types
are also present in the eight bytes. If these eight bytes only contain floating point types, these
eight byteswill be passed in the next available XMM register of the sequence from %xmm0 to
%xmm7.

If the first or second eight bytes of the structure or union cannot be passed in aregister for some
reason, the entire structure or union must be passed in memory.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 138

Runtime Environment

Passing Arguments on the Stack

If there are arguments left after every argument register has been allocated, the remaining
arguments are passed to the function on the stack. The unassigned arguments are pushed on the
stack in reverse order, with the last argument pushed first.

Parameter Passing

Table 24 shows the register allocation and stack frame offsets for the function declaration and call
shown in the following example. Both table and example are adapted from System V Application
Binary Interface: AMD64 Architecture Processor Supplement.

typedef struct {
int a, b;
double d;
}
structparam;
structparam s;
int e, f, g, n, i, jl k;
float flt;
double m, n;
extern void func(int e, int f, structparam s, int g, int h,
float flt, double m, double n, int i, int j, int k);
void func2 ()
{
func(e, £, s, g, h, flt, m, n, i, j, k);
}

Table 24 Register Allocation for Example A-2

General Purpose Registers Floating Point Registers Stack Frame Offset
%rdi: e %xmm0: s.d 0:]

%rsi: f %xmm1: fit 8:k

%rdx: s.a,s.b %xmm2: m

%rex: g %xmm3: n

%r8: h

%r9: i

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack pointer,
register %rsp, is set by the operating system for the application when the program is started. The
stack must grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space
on the stack at run-time (e.g. alloca). Some languages can also return values from aroutine
alocated on stack space below the original top-of-stack pointer. Such aroutine prevents the
calling function from using %rsp-relative addressing for values on the stack. If the compiler

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 139

Runtime Environment

does not call routines that leave %rsp in an altered state when they return, a frame pointer is not
needed and may not be used if the compiler option -Mnoframe is specified.

The stack must be kept aligned on 16-byte boundaries.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language uses a
specia method to access variable-count parameters. The stdarg.h and varargs. h files define
several functions to access these parameters. A C routine with variable parameters must use the
va_start macro to set up a data structure before the parameters can be used. The va_arg macro
must be used to access the successive parameters.

For callsthat use varargs or stdargs, the register %rax acts as a hidden argument whose
valueisthe number of XMM registers used in the call.

C Parameter Conversion

In C, for a called prototyped function, the parameter type in the called function must match

the argument type in the calling function. If the called function is not prototyped, the calling
convention uses the types of the arguments but promotes char or short to int, and unsigned char
or unsigned short to unsigned int and promotes float to double, unlessyou usethe -Msingle
option. For more information on the -Msingle option, refer to -M Options by Category .

Calling Assembly Language Programs
The following example shows a C program calling an assembly-language routine sum_ 3.

C Program Calling an Assembly-language Routine

/* File: testmain.c */

#include <stdio.h>

int

main () {
long 1 paral = 2;
float f para2 = 1.0;
double d para3 = 0.5;
float f return;
extern float sum 3 (long paral, float para2, double para3);
f return = sum 3 (1 paral, f para2, d para3);

printf ("Parameter one, type long = %$1d\n", 1 paral);
printf ("Parameter two, type float = $f\n", f para2);
printf ("Parameter three, type double = %$f\n", d para3);
printf ("The sum after conversion = %$f\n", f return);
return O;

File: sum 3.s
Computes (paral + para2) + para3
.text

.align 16

.globl sum 3

sum 3:

pushg %rbp

movqg %rsp, Srbp
cvtsiZ2ssqg %$rdi, Sxmm2
addss %xmm0, %xmm2
cvtss2sd $xmm2, $xmm2
addsd %$xmml, $xmm?2

+

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 140

Runtime Environment

cvtsd2ss Sxmm2, $Sxmm2
movaps $xmm2, %$xmmO

popq srbp

ret

.type sum 3, @function
.size sum 3, .-sum 3

9.2.4. Linux86-64 Fortran Supplement

Sections A2.4.1 through A2.4.4 of the ABI for x64 Linux and OS X define the Fortran
supplement. The register usage conventions set forth in that document remain the same for
Fortran.

Fortran Fundamental Types

Table 25 Linux 86-64 Fortran Fundamental Types

Fortran Type Size (bytes) Alignment (bytes)
INTEGER 4 4
INTEGER*1 1 1
INTEGER*2 2 2
INTEGER*4 4 4
INTEGER*8 8 8
LOGICAL 4 4
LOGICAL*1 1 1
LOGICAL*2 2 2
LOGICAL*4 4 4
LOGICAL*8 8 8
BYTE 1 1
CHARACTER™n n 1
REAL 4 4
REAL*4 4 4
REAL*8 8 8
DOUBLE PRECISION 8 8
COMPLEX 8 4

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 141

Runtime Environment

Fortran Type Size (bytes) Alignment (bytes)
COMPLEX*8 8 4
COMPLEX*16 16 8
DOUBLE COMPLEX 16 8

A logical constant is one of:

» . TRUE.
» .FALSE.

Thelogical constants . TRUE. and .FALSE. are defined to be the four-byte values -1 and
0 respectively. A logical expression is defined to be . TRUE. if itsleast significant bit is 1
and .FALSE. otherwise.

Note that the value of a character is not automatically NULL-terminated.

Naming Conventions

By default, al globally visible Fortran symbol names (subroutines, functions, common blocks)
are converted to lower-case. In addition, an underscore is appended to Fortran global names to
distinguish the Fortran name space from the C/C++ name space.

Argument Passing and Return Conventions

Arguments are passed by reference (i.e., the address of the argument is passed, rather than the
argument itself). In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing
the length of the CHARACTER argument is also passed to the function. This length argument
isafour-byte integer passed by value, and is passed at the end of the parameter list following
the other formal arguments. A length argument is passed for each CHARACTER argument; the
length arguments are passed in the same order as their respective CHARACTER arguments.

A Fortran function, returning a value of type CHARACTER, adds two arguments to the
beginning of its argument list. The first additional argument is the address of the area created

by the caller for the return value; the second additional argument is the length of the return
value. If a Fortran function is declared to return a character value of constant length, for example
CHARACTER*4 FUNCTION CHF(), the second extra parameter representing the length of the
return value must still be supplied.

A Fortran complex function returnsits value in memory. The caller provides space for the return
value and passes the address of this storage asif it were the first argument to the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The
alternate return function passes the appropriate return value back to the caller in %rax.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 142

Runtime Environment

The handling of the following Fortran 90 features is implementati on-defined: internal procedures,
pointer arguments, assumed-shape arguments, functions returning arrays, and functions returning

derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possibleif function/subroutine parameters

and return values match types.

» |f aC/C++ function returns avaue, call it from Fortran as a function, otherwise, cal it asa

subroutine.

» If aFortran function has type CHARACTER or COMPLEX, call it from C/C++ asavoid

function.

» If aFortran subroutine has alternate returns, call it from C/C++ as afunction returning int;
the value of such a subroutine is the value of the integer expression specified in the alternate

RETURN statement.

» If aFortran subroutine does not contain alternate returns, call it from C/C++ as avoid

function.

Fortran 2003 also provides a mechanism to support interoperability with C. This mechanism
incluesthe ISO_C BINDING intrinsic module, binding labels, and the BIND attribute.

Table 26 provides the C/C++ data type corresponding to each Fortran data type.

Table 26 Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)
CHARACTER*n x char x[n]

REAL x float x 4
REAL*4 x float x 4
REAL*8 x double x

DOUBLE PRECISION x double x

INTEGER x int x

INTEGER*1 x signed char x

INTEGER*2 x short x

INTEGER*4 x int x

INTEGER*8 x long x, or long long x

LOGICAL x int x

LOGICAL*1 x char x

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

143

Runtime Environment

Fortran Type C/C++ Type Size (bytes)
LOGICAL*2 x short x 2
LOGICAL*4 x int x 4
LOGICAL*8 x long x, or long long x 8

Table 27 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float r,i;} x; 8
float complex x;
complex*8 x struct {float r,i;} x; 8
float complex x; 8
double complex x struct {double dr,di;} x; 16
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16
n For C/C++, the comp1ex type implies C99 or later.
Arrays

C/C++ arrays and Fortran arrays use different default initial array index values. By default, C/
C++ arrays start at 0 and Fortran arrays start at 1. A Fortran array can be declared to start at zero.

Another difference between Fortran and C/C++ arrays is the storage method used. Fortran

uses column-major order and C/C++ use row-mgjor order. For one-dimensional arrays, this
poses no problems. For two-dimensional arrays, where there are an equal number of rows and
columns, row and column indexes can simply be reversed. Inter-language function mixing is not
recommended for arrays other than single dimensional arrays and square two-dimensional arrays.

Structures, Unions, Maps, and Derived Types

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran
union, conform to the same alignment requirements used by C structures.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 144

Runtime Environment

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore.

For example, the Fortran common block:

INTEGER I, J

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D

COMMON /CcOM/ i, j, c, cd, d

is represented in C with the following equivalent:

extern struct {
int i;
int j;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;
} com_;
and in C++ with the following equivalent:
extern "C" struct {
int 1i;
int j;
struct {float real, imag;} c;
struct {double real, imag;} cd;

double d;
} com ;

n The compiler-provided name of the BLANK COMMON block is implementation specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward
as calling other types of Fortran functions. Additional arguments must be passed to the Fortran
function by the C/C++ caller. A Fortran COMPLEX function returnsits value in memory; the
first argument passed to the function must contain the address of the storage for thisvalue. A
Fortran CHARACTER function adds two arguments to the beginning of its argument list. The
following example of calling a Fortran CHARACTER function from C/C++ illustrates these
caller-provided extra parameters:

CHARACTER* (*) FUNCTION CHF (Cl, I)
CHARACTER* (*) C1

INTEGER I

END

extern void chf ();

char tmp[10];

char cl1[9];

int i;

chf (tmp, 10, cl, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the
length of c1. Refer to Argument Passing, for additional information.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 145

Runtime Environment

5.3. Win64 Programming Model

This section defines compiler and assembly language conventions for the use of certain aspects

of an x64 processor running a Win64 operating system. These standards must be followed to
guarantee that compilers, application programs, and operating systems written by different people
and organizations will work together. The conventions supported by the PGCC ANSI C compiler
implement the Visual C++ calling conventions for x645 processors.

5.3.1. Function Calling Sequence

This section describes the standard function calling sequence, including the stack frame, register
usage, and parameter passing.

Register Usage Conventions

Table 28 defines the standard for register allocation. The 64-bit AMDG64 and Intel 64
architectures provide a number of registers. All the general purpose registers, XMM registers, and
x87 registers are global to all proceduresin arunning program.

Table 28 Register Allocation

Type Name Purpose
General %rax return value register
%Yorbx callee-saved
%rcx pass 1st argument to functions
%rdx pass 2nd argument to functions
%rsp stack pointer
%rbp callee-saved; optional stack frame pointer
%orsi callee-saved
Yordi callee-saved
%r8 pass 3rd argument to functions
%r9 pass 4th argument to functions
%r10-%r11 temporary registers; used in syscall/sysret instructions
%r12-r15 callee-saved registers
XMM %xmm0 pass 1st floating point argument; return value register
%xmm1 pass 2nd floating point argument

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 146

Runtime Environment

Type Name Purpose
%xmm2 pass 3rd floating point argument
%xmm3 pass 4th floating point argument
Y%oxmmé4-%xmm5 temporary registers
%xmm6-%xmm15 callee-saved registers

In addition to the registers, each function has a frame on the run-time stack. This stack grows
downward from high addresses. Table 29 shows the stack frame organization.

Table 29 Standard Stack Frame

Position Contents Frame
8n-120 (%rbp) argument eightbyte n previous
-80 (%rbp) argument eightbyte 5

-88 (%rbp) %r9 home

-96 (%rbp) %r8 home

-104 (%rbp) %rdx home

-112 (%rbp) %rcx home

-120 (%rbp) return address current
-128 (%rbp) caller's %rbp

0 (%rsp) variable size

Key points concerning the stack frame:

» The parameter area at the bottom of the stack must contain enough space to hold all the
parameters needed by any function call. Space must be set aside for the four register
parameters to be "homed" to the stack even if there are less than four register parameters
used in agiven call.

» Sixteen-byte alignment of the stack is required except within afunction’s prolog and within
leaf functions.

All registers on an x64 system are global and thus visible to both a calling and a called function.
Registers %orbx, %rsp, %rbp, %orsi, %ordi, %rl2, %rl3, %rl4, and %rl15 are non-volatile.
Therefore, a called function must preserve these registers valuesfor its caller. Remaining
registers are scratch. If a calling function wants to preserve such aregister value across afunction
call, it must save avalueinitslocal stack frame.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 147

Runtime Environment

Registers are used in the standard calling sequence. The first four arguments are passed in
registers. Integral and pointer arguments are passed in these general purpose registers (listed

in order): %rcx, %rdx, %r8, %r9. Floating point arguments are passed in the first four XMM
registers: %xmm0, %xmml, %oxmm2, %oxmm3. Registers are assigned using the argument’s
ordinal position in the argument list. For example, if afunction’sfirst argument is an integral
type and its second argument is a floating-point type, the first argument will be passed in the first
general purpose register (%rcx) and the second argument will be passed in the second XMM
register (Yoxmmbl); the first XMM register and second general purpose register are ignored.
Arguments after the first four are passed on the stack.

Integral and pointer type return values are returned in %rax. Floating point return values are
returned in %xmmao.

Additional registers with assigned roles in the standard calling sequence:

%rsp
The stack pointer holds the limit of the current stack frame, which is the address of the stack’s
bottom-most, valid word. The stack pointer should point to a 16-byte aligned area unlessin the
prolog or aleaf function.

%rbp
The frame pointer, if used, can provide away to reference the previous frames on the stack.
Details are implementation dependent. A function must preserve this register value for its
caler.

MXCSR
The flags register MXCSR contains the system flags, such as the direction flag and the
carry flag. The six status flags (MXCSR[0:5]) are volatile; the remainder of the register is
nonvolatile.

x87 - Floating Point Control Word (FPCSR)
The control word contains the floating-point flags, such as the rounding mode and exception
masking. Thisregister isinitialized at process initialization time and its value must be
preserved.

Signals can interrupt processes. Functions called during signal handling have no unusual
restriction on their use of registers. Moreover, if asignal handling function returns, the process
resumes its original execution path with registers restored to their original values. Thus, programs
and compilers may freely use all registers without danger of signal handlers changing their
values.

5.3.2. Function Return Values

Functions Returning Scalars or No Value

» A function that returns an integral or pointer value that fitsin 64 bits placesitsresult in
Yorax.

» A function that returns afloating point value that fits in the XMM registers returns this value
in %xmmo.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 148

Runtime Environment

» A function that returns a value in memory viathe stack places the address of this memory
(passed to the function as a"hidden” first argument in %rcx) in %rax.

» Functions that return no value (also called procedures or void functions) put no particular
valuein any register.

» A call instruction pushes the address of the next instruction (the return address) onto
the stack. The return instruction pops the address off the stack and effectively continues
execution at the next instruction after the call instruction. A function that returns a scalar
or no value must preserve the caller'sregisters as previously described. Further, the called
function must remove the return address from the stack, leaving the stack pointer (%rsp) with
the value it had before the call instruction was executed.

Functions Returning Structures or Unions

A function can use either registers or the stack to return a structure or union. The size and type of
the structure or union determine how it isreturned. A structure or union isreturned in memory if
itislarger than 8 bytesor if itssizeis 3, 5, 6, or 7 bytes. A structure or union is returned in %rax
if itssizeis1, 2, 4, or 8 bytes.

If astructure or union is to be returned in memory, the caller provides space for the return value
and passes its address to the function as a"hidden" first argument in %rcx. This address will also
be returned in %rax.

5.3.3. Argument Passing

Integral and Pointer Arguments

Integral and pointer arguments are passed to a function using the next available register of the
sequence %orex, %ordx, %or8, %r9. After thislist of registers has been exhausted, all remaining
integral and pointer arguments are passed to the function via the stack.

Floating-Point Arguments

Float and double arguments are passed to a function using the next available XMM register of the
sequence %oxmmaO, Y%oxmm1, %xmm2, %exmm3. After thislist of registers has been exhausted, all
remaining XMM floating-point arguments are passed to the function via the stack.

Array, Structure, and Union Arguments
Arrays and strings are passed to functions using a pointer to caller-allocated memory.

Structure and union arguments of size 1, 2, 4, or 8 bytes will be passed as if they were integers
of the same size. Structures and unions of other sizes will be passed as a pointer to atemporary,
allocated by the caller, and whose value contains the value of the argument. The caller-allocated
temporary memory used for arguments of aggregate type must be 16-byte aligned.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 149

Runtime Environment

Passing Arguments on the Stack

Registers are assigned using the argument’ s ordinal position in the argument list. For example, if
afunction’sfirst argument is an integral type and its second argument is a floating-point type, the
first argument will be passed in the first general purpose register (%orcx) and the second argument
will be passed in the second XMM register (%xmmo1); the first XMM register and second general
purpose register are ignored. Arguments after the first four are passed on the stack; they are
pushed on the stack in reverse order, with the last argument pushed first.

Parameter Passing

Table 30 shows the register alocation and stack frame offsets for the function declaration and call
shown in the following example.

typedef struct {
int i; float f;
}
structl; dint i; float f; double d; long 1l; long long 11; structl sl;
extern void
func (int i, float f, structl sl, double d, long long 11, long 1);
tume (i, €, i, @, L, L)g

Table 30 Register Allocation for Example A-4

General Purpose Registers Floating Point Registers Stack Frame Offset
%rex: i %xmmO0: <ignored> 32:1

%rdx: <ignored> %xmm1: f 40:1

%r8: s1.i, s1.f %xmm2: <ignored>

%r9: <ignored> %xmm3: d

Implementing a Stack

In general, compilers and programmers must maintain a software stack. The stack pointer,
register %rsp, is set by the operating system for the application when the program is started. The
stack must grow downwards from high addresses.

A separate frame pointer enables calls to routines that change the stack pointer to allocate space
on the stack at run-time (e.g. alloca). Some languages can also return values from aroutine
alocated on stack space below the original top-of-stack pointer. Such aroutine prevents the
calling function from using %rsp-rel ative addressing to get at values on the stack. If the compiler
does not call routines that leave %rsp in an altered state when they return, aframe pointer is not
needed and is not used if the compiler option -Mno frame is specified.

The stack must always be 16-byte aligned except within the prolog and within leaf functions.

Variable Length Parameter Lists

Parameter passing in registers can handle a variable number of parameters. The C language uses a
special method to access variable-count parameters. The stdarg.h and varargs.h filesdefine

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 150

Runtime Environment

several functions to access these parameters. A C routine with variable parameters must use the
va_start macro to set up adata structure before the parameters can be used. Theva arg
macro must be used to access the successive parameters.

For unprototyped functions or functions that use varargs, floating-point arguments passed in
registers must be passed in both an XMM register and its corresponding general purpose register.

C Parameter Conversion

In C, for acalled prototyped function, the parameter type in the called function must match the
argument type in the calling function.

» If the called function is not prototyped, the calling convention uses the types of the
arguments but promotes char or short to int, and unsigned char or unsigned short to unsigned
int and promotes float to double, unless you use the -Msingle option.

For more information on the -Msingle option, refer to -M Options by Category.

» If the called function is prototyped, the unused bits of aregister containing a char or short
parameter are undefined and the called function must extend the sign of the unused bits when
needed.

Calling Assembly Language Programs

C Program Calling an Assembly-language Routine

/* File: testmain.c */

main () {
long 1 paral = 0x3£800000;
float f para2 = 1.0;
double d para3 = 0.5;
float f return;
extern float sum 3 (long paral, float para2, double para3);
f return = sum 3 (1 paral,f para2, d para3);

printf ("Parameter one, type long = %08x\n",l1 paral);
printf ("Parameter two, type float = $f\n",f para2);
printf ("Parameter three, type double = %g\n",d para3);
printf ("The sum after conversion = %$f\n",f return);

File: sum 3.s
Computes (paral + para2) + para3
.text

.align 16

.globl sum 3

sum 3:

pushg %rbp

leag 128 (%rsp), S%rbp
cvtsi2ss %ecx, %xmmO
addss %xmml, %xmmO
cvtss2sd $xmmO, %xmmO
addsd $xmm2, $xmmO
cvtsd2ss %$xmm0O, %xmmO
popg %rbp

ret

.type sum 3, @function
.size sum 3, .-sum 3

H H

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 151

Runtime Environment

5.3.4. Win64 Fortran Supplement

Sections A3.4.1 through A3.4.4 of the AMD64 Software Conventions for Win64 define the
Fortran supplement. The register usage conventions set forth in that document remain the same
for Fortran.

Fortran Fundamental Types

Table 31 Win64 Fortran Fundamental Types

Fortran Type Size (bytes) Alignment (bytes)
INTEGER 4 4
INTEGER*1 1 1
INTEGER*2 2 2
INTEGER*4 4 4
INTEGER*8 8 8
LOGICAL 4 4
LOGICAL*1 1 1
LOGICAL*2 2 2
LOGICAL*4 4 4
LOGICAL*8 8 8
BYTE 1 1
CHARACTER*n n 1
REAL 4 4
REAL*4 4 4
REAL*8 8 8
DOUBLE PRECISION 8 8
COMPLEX 8 4
COMPLEX*8 8 4
COMPLEX*16 16 8
DOUBLE COMPLEX 16 8

A logical constant is one of:

» .TRUE.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 152

Runtime Environment

» .FALSE.

Thelogical constants .TRUE. and .FALSE. are defined to be the four-byte value 1 and O
respectively. A logical expression is defined to be . TRUE. if itsleast significant bitis 1
and .FALSE. otherwise.

Note that the value of a character is not automatically NUL L-terminated.

Fortran Naming Conventions

By default, all globaly visible Fortran symbol names (subroutines, functions, common blocks)
are converted to lower-case. In addition, an underscore is appended to Fortran global names to
distinguish the Fortran name space from the C/C++ name space.

Fortran Argument Passing and Return Conventions

Arguments are passed by reference, meaning the address of the argument is passed rather than the
argument itself. In contrast, C/C++ arguments are passed by value.

When passing an argument declared as Fortran type CHARACTER, an argument representing
the length of the CHARACTER argument is also passed to the function. This length argument
isafour-byte integer passed by value, and is passed at the end of the parameter list following
the other formal arguments. A length argument is passed for each CHARACTER argument; the
length arguments are passed in the same order as their respective CHARACTER arguments.

A Fortran function, returning avalue of type CHARACTER, adds two arguments to the
beginning of its argument list. The first additional argument is the address of the area created

by the caller for the return value; the second additional argument is the length of the return
value. If a Fortran function is declared to return a character value of constant length, for example
CHARACTER*4 FUNCTION CHF (),the second extra parameter representing the length of the
return value must still be supplied.

A Fortran complex function returnsits value in memory. The caller provides space for the return
value and passes the address of this storage as if it were the first argument to the function.

Alternate return specifiers of a Fortran function are not passed as arguments by the caller. The
alternate return function passes the appropriate return value back to the caller in %rax.

The handling of the following Fortran 90 features is implementation-defined: internal procedures,
pointer arguments, assumed-shape arguments, functions returning arrays, and functions returning
derived types.

Inter-language Calling

Inter-language calling between Fortran and C/C++ is possible if function/subroutine parameters
and return values match types. If a C/C++ function returns avalue, call it from Fortran asa
function, otherwise, call it as asubroutine. If a Fortran function has type CHARACTER or
COMPLEX, call it from C/C++ asavoid function. If a Fortran subroutine has alternate returns,
call it from C/C++ as afunction returning int; the value of such a subroutine is the value of the

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 153

Runtime Environment

integer expression specified in the alternate RETURN statement. If a Fortran subroutine does not
contain alternate returns, call it from C/C++ as avoid function.

Table 32 provides the C/C++ data type corresponding to each Fortran data type.

Table 32 Fortran and C/C++ Data Type Compatibility

Fortran Type C/C++ Type Size (bytes)
CHARACTER*n x char x[n] n
REAL x float x 4
REAL*4 x float x 4
REAL*8 x double x 8
DOUBLE PRECISION x double x 8
INTEGER x int x 4
INTEGER*1 x signed char x 1
INTEGER*2 x short x 2
INTEGER*4 x int x 4
INTEGER*8 x long long x 8
LOGICAL x int x 4
LOGICAL*1 x char x 1
LOGICAL*2 x short x 2
LOGICAL*4 x int x 4
LOGICAL*8 x long long x 8

The PGl Compiler User’'s Guide contains a table that provides the Fortran and C/C++
representation of the COMPLEX type.

Table 33 Fortran and C/C++ Representation of the COMPLEX Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float r,i;} x; 8
float complex x; 8
complex*8 x struct {float r,i;} x; 8
float complex x; 8
double complex x struct {double dr,di;} x; 16

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 154

Runtime Environment

Fortran Type (lower case) C/C++ Type Size (bytes)
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16
n For C/C++, the comp1ex type implies C99 or later.
Arrays

For anumber of reasons inter-language function mixing is not recommended for arrays other than
single dimensional arrays and square two-dimensional arrays.

» C/C++ arrays and Fortran arrays use different default initial array index values. By default,
C/C++ arrays start at 0 and Fortran arrays start at 1. However, a Fortran array can be
declared to start at zero.

» Fortran and C/C++ arrays use different storage methods. Fortran uses column-major order
and C/C++ use row-magjor order. For one-dimensional arrays, this poses no problems. For
two-dimensional arrays, where there are an equal number of rows and columns, row and
column indexes can simply be reversed.

Structures, Unions, Maps, and Derived Types.

Fields within Fortran structures and derived types, and multiple map declarations within a Fortran
union, conform to the same alignment requirements used by C structures.

Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore. Hereis an example.

Fortran common block:

INTEGER I, J

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D

COMMON /COM/ i, J, ¢, cd, d

C equivalent:

extern struct {

int i;

int j;

struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com_;

C++ equivalent:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 155

Runtime Environment

extern "C" struct {

int 1i;

int j;

struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com ;

n The compiler-provided name of the BLANK COMMON block is implementation-specific.

Calling Fortran COMPLEX and CHARACTER functions from C/C++ is not as straightforward
as calling other types of Fortran functions. Additional arguments must be passed to the Fortran
function by the C/C++ caller. A Fortran COMPLEX function returnsits value in memory; the
first argument passed to the function must contain the address of the storage for thisvalue. A
Fortran CHARACTER function adds two arguments to the beginning of its argument list. The
following example of calling a Fortran CHARACTER function from C/C++ illustrates these
caller-provided extra parameters:

CHARACTER* (*) FUNCTION CHF (C1l, I)
CHARACTER* (*) Cl1

INTEGER I

END

extern void chf ();
char tmp[10];
char cl1[9];
int 1i;
chf (tmp, 10, cl, &i, 9);

The extra parameters tmp and 10 are supplied for the return value, while 9 is supplied as the
length of c1.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 156

Chapter 6.
C++ DIALECT SUPPORTED

The PGC++ compiler accepts the C++ language of the | SO/IEC 14882:2003 standard, the 1SO/
IEC 14882:2011 standard, plus substantially all GNU C++ extensions.

Command-line options provide full support of many C++ variants, including strict standard
conformance. PGC++ provides command line options that enable the user to specify whether
anachronisms and/or cfront 2.1/3.0 compatibility features should be accepted. C++11 and C++14
are also supported via command line options.

6.1. Extensions Accepted in Normal C++ Mode

The following extensions are accepted in all modes, except when strict ANSI violations are
diagnosed as errors, described in the -A option:

» A friend declaration for a class may omit the class keyword:

class A {
friend B; // Should be "friend class B"
}i
» Constants of scalar type may be defined within classes:

class A {
const int size = 10;
int a[size];
}i
» Inthedeclaration of aclass member, aqualified name may be used:

struct A({
int A::f(); // Should be int f();
}

» The preprocessing symbol ¢_plusplusis defined in addition to the standard __cplusplus.

» Anassignment operator declared in aderived class with a parameter type matching one of its
base classesis treated as a "default" assignment operator—that is, such a declaration blocks
the implicit generation of a copy assignment operator. (Thisis cfront behavior that is known
to berelied upon in at least one widely used library.)

Here's an example:

struct A { } ;

struct B : public A {
B& operator=(A&);

}i

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 157

C++ Dialect Supported

By default, aswell asin cfront-compatibility mode, there will be no implicit declaration
of B::operator=(const B&), whereasin strict-ANSI mode B::operator=(A&) is not a copy
assignment operator and B::operator=(const B&) isimplicitly declared.

Implicit type conversion between a pointer to an extern "C" function and a pointer to an
extern "C++" function is permitted. Here' s an example:

extern "C" void f(); // f's type has extern "C" linkage
void (*pf) () // pf points to an extern "C++" function = &f;
// error unless implicit conv is allowed

6.2. cfront 2.1 Compatibility Mode

The following extensions are accepted in cfront 2.1 compatibility mode in addition to the
extensions listed in the following section. These things were corrected in the 3.0 release of cfront:

>

The dependent statement of an if, while, do-while, or for is not considered to define a scope.
The dependent statement may not be a declaration. Any objects constructed within the
dependent statement are destroyed at exit from the dependent statement.

Implicit conversion from integral types to enumeration typesis allowed.

A non-const member function may be called for a const object. A warning is issued.

A const void * value may be implicitly converted to avoid * value, e.g., when passed as an
argument.

When, in determining the level of argument match for overloading, areference parameter is
initialized from an argument that requires a non-class standard conversion, the conversion
counts as a user-defined conversion. (Thisis an outright bug, which unfortunately happens to
be exploited in some class libraries.)

When a builtin operator is considered alongside overloaded operatorsin overload resolution,
the match of an operand of a builtin type against the builtin type required by the builtin
operator is considered a standard conversion in all cases (e.g., even when the type is exactly
right without conversion).

A reference to a non-const type may be initialized from avalue that is a const-qualified
version of the same type, but only if the value is the result of selecting a member from a
const class object or a pointer to such an object.

A cast to an array typeis allowed; it istreated like a cast to a pointer to the array element
type. A warning is issued.

When an array is selected from a class, the type qualifiers on the class object (if any) are not
preserved in the selected array. (In the norma mode, any type qualifiers on the object are
preserved in the element type of the resultant array.)

Anidentifier in afunction is alowed to have the same name as a parameter of the function.
A warning isissued.

An expression of type void may be supplied on the return statement in afunction with avoid
return type. A warning is issued.

cfront has abug that causes a global identifier to be found when a member of aclass or one
of its base classes should actually be found. This bug is not emulated in cfront compatibility
mode.

A parameter of type "const void *" is allowed on operator delete; it is treated as equivalent to
"void *".

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 158

C++ Dialect Supported

A period (".") may be used for qualification where "::" should be used. Only "::" may be used
asaglobal qualifier. Except for the global qualifier, the two kinds of qualifier operators may
not be mixed in agiven name (i.e., you may say A::B::C or A.B.C but not A::B.C or A.B::C).
A period may not be used in a vacuous destructor reference nor in aqualifier that follows a
template reference such as A<T>::B.

cfront 2.1 does not correctly look up namesin friend functions that are inside class
definitions. In this example function f should refer to the functions and variables (e.g., f1 and
al) from the class declaration. Instead, the global definitions are used.

int al;
int el;
void f1();
class A {
int al;
void f1();
friend void £ ()
{
int i1 = al; // cfront uses global al
£f1(); // cfront uses global fl
}
}i
Only the innermost class scope is (incorrectly) skipped by cfront asillustrated in the
following example.

int al;
int bl;
struct A {
static int al;
class B {
static int bl;
friend void £ ()
{
int il

1; // cfront uses A::al
int Jj1 1lg

a
b // cfront uses global bl

};
}i
operator= may be declared as a nonmember function. (Thisis flagged as an anachronism by
cfront 2.1)
A type qualifier is allowed (but ignored) on the declaration of a constructor or destructor. For
example:

class A {
A() const; // No error in cfront 2.1 mode

}i

6.3. cfront 2.1/3.0 Compatibility Mode

The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatibility mode (i.e.,
these are features or problems that exist in both cfront 2.1 and 3.0):

>

Type qualifiers on this parameter may to be dropped in contexts such as this example:

struct A {
void f () const;
}i
void (A::*fp) () = &A::f;

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 159

C++ Dialect Supported

Thisis actually a safe operation. A pointer to a const function may be put into a pointer to
non-const, because a call using the pointer is permitted to modify the object and the function
pointed to will actually not modify the object. The opposite assignment would not be safe.

» Conversion operators specifying conversion to void are allowed.

» A nonstandard friend declaration may introduce a new type. A friend declaration that omits
the elaborated type specifier isallowed in default mode, but in cfront mode the declaration is
also allowed to introduce a new type name.

struct A {
friend B;
}i

» Thethird operator of the ? operator is a conditional expression instead of an assignment
expression.

» A reference to a pointer type may beinitialized from a pointer value without use of a
temporary even when the reference pointer type has additional type qualifiers above those
present in the pointer value. For example,
int *p;
const int *&r = p;

// No temporary use

» A reference may beinitialized with anull.

6.4. Extensions accepted in GNU compatibility mode (pgct++)

New GNU C++ features are added as needed, with priority given to features used in system
headers. Because the GNU compiler frequently changes behavior between releases, PGC++ is
configured to emulate the specific release currently on the user's system. The most recent versions
of GCC implement some C++14 features that the front end does not yet implement.

A few GCC extensions that are likely not going to be supported in the foreseeable future are
these:

» Theforward declaration of function parameters (so they can participate in variable-length
array parameters).

» GNU-style complex integral types (complex floating-point types are supported)

» Nested functions

» Local structs with variable-length array fields. Such fields are treated (with awarning) as
zero-length arrays.

6.5. C++11 Language Features Accepted

The following features added in the C++11 standard are enabled in C++11 mode. This mode can
be combined with the option for strict standard conformance. Several of these features are a'so
enabled in default (nonstrict) C++ mode.

» A ‘right shift token’ (>>) can be treated as two closing angle brackets. For example:

template<typename T> struct S {};
S<S<int>> s; // Okay.
// No whitespace needed between closing angle brackets.

» Thestatic ;assert constructissupported. For example:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 160

C++ Dialect Supported

template<typename T> struct S {
static ;assert (sizeof(T) > 1, "Type T too small");
bi
S<char[2]> sl1; // Okay.
S<char> s2; // Instantiation error due to failing static ;assert
» Thefriend class syntax is extended to allow nonclass types as well as class types expressed
through atypedef or without an elaborated type name. For example:

typedef struct S ST;

class C {
friend S; // Okay (requires S to be in scope) .
friend ST; // Okay (same as "friend S;").
friend int; // Okay (no effect).
friend S const; // Error: cv-qualifiers cannot appear directly.

bi

» Mixed string literal concatenations are accepted, a feature carried over from C99
preprocessor extensions. For example:
wchar_;t *str = "a" L"b"; // Okay, same as L"ab".

» Variadic macros and empty macro arguments are accepted, asin C99.

» Infunction bodies, thereserved identifier ; ;func ; ; refersto apredefined array
containing a string representing the function’s name (a feature carried over from C99).

» A trailing commain the definition of an enumeration type is silently accepted (afeature
carried over from C99):
enum E { e, };

» Thetype long long isaccepted. Unsuffixed integer literals that cannot be represented by
type 1ong, but could potentialy be represented by type unsigned long, havetype long
long instead (this matches C99, but not the treatment of the 1ong 1ong extension in C89
or default C++ mode).

» Anexplicit instantiation directive may be prefixed with the extern keyword to suppress the
instantiation of the specified entity.

» Thekeyword typename followed by a qualified-id can appear outside atemplate
declaration.

struct S { struct N {}; };
typename S::N *p; // Silently accepted in C++11 mode.

» Thekeyword auto can be used as atype specifier in the declaration of avariable or
reference. In such cases, the actual type is deduced from the associated initiaizer. This
feature can be used for variable declarations, for inclass declarations of static const members,
and for new-expressions.

auto x = 3.0; // Same as "double x = 3.0;"
auto p = new auto(x); // Same as "double *p = new double(x);"
struct S {

static auto const m = 3; // Same as "static int const m = 3;"

}i

By default, auto is no longer accepted as a storage class specifier (but an option is available
to re-enable it).

» Thekeyword decltype issupported: It alows types to be described in terms of
expressions. For example:

template<typename T> struct S {
decltype (£f(T())) *p; // A pointer to the return type of f.
}i
» The constraints on the code points implied by universal character names (UCNSs) are dlightly
different: UCNs for surrogate code points (0xD0O0O through OxDFFF) are never permitted,

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 161

C++ Dialect Supported

and UCN corresponding to control characters or to characters in the basic source character
set are permitted in string literals.

» Scoped enumeration types (defined with the keyword sequence enum class) and explicit
underlying integer types for enumeration types are supported. For example:

enum class Primary { red, green, blue };
enum class Danger { green, yellow, red }; // No conflict on "red".
enum Code: unsigned char { yes, no, maybe };

void f() {
Primary p = Primary::red; // Enum-qualifier is required to access
// scoped enumerator filepaths.
Code ¢ = Code::maybe; // Enum qualifier is allowed (but not
required)

} // for unscoped enumeration types.
» Lambdas are supported. For example:

template<class F> int z(F f) { return £(0); }
int g () {

int v = 7;

return z ([v] (int x)->int { return x+v; 1});

}
» TheC99-style ;Pragma operator issupported.
» Rvalue references are supported. For example:

int f (int);
int &&rr = f£(3);
» Functions can be ‘deleted’ . For example:
int f(int) = delete;
short f (short);

int x = £(3); // Error: selected function is deleted.
int y f((short)3); // Okay.

» Specia member functions can be explicitly ‘defaulted’ (i.e., given adefault definition). For
example:

struct S { S(S consté&) = default; };
struct T { T(T consté&); };
T::T(T consté&) = default;

» Theoperand of sizeof, typeid, Of decltype can refer directly to anon-static data
member of a class without using a member access expression. For example:

struct S {
int 1i;

)z
decltype(S::1i) j = sizeof(S;;1);

» Thekeyword nullptr, conventionally known by its standard typedef std: :nullptr ;t,
can be used as both a null pointer and a null pointer-to-member filepath. Variables and other
expressions whose typeisthat of the nul1ptr keyword can also be used as null pointer(-to-
member) filepaths, although they are only filepath expressionsif they wotherwise would be.
For example:

#include <cstddef> // to get std::nullptr ;t
struct S { };

template <int *> struct X { };
std::nullptr ;t null();

void f() {
void *p = nullptr // Initializes p to null pointer
int S::* mp = nullptr // Initializes mp to null ptr-to-member
p = null(); // Sets p to null pointer
X<nullptr> xnull0; // Instantiates X with null int * value
x<null ()> xnulll // Error: templeate argument not a

// filepath expression

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 162

C++ Dialect Supported

» Attributes delimited by double square brackets ([[...]]) are accepted in declarations. The
standard attributes noreturn and carries ;dependency are supported. For example:
[[noreturn]] void f£();

» The context-sensitive keyword final isaccepted on class types, to indicate they cannot be
derived from, and on virtual member functions, to indicate they cannot be overridden. The
context-sensitive keyword override can be specified on virtual member functions to assert
that they override a corresponding base class member.

» Aliasand aias template declarations are supported. For example:

using X = int;

X x; // equivalent to ‘int x'

template <typename T> using Y = T*

Y<int> yi; // equivalent to ‘int* yi'
» Variadic templates are supported. For example:

template<class ...T> void f£(T ...args) {
int i = sizeof... (args);
}

int main () {
£(1, 2, 3, 4);
}
» U-literalsaswell asthechar16 ;t andchar32 ;t keywords are supported. For example:

charlé ;t *str = U'A 16-bit character string';
char32 ;t ch = U'\U00012345'; // A 32-bit character string literal

» Substitution Failureis Not An Error (SFINAE) for expressions. Many errors in expression
that arise during the substitution of template parameters in function templates are now
treated as deduction failures rather than definite errors. This approach may result in avalid
program if another (overloaded) function template allows the substitution. In the original C+
+ standard (1998, 2003) SFINAE was mostly limited to ssimple type substitutions.

» Access checking of names used as base classesis done in the context of the class being
defined. For example:

class B {protected: class N {} };
class D: B;;N, B {}; // now allowed

» Inline namespaces are supported. For example:

namespace N {
template <class T> struct A {}
template <class T> void g (T) {}
inline namespace M {
template <class T> void £ (T) {}
template <> void f (A, int>);

’

struct B;
}
}
template <> void N;;f(a<int>){} // specialized as if member of N
struct N:: B {}; // defined as if member of N
int main () {
N::A<int> na;
f (na); // argument dependent lookup finds N::M::f
g (na) ; // argument dependent lookup finds N::g
N::B nb;
f(nb); // argument dependent lookup finds N::M::f
g (nb) ; // argument dependent lookup finds N::g

}

» Initializer lists are supported. These are brace-enclosed lists used as variable initializes
and call arguments, and in casts, mem-initializers, default arguments, range-based ‘for’
statements, and return statements. For example:

struct A { int al; double a2; };
struct B { B(int, double); };

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 163

C++ Dialect Supported

A a{l, 2.0}
B b{l, 2.0};
B b2 = B{1, 2.0};

The noexcept specifier and operator are supported. For example:

void f(int) noexcept; // never throws
const int version = 5;
void f (float) noexcept (version >=;5); // does not throw if expr true
int main () {
int arr[noexcept (£(1.0£f))1]; // operator is true if expression

// cannot throw, so true in this case
}
In strict mode, implicit exception specifications are generated for destructors and
deallocation functions declared without an explicit exception specification. This can aso be
enabled in nonstrict modes using the command line option —--implicit ;noexcept.
Range-based ‘for’ loops are supported. For example:

int f£() {
auto x = {1, 2, 3};
int sum = 0;
for (auto i | x) sum += 1i;

return sum;

6.6. C++14 Language Features Accepted

The following features added in the C++14 standard are enabled in C++14 mode. This mode can
be combined with the option for strict standard conformance. Several of these features are a'so
enabled in default (nonstrict) C++ mode.

>

The implicit conversion rules are modified to allow multiple conversion functionsin a
class type such as a smart pointer, with the best match for the context chosen by overload
resolution. Previous versions of the standard required a single conversion function in such
classes.

Binary literals such as 00110 are accepted.

Function return types can be deduced from the return statements of the function definition,
and the decl-type (auto) specifier issupported. For example:

auto f() { return 5; } // return type is int

Lambdas can specify expressions, not just local variables, to be captured. For example:
auto 1 = [x = 42]1{ return x + 1; };

Class aggregates can have member initializers. For example:

struct S { int i = 3; } s{}; // s.i has value 3

Generic lambdas are accepted, allowing auto parameters to define a call operator template.
For example:

auto 1 = [] (auto p) {return p*2; };

The deprecated standard attribute is accepted.

The apostrophe is accepted in numeric literals as a digit separator. For example:

long 1 = 123'456'789; // Equivalent to 123456789

Not yet supported are generalized constexpr functions, variable templates, and sized
deallocation.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 164

Chapter 7.
FORTRAN MODULE/LIBRARY INTERFACES FOR

WINDOWS

PGI Fortran for Windows provides access to anumber of libraries that export C interfaces by
using Fortran modules. PGI uses this mechanism to support the Win32 API and Unix/Linux/
OS X portability libraries. This section describes the Fortran module library interfaces that PGI
supports, describing each property available.

7.1. Source Files

All routines described in this section have their prototypes and interfaces described in source files
that are included in the PGl Windows compiler installation. The location of these files depends
on your operating system version, either win32 or win64, and the PGI release version that you
have installed. These files are typically located in this directory:

C:/Program Files/PGI/{win32,winé64}/[release version]/src

For example, if you have installed the x64 version of the 16.9 release, look for your filesin this
location:

C:/Program Files/PGI/win64/16.9/src

7.2. Data Types

Because the Win32 API and Portability interfaces resolve to C language libraries, it is important
to understand how the data types compare within the two languages. Here is a table summarizing
how C types correspond with Fortran types for some of the more common data types:

Table 34 Fortran Data Type Mappings

Windows Data Type Fortran Data Type
BOOL LOGICAL(4)
BYTE BYTE

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 165

Fortran Module/Library Interfaces for Windows

Windows Data Type Fortran Data Type

CHAR CHARACTER
SHORT, WORD INTEGER(2)
DWORD, INT, LONG INTEGER(4)
LONG LONG INTEGER(8)
FLOAT REAL(4)
DOUBLE REAL(8)

x86 Pointers INTEGER(4)
x64 Pointers INTEGER(8)

For more information on data types, refer to Fortran, C, and C++ Data Types.

7.3. Using DFLIB, LIBM, and DFPORT

PGI includes Fortran module interfaces to libraries supporting some standard C library, C
math library, and Unix/Linux/OS X system call functionality. These functions are provided by
the DFL1B, 1.1BM, and DFPORT modules. To utilize these modules, add the appropriate USE
Statement:

use dflib

use libm

use dfport

7.3.1. DFLIB

Table 35 liststhe functions that DFL.TB includes. Inthe table [Generic] refersto ageneric
routine. To view the prototype and interfaces, ook in the location described in Source Files.

Table 35 DFLIB Function Summary

Routine Result Description

commitqq LOGICAL*4 Executes any pending write operations for the file associated with the specified
unit to the file’s physical device.

delfilesqq INTEGER*4 Deletes the specified files in a specified directory.

findfileqq INTEGER*4 Searches for a file in the directories specified in the PATH environment variable.

fullpathqq INTEGER*4 Returns the full path for a specified file or directory.

getdat INTEGER*2,*4,*8 [Generic] Returns the date.

getdrivedirqq INTEGER*4 Returns the current drive and directory path.

getenvqq INTEGER*4 Returns a value from the current environment.

geffileinfoqq INTEGER*4 Returns information about files with names that match the specified string.

geffileinfoqqi8 INTEGER*4 Returns information about files with names that match the specified string.

gettim INTEGER*2,*4,*8 [Generic] Returns the time.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 166

Fortran Module/Library Interfaces for Windows

Routine Result Description

makedirqq INTEGER*4 Creates a new directory.

packtimeqq INTEGER*4 Packs the time and date values for use by seffiletimeqq

renamefileqq LOGICAL*4 Renames the specified file.

runqq INTEGER*2 Calls another program and waits for it to execute.

setenvqq LOGICAL*4 Sets the values of an existing environment variable or adds a new one.

setfileaccessqq LOGICAL*4 Sets the file access mode for the specified file.

setfiletimeqq LOGICAL*4 Sets the modification time for the specified file.

signalqq INTEGER*8 Controls signal handling.

sleepqq None Delays execution of the program for a specified time.

splitpathqq LOGICAL*4 Breaks a full path into components.

systemqq LOGICAL*4 Executes a command by passing a command string to the operating system'’s

command interpreter.

unpacktimeqq Multiple INTEGERS | Unpacks a file’s packed time and date value into its component parts.

7.3.2. LIBM

A Fortran module called 1ibm is available to declare interfaces to many of the routinesin the
standard C math library.Table 36 lists the LI1BM routines that are available. To view the prototype
and interfaces, look in the location described in Source Files.

Some 1 ibm routine names conflict with Fortran intrinsics. These routines are not listed in this
table because they resolve to Fortran intrinsics.

asin acos atan2 cos cosh
exp log log10 sin sinh
sqrt tan tanh

You can also use 11ibm routinesin CUDA Fortran global and device subprograms, in CUF
kernels, and in OpenACC compute regions. When targeting NVIDIA devices, the 11 bm routines
translate to the corresponding 1 ibm device routine.

Table 36 LIBM Functions

acosf erfc frexp log1p remquo
acosh erff frexpf log1pf remquof
acoshf erfcf ilog log2 rint
asinf expf ilogbf log2f rintf
asinh exp10 Idexp logb scalbn
asinhf exp10f Idexpf logbf scalbnf
atan2f exp2 lgamma logf scalbin
atanh exp2f lgammaf modf scalbinf

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 167

Fortran Module/Library Interfaces for Windows

atanhf expf lIrint modff sinf

cbrt expm1 lIrintf nearbyint sinhf
cbrtf expm1f Irint nearbyintf sqrtf

ceil floor Irint nextafter tanf

ceilf floorf liround nextafterf tanhf
copysign fma llroundf pow tgamma
copysignf fmaf Iround powf tgammaf
cosf fmax [roundf remainder trunc
coshf fmaxf log10f remainderf truncf
erf fminf

7.3.3. DFPORT

Table 37 lists the functions that DFPORT includes. Inthetable [Generic] refersto ageneric
routine. To view the prototype and interfaces, ook in the location described in Source Files.

Table 37 DFPORT Functions

Routine Result Description

abort None Immediately terminates the program. If the operating system supports a core
dump, abort produces one that can be used for debugging.

access INTEGER*4 Determines access mode or existence of a file.

alarm INTEGER*4 Executes a routine after a specified time.

besj0 REAL*4 Computes the BESSEL function of the first kind of order 0 of X, where X is
real.

bes;j1 REAL*4 Computes the BESSEL function of the first kind of order 1 of X, where X is
real.

besjn REAL*4 Computes the BESSEL function of the first kind of order N of X, where N is an
integer and X is real.

besy0 REAL*4 Computes the BESSEL function of the second kind of order 0 of X, where X is
real.

besy1 REAL*4 Computes the BESSEL function of the second kind of order 1 of X, where X is
real.

besyn REAL*4 Computes the BESSEL function of the second kind of order N of X, where N
is an integer and X is real.

chdir INTEGER*4 Changes the current directory to the directory specified. Returns 0 if
successful.

chmod INTEGER*4 Changes the mode of a file by setting the access permissions of the specified
file to the specified mode. Returns 0 if successful.

ctime STRING(24) Converts and returns the specified time and date as a string.

date STRING Returns the date as a character string: dd-mm-yy.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 168

Fortran Module/Library Interfaces for Windows

Routine Result Description

dbesj0 REAL*8 Computes the double-precision BESSEL function of the first kind of order 0 of
X, where X is a double-precision argument.

dbes;j1 REAL*8 Computes the double-precision BESSEL function of the first kind of order 1 of
X, where X is a double-precision argument.

dbesjn REAL*8 Computes the double-precision BESSEL function of the first kind of order N of
X, where N is an integer and X is a double-precision argument.

dbesy0 REAL*8 Computes the double-precision BESSEL function of the second kind of order
0 of X, where X, where X is a double-precision argument.

dbesy1 REAL*8 Computes the double-precision BESSEL function of the second kind of order
1 of X, where X, where X is a double-precision argument.

dbesyn REAL*8 Computes the double-precision BESSEL function of the second kind of order
N of X, where N is an integer and X, where X is a double-precision argument.

derf REAL*8 Computes the double-precision error function of X, where X is a double-
precision argument.

derfc REAL*8 Computes the complementary double-precision error function of X, where X is
a double-precision argument.

dffrac REAL*8 Returns fractional accuracy of a REAL*8 floating-point value.

dflmax REAL*8 Returns the maximum positive REAL*8 floating-point value.

dflmin REAL*8 Returns the minimum positive REAL*8 floating-point value.

drandm REAL*8 Generates a REAL*8 random number.

dsecnds REAL*8 Returns the number of real time seconds since midnight minus the supplied
argument value.

dtime REAL*4 Returns the elapsed user and system time in seconds since the last call to
dtime.

erf REAL*4 Computes the error function of X, where X is Real.

erfc REAL Computes the complementary error function of X, where X is Real.

etime REAL*4 Returns the elapsed time in seconds since the start of program execution.

exit None Immediately terminates the program and passes a status to the parent
process.

fdate STRING Returns the current date and time as an ASCII string.

ffrac REAL*4 Returns the fractional accuracy of a REAL*4 floating-point value.

fgetc INTEGER*4 Gets a character or word from an input stream. Returns the next byte or and
integer

flmax REAL*4 Returns the maximum positive REAL*4 lue.

flush None Writes the output to a logical unit.

fputc INTEGER*4 Writes a character or word from an input stream to a logical unit. Returns 0 if
successful or an error.

free None Frees memory previously allocated by MALLOC(). Intended for users
compiling legacy code. Use DEALLOCATE for newer code.

fseek INTEGER*4 Repositions the file pointer associated with the specified file. Returns 0 if

successful, 1 otherwise.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 169

Fortran Module/Library Interfaces for Windows

Routine Result Description

fseek64 INTEGER*4 Repositions the file pointer associated with the specified stream. Returns 0 if
successful, 1 otherwise.

fstat INTEGER*4 Returns file status information about the referenced open file or shared
memory object.

fstat64 INTEGER*4 Returns information in a 64-bit structure about the referenced open file or
shared memory object.

ftell INTEGER*4 Returns the current value of the file pointer associated with the specified
stream.

ftell64 INTEGER*8 Returns the current value of the file pointer associated with the specified
stream.

gerror STRING Writes system error messages.

getarg STRING Returns the list of parameters that were passed to the current process when it
was started.

getc INTEGER*4 Retrieves the character at the front of the specified character list, or -1 if
empty

getewd INTEGER*4 Retrieves the pathname of the current working directory or null if fails.

getenv Returns the value of the specified environment variable(s).

getfd INTEGER*4 Returns the file descriptor associated with a Fortran logical unit.

getgid INTEGER*4 Returns the numerical group ID of the curreni process.

getlog STRING Stores the user’s login name in NAME. If the login name is not found, then
NAME is filled with blanks.

getpid INTEGER*4 Returns the process numerical identifier of the current process.

getuid INTEGER*4 Returns the numerical user ID of the current process.

gmtime INTEGER*4 Converts and returns the date and time formats to GM (Greenwich) time as
month, day, and so on.

iargc INTEGER*4 Returns an integer representing the number of arguments for the last program
entered on the command line.

idate INTEGER*4 Returns the date in numerical form, day, month, year.

iermo INTEGER*4 Returns the system error number for the last error.

inmax INTEGER*4 Returns the maximum positive integer value.

ioinit None Establishes the properties of file I/O for files opened after the call to ioinit,
such as whether to recognize carriage control, how to treat blanks and zeros,
and whether to open files at the beginning or end of the file.

irand1 INTEGER*4 Generates pseudo-random integer in the range of 0 through (2**31)-1, or
(2**15)-1 if called with no argument.

irand2 INTEGER*4 Generates pseudo-random integer in the range of 0 through (2**31)-1, or
(2**15)-1 if called with no argument.

irandm INTEGER*4 Generates pseudo-random integer in the range of 0 through (2**31)-1, or
(2**15)-1 if called with no argument.

isatty LOGICAL Finds the name of a terminal port. Returns TRUE if the specified unit is a

terminal.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 170

Fortran Module/Library Interfaces for Windows

Routine Result Description
itime numerical form of Fills and returns TARRAY with numerical values at the current local time,
time with elements 1,2,and 3 of TARRY being the hour (1-24), minute (1-60) and

seconds (1-60).

kill INTEGER*4 Sends the specified signal to the specified process or group of processes.
Returns 0 if successful, -1 otherwise

link INTEGER*4 Creates an additional directory entry for the specified existing file.

Inbink INTEGER*4 Returns the position of the last non-blank string character in the specified
string.

loc INTEGER*4 Returns the address of an object.

long INTEGER*4 Converts INTEGER*2 to INTEGER*4

Istat INTEGER*4 Obtains information about the referenced open file or shared memory object
in a large-file enables programming environment.

Istat64 INTEGER*4 Obtains information in a 64-bit structure about the referenced open file or
shared memory object in a large-file enables programming environment.

Itime Array of Converts the system time from seconds into TARRAY, which contains GMT

INTEGER*4 for the current local time zone.

malloc INTEGER*8 Allocates SIZE byes of dynamic memory, returning the address of the
allocated memory. Intended for users compiling legacy code. Use ALLOCATE
for newer code.

mclock INTEGER*4 Returns time accounting information about the current process and its child
processes in 1/100 or second units of measure. The returned value is the
sum of the current process’s user time and system time of all child processes.

outstr INTEGER*4 Outputs the value of the specified character to the standard output file.

perror None Writes a message to standard error output that describes the last error
encountered by a system call or library subroutine.

putc INTEGER*4 Puts the specified character at the end of the character list.

putenv INTEGER*4 Sets the value of the specified environment variable or creates a new
environment variable.

gsort INTEGER*4 Uses quick-sort algorithm to sort a table of data.

rand1 REAL*4 Provides a method for generating a random number that can be used as the
starting point for the rand procedure.

rand2 REAL*4 Provides a random value between 0 and 1, which is generated using the
specified seed value, and computed for each returned row when used in the
select list.

random REAL*4 Uses a non-linear additive feedback random-number generator to return
pseudo-random numbers in the range of 0 to (231-1)

rename INTEGER*4 Renames the specified directory or file

rindex INTEGER*4 Returns the index of the last occurrence of a specific string of characters in a
specified string.

rtc REAL*8 Returns the real-time clock value expressed as a number of clock ticks.

secnds REAL*4 Gets the time in seconds from the real-time system clock. If the value is zero,

the time in seconds from midnight is used.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 171

Fortran Module/Library Interfaces for Windows

Routine Result Description

short INTEGER*2 Converts INTEGER*4 to INTEGER*2.

signal INTEGER*4 Specifies the action to take upon delivery of a signal.

sleep None Puts the calling kernel thread to sleep, requiring it to wait for a wakeup to
be issued to continue to run. Provided for compatibility with older code and
should not be used with new code.

srand1 None Sets the seed for the pseudo-random number generation that rand1 provides.

srand2 None Sets the seed for the pseudo-random number generation that rand2 provides.

stat INTEGER*4 Obtains information about the specified file.

stat64 INTEGER*4 Obtains information in a 64-bit structure about the specified file.

stime INTEGER*4 Sets the current value of the specified parameter for the system-wide timer.

symink INTEGER*4 Creates a symbolic link with the specified name to the specified file.

system INTEGER*4 Runs a shell command.

time INTEGER*4 Returns the time in seconds since January 1, 1970.

timef REAL*8 Returns the elapsed time in milliseconds since the first call to timef.

times INTEGER*4 Fills the specified structure with time-accounting information.

ttynam STRING(100) Either gets the path name of the terminal or determines if the device is a
terminal.

unlink INTEGER*4 Removes the specified directory entry, and decreases the link count of the file
referenced by the link.

wait INTEGER*4 Suspends the calling thread until the process receives a signal that is not
blocked or ignored, or until the calling process’ child processes stop or
terminate.

7.4. Using the DFWIN module

The pFwIN moduleincludes al the modules needed to access the Win32 API. Y ou can use
modul es supporting specific portions of the Win32 API separately, but DEWIN isthe only module
you need to use the Fortran interfaces to the Win32 API. To use this module, add the following
line to your Fortran code.

use dfwin

To utilize any of the Win32 API interfaces, you can add a Fortran use statement for the specific
library or module that includesit. For example, to use user32.lib, add the following Fortran use
Statement:

use user32

Function calls made through the module interfaces ultimately resolve to C Language interfaces,
so some accommodation for inter-language calling conventions must be made in the Fortran
application. These accommodations include:

» On x64 platforms, pointers and pointer types such as HANDLE, HINSTANCE, WPARAM, and
HWND must be treated as 8-byte quantities (INTEGER (8)). On x86 (32-hit) platforms, these
are 4-byte quantities (INTEGER (4)).

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 172

Fortran Module/Library Interfaces for Windows

» Ingeneral, C makes calls by value while Fortran makes calls by reference.

» When doing Windows devel opment one must sometimes provide callback functions for
message processing, dialog processing, etc. These routines are called by the Windows
system when events are processed. To provide the expected function signature for a
callback function, the user may need to use the STDCALL attribute directive (! DECS
ATTRIBUTE: : STDCALL) in the declaration.

For information on the arguments and functionality of agiven routine, refer to Microsoft’s

Windows APl documentation.

7.5. Supported Libraries and Modules

The following tables provide lists of the functions in each library or module that PGI supportsin

DFWIN.

For information on the interfaces associated with these functions, refer to the files located here:
C:\Program Files\PGI\win64\16.9\src

or

C:\Program Files (x86)\PGI\win32\16.9\src

7.5.1. advapi32

The following table lists the functions that advapi 32 includes:

Table 38 DFWIN advapi32 Functions

AccessCheckAndAuditAlarm
AccessCheckByTypeAndAuditAlarm
AccessCheckByTypeResultListAndAuditAlarm
AddAccessAllowedAce
AddAccessAllowedObjectAce
AddAccessDeniedAceEx

AddAce

AddAuditAccessAceEx
AdjustTokenGroups
AllocateAndInitializeSid
AreAllAccessesGranted
BackupEventLog

ClearEventlLog

CloseEventLog

CopySid
CreatePrivateObjectSecurityEx

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

AccessCheckByType
AccessCheckByTypeResultList
AccessCheckByTypeResultListAndAuditAlarmByHandle
AddAccessAllowedAceEx
AddAccessDeniedAce
AddAccessDeniedObjectAce
AddAuditAccessAce
AddAuditAccessObjectAce
AdjustTokenPrivileges
AllocateLocallyUniqueld
AreAnyAccessesGranted
CheckTokenMembership
CloseEncryptedFileRaw
ConvertToAutolnheritPrivateObjectSecurity
CreatePrivateObjectSecurity

CreatePrivateObjectSecurityWithMultiplelnheritance

173

CreateProcessAsUser
CreateProcessWithTokenW
CreateWellknownSid
DeleteAce
DestroyPrivateObjectSecurity
DuplicateTokenEx
EqualDomainSid

EqualSid

FindFirstFreeAce

GetAce

GetCurrentHwProfile
GetFileSecurity
GetLengthSid
GetOldestEventLogRecord
GetSecurityDescriptorControl
GetSecurityDescriptorGroup
GetSecurityDescriptorOwner
GetSecurityDescriptorSacl
GetSidLengthRequired
GetSidSubAuthorityCount
GetUserName
ImpersonateAnonymousToken
ImpersonateNamedPipeClient
InitializeAcl

InitializeSid
IsTokenRestricted

IsValidAcl

IsValidSid

LogonUser
LookupAccountName
LookupPrivilegeDisplayName
LookupPrivilegeValue
MakeAbsoluteSD2
MapGenericMask
ObjectCloseAuditAlarm
ObjectOpenAuditAlarm
OpenBackupEventLog
OpenEventLog

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

CreateProcessWithLogonW
CreateRestrictedToken
DecryptFile
DeregisterEventSource
Duplicate Token

EncryptFile

EqualPrefixSid
FileEncryptionStatus
FreeSid

GetAclinformation
GetEventLoglnformation
GetKernelObjectSecurity
GetNumberOfEventLogRecords
GetPrivateObjectSecurity
GetSecurityDescriptorDacl
GetSecurityDescriptorLength
GetSecurityDescriptorRMControl
GetSidldentifierAuthority
GetSidSubAuthority
GetTokenInformation
GetWindowsAccountDomainSid
ImpersonateLoggedOnUser
ImpersonateSelf

Initialize SecurityDescriptor
IsTextUnicode
IsTokenUntrusted
IsValidSecurityDescriptor
IsWellKnownSid
LogonUserEx
LookupAccountSid
LookupPrivilegeName
MakeAbsoluteSD
MakeSelfRelativeSD
NotifyChangeEventLog
ObjectDeleteAuditAlarm
ObjectPrivilegeAuditAlarm
OpenEncryptedFileRaw

OpenProcessToken

174

OpenThreadToken
PrivilegedServiceAuditAlarm
ReadEventLog

ReportEvent
SetAclinformation
SetKernelObjectSecurity
SetPrivateObjectSecurityEx
SetSecurityDescriptorDacl
SetSecurityDescriptorOwner
SetSecurityDescriptorSacl

SetTokenInformation

7.5.2. comdig32

Fortran Module/Library Interfaces for Windows

PrivilegeCheck
ReadEncryptedFileRaw
RegisterEventSource
RevertToSelf

SetFileSecurity
SetPrivateObjectSecurity
SetSecurityDescriptorControl
SetSecurityDescriptorGroup
SetSecurityDescriptorRMControl
SetThreadToken

WriteEncryptedFileRaw

The following table lists the functions that comd1g32 includes:

AfxReplaceText
CommDlIgExtendedError
GetOpenFileName
PrintDlg

7.5.3. dfwbase

These are the functions that d fwbase includes:

chartoint
chartoreal
CopyMemory
GetBlueValue
GetGreenValue
GetRedValue
HiByte

HiWord
HiWord64

inttochar

7.5.4. dfwinty

ChooseColor ChooseFont
FindText GetFileTitle
GetSaveFileName PageSetupDlg
PrintDIgEx ReplaceText
LoByte MakeWord
LoWord MakeWparam
LoWord64 Palettelndex
MakelntAtom PaletteRGB
MakelntResource PrimaryLangID
MakeLangID RGB
MakeLCID RtlCopyMemory
MakeLong SortIDFromLCID
MakeLParam SubLangID
MakeLResult

These are the functionsthat dfwinty includes:

dwNumberOfFunctionKeys

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

rdFunction

175

7.5.5. gdi32

These are the functions that gdi 32 includes:

AbortDoc
AddFontResource
AngleArc

ArcTo

CancelDC

Chord

CloseMetaFile
CombineRgn
CopyMetaFile
CreateBrushindirect
CreateCompatibleDC
CreateDIBPatternBrush
CreateDiscardableBitmap
CreateEnhMetaFile
CreateFontIndirectEx
CreatelC
CreatePatternBrush
CreatePolygonRgn
CreateRectRgnIndirect
CreateSolidBrush
DeleteEnhMetaFile
DescribePixelFormat
DrawEscape
EndPage
EnumFontFamilies
EnumICMProfiles
EqualRgn
ExtCreatePen
ExtFloodFill

FillPath

FlattenPath
GdiComment
GdiSetBatchLimit
GetBitmapBits
GetBkMode

AbortPath
AddFontResourceEx
AnimatePalette
BeginPath
CheckColorsinGamut
CloseEnhMetaFile
ColorCorrectPalette
CombineTransform
CreateBitmap
CreateColorSpace
CreateDC
CreateDIBPatternBrushPt
CreateEllipticRgn
CreateFont
CreateHalftonePalette
CreateMetaFile
CreatePen
CreatePolyPolygonRgn
CreateRoundRectRgn
DeleteColorSpace
DeleteMetaFile
DeviceCapabilities
Ellipse

EndPath
EnumFontFamiliesEx
EnumMetaFile
Escape
ExtCreateRegion
ExtSelectClipRgn
FillRgn

FloodFill

GdiFlush
GetArcDirection
GetBitmapDimensionEx
GetBoundsRect

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

AddFontMemResourceEx
AlphaBlend

Arc

BitBIt
ChoosePixelFormat
CloseFigure
ColorMatchToTarget
CopyEnhMetaFile
CreateBitmaplndirect
CreateCompatibleBitmap
CreateDIBitmap
CreateDIBSection
CreateEllipticRgnindirect
CreateFontIndirect
CreateHatchBrush
CreatePalette
CreatePenlndirect
CreateRectRgn
CreateScalableFontResource
DeleteDC

DeleteObject

DPtoLP

EndDoc
EnumEnhMetaFile
EnumFonts
EnumObjects
ExcludeClipRect
ExtEscape

ExtTextOut
FixBrushOrgEx
FrameRgn
GdiGetBatchLimit
GetAspectRatioFilterEx
GetBkColor
GetBrushOrgEx

Fortran Module/Library Interfaces for Windows

176

GetCharABCWidthsA
GetCharABCWidthsW
GetCharWidth32
GetClipBox
GetColorSpace
GetDCBrushColor
GetDeviceCaps
GetDIBits
GetEnhMetaFileDescriptionA
GetEnhMetaFilePaletteEntries
GetFontLanguagelnfo
GetGlyphOutline
GetICMProfileW
GetLogColorSpace
GetMetaFileBitsEx
GetNearestColor
GetObjectType
GetPath
GetPolyFillMode
GetRegionData
GetStockObject
GetSystemPaletteUse
GetTextCharset
GetTextExtentExPoint
GetTextExtentPoint32
GetTextMetrics
GetWindowEXtEx
GetWorldTransform
InvertRgn

LPtoDP

MoveToEx
OffsetViewportOrgEx
PatBIt
PlayEnhMetaFile
PlayMetaFileRecord
PolyBezierTo

Polyline

PolyPolyline

GetCharABCWidthsFloat
GetCharacterPlacement
GetCharWidthFloat
GetClipRgn
GetCurrentObject
GetDCOrgEx
GetDeviceGammaRamp
GetEnhMetaFile
GetEnhMetaFileDescriptionW
GetEnhMetaFilePixelFormat
GetFontUnicodeRanges
GetGraphicsMode
GetKerningPairs
GetMapMode
GetMetaRgn
GetNearestPalettelndex
GetOutlineTextMetrics
GetPixel
GetRandomRgn
GetRgnBox
GetStretchBltMode
GetTextAlign
GetTextCharsetinfo
GetTextExtentExPointl
GetTextExtentPointl
GetViewportExtEx
GetWindowOrgEx
GradientFill

LineDD

MaskBIt

OffsetClipRgn
OffsetWindowOrgEx
PathToRegion
PlayEnhMetaFileRecord
PlgBIt

PolyDraw

PolylineTo

PolyTextOut

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

GetCharABCWidthsl
GetCharWidth
GetCharWidthl
GetColorAdjustment
GetCurrentPositionEx
GetDCPenColor
GetDIBColorTable
GetEnhMetaFileBits
GetEnhMetaFileHeader
GetFontData
GetGlyphindices
GetICMProfileA
GetLayout
GetMetaFile
GetMiterLimit
GetObject
GetPaletteEntries
GetPixelFormat
GetRasterizerCaps
GetROP2
GetSystemPaletteEntries
GetTextCharacterExtra
GetTextColor
GetTextExtentPoint
GetTextFace
GetViewportOrgEx
GetWinMetaFileBits
IntersectClipRect
LineTo
ModifyWorldTransform
OffsetRgn

PaintRgn

Pie

PlayMetaFile
PolyBezier

Polygon

PolyPolygon
PtinRegion

Fortran Module/Library Interfaces for Windows

177

PtVisible
RectinRegion
RemoveFontResource
ResizePalette
SaveDC
SelectClipPath
SelectPalette
SetBitmapBits
SetBkMode
SetColorAdjustment
SetDCPenColor
SetDIBits
SetGraphicsMode
SetLayout
SetMetaFileBitsEx
SetPaletteEntries
SetPixelV

SetROP2
SetTextAlign
SetTextJustification
SetWindowExtEx
SetWorldTransform
StretchBIt
SwapBuffers
TranslateCharsetinfo
UpdateColors
wglCreateContext
wglDescribeLayerPlane
wglGetLayerPaletteEntries
wglRealizeLayerPalette
wglSwapLayerBuffers

wglUseFontOutlines

7.5.6. kernel32

RealizePalette
RectVisible
RemoveFontResourceEx
RestoreDC
ScaleViewportExtEx
SelectClipRgn
SetAbortProc
SetBitmapDimensionEx
SetBoundsRect
SetColorSpace
SetDeviceGammaRamp
SetDIBitsToDevice
SetlCMMode
SetMapMode
SetMetaRgn

SetPixel
SetPolyFillMode
SetStretchBltMode
SetTextCharacterExtra
SetViewportExtEx
SetWindowOrgEx
StartDoc

StretchDIBits

TextOut

TransparentBIt
UpdatelCMRegKey
wglCreateLayerContext
wglGetCurrentContext
wglGetProcAddress
wglSetLayerPaletteEntries
wglSwapMultipleBuffers
WidenPath

These are the functions that kerne132 includes:

ActivateActCtx
AddConsoleAlias

AddVectoredContinueHandler

AddAtom
AddRefActCtx

Fortran Module/Library Interfaces for Windows

Rectangle
RemoveFontMemResourceEx
ResetDC
RoundRect
ScaleWindowExtEx
SelectObject
SetArcDirection
SetBkColor
SetBrushOrgEx
SetDCBrushColor
SetDIBColorTable
SetEnhMetaFileBits
SetICMProfile
SetMapperFlags
SetMiterLimit
SetPixelFormat
SetRectRgn
SetSystemPaletteUse
SetTextColor
SetViewportOrgEx
SetWinMetaFileBits
StartPage
StrokeAndFillPath

UnrealizeObject
wglCopyContext
wglDeleteContext
wglGetCurrentDC
wglMakeCurrent
wglShareLists

wglUseFontBitmaps

AddVectoredExceptionHandler

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

178

AllocateUserPhysicalPages
AreFileApisANSI
AttachConsole

BackupSeek

Beep
BindloCompletionCallback
BuildCommDCBAndTimeouts
CancelDeviceWakeupRequest
CancelTimerQueueTimer
CheckNameLegalDOS8Dot3
ClearCommBreak
CloseHandle
CompareFileTime
ContinueDebugEvent
ConvertThreadToFiber
CopyFile

CreateActCtx
CreateDirectory
CreateEvent

CreateFiberEx
CreateFileMapping
CreateloCompletionPort
CreateJobSet
CreateMemoryResourceNotification
CreateNamedPipe
CreateProcess
CreateSemaphore
CreateThread
CreateTimerQueueTimer
DeactivateActCtx
DebugActiveProcessStop
DebugBreakProcess
DecodePointer
DefineDosDevice
DeleteCriticalSection
DeleteFile
DeleteTimerQueueEx

DeleteVolumeMountPoint

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

AllocConsole
AssignProcessToJobObject
BackupRead

BackupWrite
BeginUpdateResource
BuildCommDCB
CallNamedPipe

Cancello

CancelWaitableTimer

CheckRemoteDebuggerPresent

ClearCommError
CommConfigDialog
ConnectNamedPipe
ConvertFiberToThread
ConvertThreadToFiberEx
CopyFileEx
CreateConsoleScreenBuffer
CreateDirectoryEx
CreateFiber

CreateFile
CreateHardLink
CreateJobObject
CreateMailslot
CreateMutex

CreatePipe
CreateRemoteThread
CreateTapePartition
CreateTimerQueue
CreateWaitableTimer
DebugActiveProcess
DebugBreak
DebugSetProcessKillOnExit
DecodeSystemPointer
DeleteAtom

DeleteFiber
DeleteTimerQueue
DeleteTimerQueueTimer

DeviceloControl

179

DisableThreadLibraryCalls
DnsHostnameToComputerName
DuplicateHandle
EncodeSystemPointer
EnterCriticalSection
EnumResourceNames
EnumSystemFirmwareTables
EscapeCommFunction
ExitThread

FatalAppExit
FileTimeToDosDateTime
FileTimeToSystemTime
FillConsoleQutputCharacter
FindActCtxSectionString
FindClose
FindFirstChangeNotification
FindFirstFileEx
FindFirstVolumeMountPoint
FindNextFile
FindNextVolumeMountPoint
FindResourceEx
FindVolumeMountPointClose
FlsFree

FlsSetValue
FlushFileBuffers
FlushViewOfFile
FreeConsole

FreeLibrary

FreeResource
GenerateConsoleCtrlEvent
GetBinaryType
GetCommConfig
GetCommModemStatus
GetCommState
GetCompressedFileSize
GetConsoleAlias
GetConsoleAliasesLength

GetConsoleAliasExesLength

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

DisconnectNamedPipe
DosDateTimeToFileTime
EncodePointer
EndUpdateResource
EnumResourceLanguages
EnumResourceTypes
EraseTape

ExitProcess
ExpandEnvironmentStrings
FatalExit
FileTimeToLocalFileTime
FillConsoleQutputAttribute
FindActCtxSectionGuid
FindAtom
FindCloseChangeNotification
FindFirstFile
FindFirstVolume
FindNextChangeNotification
FindNextVolume
FindResource
FindVolumeClose

FisAlloc

FlsGetValue
FlushConsolelnputBuffer
FlushInstructionCache
FormatMessage
FreeEnvironmentStrings
FreeLibraryAndExitThread
FreeUserPhysicalPages
GetAtomName
GetCommandLine
GetCommMask
GetCommProperties
GetCommTimeouts
GetComputerName
GetConsoleAliases
GetConsoleAliasExes

GetConsoleCP

180

GetConsoleCursorinfo
GetConsoleFontSize
GetConsoleOutputCP
GetConsoleScreenBufferinfo
GetConsoleTitle
GetCurrentActCtx
GetCurrentDirectory
GetCurrentProcessld
GetCurrentThread
GetDefaultCommConfig
GetDiskFreeSpace
GetDIIDirectory
GetEnvironmentStrings
GetExitCodeProcess
GetFileAttributes
GetFilelnformationByHandle
GetFileSizeEx

GetFileType
GetFullPathName
GetLargePageMinimum
GetlLastError
GetLogicalDrives
GetLogicalProcessorinformation
GetMailslotinfo
GetModuleHandle
GetNamedPipeHandleState
GetNativeSysteminfo
GetNumaHighestNodeNumber
GetNumaProcessorNode
GetNumberOfConsoleMouseButtons
GetPriorityClass
GetPrivateProfileSection
GetPrivateProfileString
GetProcAddress
GetProcessHandleCount
GetProcessHeaps
GetProcessldOfThread

GetProcessPriorityBoost

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

GetConsoleDisplayMode
GetConsoleMode
GetConsoleProcessList
GetConsoleSelectioninfo
GetConsoleWindow
GetCurrentConsoleFont
GetCurrentProcess
GetCurrentProcessorNumber
GetCurrentThreadld
GetDevicePowerState
GetDiskFreeSpaceEx
GetDriveType
GetEnvironmentVariable
GetExitCodeThread
GetFileAttributesEx

GetFileSize

GetFileTime
GetFirmwareEnvironmentVariable
GetHandlelnformation
GetLargestConsoleWindowSize
GetLocalTime
GetLogicalDriveStrings
GetLongPathName
GetModuleFileName
GetModuleHandleEx
GetNamedPipelnfo
GetNumaAvailableMemoryNode
GetNumaNodeProcessorMask
GetNumberOfConsolelnputEvents
GetOverlappedResult
GetPrivateProfileInt
GetPrivateProfileSectionNames
GetPrivateProfileStruct
GetProcessAffinityMask
GetProcessHeap

GetProcessld
GetProcessloCounters

GetProcessShutdownParameters

181

GetProcessTimes
GetProcessWorkingSetSize
GetProfilelnt
GetProfileString
GetShortPathName
GetVolumePathName
GetWindowsDirectory
GlobalAddAtom
GlobalCompact
GlobalFindAtom
GlobalFlags
GlobalGetAtomName
GlobalLock
GlobalMemoryStatusEx
GlobalSize

GlobalUnlock

GlobalWire

HeapCompact
HeapDestroy

HeapLock

HeapReAlloc

HeapSize

HeapValidate

InitAtomTable
InitializeCriticalSectionAndSpinCount
InterlockedCompareExchange
InterlockedDecrement
InterlockedExchangeAdd
InterlockedIncrement
InterlockedPushEntrySList
IsBadHugeReadPtr
IsBadReadPtr
IsBadWritePtr
IsProcessinJob
IsSystemResumeAutomatic
LoadLibrary

LoadModule

LocalAlloc

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

GetProcessVersion
GetProcessWorkingSetSizeEx
GetProfileSection
GetQueuedCompletionStatus
GetVolumeNameForVolumeMountPoint
GetVolumePathNamesForVolumeName
GetWriteWatch

GlobalAlloc

GlobalDeleteAtom

GlobalFix

GlobalFree

GlobalHandle
GlobalMemoryStatus
GlobalReAlloc

GlobalUnfix

GlobalunWire

HeapAlloc

HeapCreate

HeapFree
HeapQueryInformation
HeapSetinformation
HeapUnlock

HeapWalk
InitializeCriticalSection
InitializeSListHead
InterlockedCompareExchange64
InterlockedExchange
InterlockedFlushSList
InterlockedPopEntrySList
IsBadCodePtr
IsBadHugeWritePtr
IsBadStringPtr
IsDebuggerPresent
IsProcessorFeaturePresent
LeaveCriticalSection
LoadLibraryEx

LoadResource

LocalCompact

182

LocalFileTimeToFileTime
LocalFree

LocalLock

LocalShrink

LocalUnlock

LockFileEx

Istrcat

Istrcmpi

Istrcpyn
MapUserPhysicalPages
MapViewOfFile

MoveFile
MoveFileWithProgress
NeedCurrentDirectoryForExePath
OpenFile

OpenJobObject

OpenProcess

OpenThread
OutputDebugString
PeekNamedPipe

PrepareTape

PulseEvent

QueryActCtxW
QueryDosDevice
QueryMemoryResourceNotification
QueryPerformanceFrequency
QueueUserWorkltem
ReadConsole
ReadConsoleOutput
ReadConsoleOutputCharacter
ReadFile

ReadFileScatter
RegisterWaitForSingleObject
ReleaseActCtx
ReleaseSemaphore
RemoveVectoredContinueHandler
ReOpenFile

RequestDeviceWakeup

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

LocalFlags

LocalHandle

LocalReAlloc

LocalSize

LockFile

LockResource

Istrcmp

Istrcpy

Istrlen
MapUserPhysicalPagesScatter
MapViewOfFileEx

MoveFileEx

MulDiv

OpenEvent

OpenFileMapping

OpenMutex

OpenSemaphore
OpenWaitableTimer
PeekConsolelnput
PostQueuedCompletionStatus
ProcessldToSessionld
PurgeComm
QueryDepthSList
QuerylnformationJobObject
QueryPerformanceCounter
QueueUserAPC
RaiseException
ReadConsolelnput
ReadConsoleOutputAttribute
ReadDirectoryChangesW
ReadFileEx
ReadProcessMemory
RegisterWaitForSingleObjectEx
ReleaseMutex
RemoveDirectory
RemoveVectoredExceptionHandler
ReplaceFile

RequestWakeupLatency

ResetEvent
RestoreLastError
ScrollConsoleScreenBuffer
SetCommBreak
SetCommMask
SetCommTimeouts
SetComputerNameEx
SetConsoleCP
SetConsoleCursorinfo
SetConsoleMode
SetConsoleScreenBufferSize
SetConsoleTitle
SetCriticalSectionSpinCount
SetDefaultCommConfig
SetEndOfFile
SetEnvironmentVariable
SetEvent
SetFileApisTOOEM
SetFilePointer
SetFileShortName
SetFileValidData
SetHandleCount
SetInformationJobObject
SetlLocalTime
SetMessageWaitingIndicator
SetPriorityClass
SetProcessPriorityBoost
SetProcessWorkingSetSize
SetStdHandle
SetSystemTimeAdjustment
SetTapePosition
SetThreadContext
SetThreadldealProcessor
SetThreadPriorityBoost
SetTimerQueueTimer
SetUnhandledExceptionFilter
SetVolumeLabel

SetWaitableTimer

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

ResetWriteWatch
ResumeThread

SearchPath

SetCommConfig
SetCommState
SetComputerName
SetConsoleActiveScreenBuffer
SetConsoleCtriHandler
SetConsoleCursorPosition
SetConsoleQutputCP
SetConsoleTextAttribute
SetConsoleWindowInfo
SetCurrentDirectory
SetDlIDirectory
SetEnvironmentStrings
SetErrorMode
SetFileApisToANSI
SetFileAttributes
SetFilePointerEx

SetFileTime
SetFirmwareEnvironmentVariable
SetHandlelnformation
SetLastError

SetMailslotinfo
SetNamedPipeHandleState
SetProcessAffinityMask
SetProcessShutdownParameters
SetProcessWorkingSetSizeEx
SetSystemTime
SetTapeParameters
SetThreadAffinityMask
SetThreadExecutionState
SetThreadPriority
SetThreadStackGuarantee
SetTimeZonelnformation
SetupComm
SetVolumeMountPoint

SignalObjectAndWait

184

SizeofResource

SleepEx

SwitchToFiber
SystemTimeToFileTime
TerminateJobObject
TerminateThread

TIsFree

TlsSetValue
TransmitCommChar
TzSpecificLocalTimeToSystemTime
UnlockFile
UnmapViewOfFile
UnregisterWaitEx
VerifyVersionlnfo
VirtualAllocEx
VirtualFreeEx
VirtualProtect
VirtualQuery
VirtualUnlock
WaitForDebugEvent
WaitForMultipleObjectsEx
WaitForSingleObjectEx
WinExec
Wow64EnableWow64FsRedirection
WriteConsole
WriteConsoleOutput
WriteConsoleOutputCharacter
WriteFileEx
WritePrivateProfileSection
WritePrivateProfileStruct
WriteProfileSection
WriteTapemark
ZombifyActCtx

_hwrite

_lcreat

_lopen

_lwrite

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

Sleep

SuspendThread

SwitchToThread
SystemTimeToTzSpecificLocalTime
TerminateProcess

TlsAlloc

TlsGetValue
TransactNamedPipe
TryEnterCriticalSection
UnhandledExceptionFilter
UnlockFileEx

UnregisterWait

UpdateResource

VirtualAlloc

VirtualFree

VirtualLock

VirtualProtectEx

VirtualQueryEx

WaitCommEvent
WaitForMultipleObjects
WaitForSingleObject
WaitNamedPipe
Wow64DisableWow64FsRedirection
Wow64RevertWow64FsRedirection
WriteConsolelnput
WriteConsoleOutputAttribute
WriteFile

WriteFileGather
WritePrivateProfileString
WriteProcessMemory
WriteProfileString
WTSGetActiveConsoleSessionld
_hread

_Iclose

_liseek

_lread

185

7.5.7. shell32

These are the functions that she1132 includes:

DoEnvironmentSubst

DragAcceptFiles

Fortran Module/Library Interfaces for Windows

ShellExecuteEx
Shell_Notifylcon

DragFinish SHEmptyRecycleBin
DragQueryFile SHFileOperation
DragQueryPoint SHFreeNameMappings
Duplicatelcon SHGetDiskFreeSpaceEx
ExtractAssociatedicon SHGetFileInfo

Extracticon SHGetNewLinkinfo
ExtractlconEx SHInvokePrinterCommand
FindExecutable SHIsFileAvailableOffline
IsSLFNDrive SHLoadNonloadedIconOverlayldentifiers
SHAppBarMessage SHQueryRecycleBin
SHCreateProcessAsUserW SHSetLocalizedName
ShellAbout WinExecError

ShellExecute

7.5.8. user32

These are the functions that user32 includes:

ActivateKeyboardLayout AdjustWindowRect AdjustWindowRectEx
AllowSetForegroundWindow AnimateWindow AnyPopup
AppendMenu ArrangelconicWindows AttachThreadInput
BeginDeferWindowPos BeginPaint BringWindowToTop
BroadcastSystemMessage BroadcastSystemMessageEx CallMsgFilter
CallNextHookEx CallWindowProc CascadeWindows
ChangeClipboardChain ChangeDisplaySettings ChangeDisplaySettingsEx
ChangeMenu CharLower CharLowerBuff
CharNext CharNextEx CharPrev
CharPrevEx CharToOem CharToOemBuff
CharUpper CharUpperBuff CheckDIgButton
CheckMenultem CheckMenuRadioltem CheckRadioButton

ChildWindowFromPoint ChildWindowFromPointEx ClientToScreen

ClipCursor CloseClipboard CloseDesktop
CloseWindow CloseWindowStation CopyAcceleratorTable
CopyCursor Copylcon Copylmage

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 186

CopyRect

CreateCaret
CreateDialogIndirectParam
CreatelconFromResource
CreateMDIWindow
CreateWindow
DeferWindowPos
DefRawlnputProc

DeregisterShellHookWindow

DestroyCursor
DestroyWindow
DialogBoxParam2
DigDirList
DigDirSelectEx
DrawAnimatedRects
DrawFocusRect
DrawlconlIndirect
DrawText
EnableMenultem
EndDeferWindowPos
EndPaint
EnumClipboardFormats
EnumDisplayDevices
EnumDisplaySettingsEx
EnumThreadWindows
EqualRect

FillRect

FlashWindow
GetActiveWindow
GetAsyncKeyState
GetCaretPos
GetClassLong
GetClassWord
GetClipboardFormatName
GetClipboardViewer
GetCursor

GetDC
GetDialogBaseUnits

CountClipboardFormats
CreateCursor
CreateDialogParam
CreatelconFromResourceEx
CreateMenu
CreateWindowEx
DefFrameProc
DefWindowProc
DestroyAcceleratorTable
Destroylcon
DialogBoxIndirectParam
DisableProcessWindowsGhosting
DigDirListComboBox
DragDetect
DrawCaption
DrawFrameControl
DrawMenuBar
DrawTextEx
EnableScrollBar
EndDialog

EndTask
EnumDesktops
EnumDisplayMonitors
EnumProps
EnumWindows
ExcludeUpdateRgn
FindWindow
FlashWindowEx
GetAltTablnfo
GetCapture
GetClassInfo
GetClassLongPtr
GetClientRect
GetClipboardOwner
GetClipCursor
GetCursorinfo
GetDCEXx

GetDIgCtrlID

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

Fortran Module/Library Interfaces for Windows

CreateAcceleratorTable
CreateDesktop
Createlcon
Createlconindirect
CreatePopupMenu
CreateWindowStation
DefMDIChildProc
DeleteMenu
DestroyCaret
DestroyMenu
DialogBoxParam1
DispatchMessage
DIgDirSelectComboBoxEx
DragObject

DrawEdge

Drawlcon

DrawState
EmptyClipboard
EnableWindow
EndMenu
EnumChildWindows
EnumDesktopWindows
EnumDisplaySettings
EnumPropsEx
EnumWindowStations
ExitWindowsEx
FindWindowEx
FrameRect
GetAncestor
GetCaretBlinkTime
GetClassInfoEx
GetClassName
GetClipboardData
GetClipboardSequenceNumber
GetComboBoxInfo
GetCursorPos
GetDesktopWindow
GetDlgltem

187

GetDlgltemint

GetFocus
GetGUIThreadInfo
GetKBCodePage
GetKeyboardLayoutName
GetKeyNameText
GetLastInputinfo
GetMenu
GetMenuContextHelpld
GetMenultemCount
GetMenultemRect
GetMessage
GetMessageTime
GetNextDIgGroupltem
GetParent
GetProcessWindowStation
GetRawlInputBuffer
GetRawlnputDeviceList
GetScrollinfo
GetShellWindow
GetSysColorBrush
GetTabbedTextExtent
GetTopWindow
GetUserObjectinformation
GetWindowContextHelpld
GetWindowLong
GetWindowPlacement
GetWindowRgnBox
GetWindowThreadProcessld
HideCaret
InSendMessage
InsertMenultem
InvalidateRect
IsCharAlpha

IsCharUpper
IsDialogMessage
IsHungAppWindow
IsRectEmpty

GetDIgltemText
GetForegroundWindow
GetlconInfo
GetKeyboardLayout
GetKeyboardState
GetKeyState
GetLayeredWindowAttributes
GetMenuBarlnfo
GetMenuDefaultitem
GetMenultemID
GetMenuState
GetMessageExtralnfo
GetMonitorInfo
GetNextDIgTabltem
GetPriorityClipboardFormat
GetProp
GetRawlnputData
GetRegisteredRawInputDevices
GetScrollPos
GetSubMenu
GetSystemMenu
GetThreadDesktop
GetUpdateRect
GetUserObjectSecurity
GetWindowDC
GetWindowLongPtr
GetWindowRect
GetWindowText
GetWindowWord
HiliteMenultem
InSendMessageEx
InternalGetWindowText
InvalidateRgn
IsCharAlphaNumeric
IsChild
IsDIgButtonChecked
Islconic

IsWindow

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

GetDoubleClickTime
GetGuiResources
GetinputState
GetKeyboardLayoutList
GetKeyboardType
GetLastActivePopup
GetListBoxInfo
GetMenuCheckMarkDimensions
GetMenulnfo
GetMenulteminfo
GetMenuString
GetMessagePos
GetMouseMovePointsEx
GetOpenClipboardWindow
GetProcessDefaultLayout
GetQueueStatus
GetRawlInputDevicelnfo
GetScrollBarlnfo
GetScrollRange
GetSysColor
GetSystemMetrics
GetTitleBarlnfo
GetUpdateRgn
GetWindow
GetWindowInfo
GetWindowModuleFileName
GetWindowRgn
GetWindowTextLength
GrayString

InflateRect

InsertMenu

IntersectRect

InvertRect

IsCharLower
IsClipboardFormatAvailable
IsGUIThread

IsMenu

IsWindowEnabled

Fortran Module/Library Interfaces for Windows

188

[sWindowUnicode
IsWow64Message
KillTimer
LoadCursor1
Loadlcon1
LoadKeyboardLayout
LoadMenulndirect
LockWindowUpdate
LookuplconldFromDirectoryEx
MapVirtualKey
MenultemFromPoint
MessageBoxEx
ModifyMenu2
MonitorFromWindow
MsgWaitForMultipleObjects
OemKeyScan
OffsetRect

Openlcon
PaintDesktop
PostQuitMessage
PrivateExtracticons
RealGetWindowClass
RegisterClassEx
RegisterHotKey
RegisterWindowMessage
RemoveMenu
ScreenToClient
ScrollWindowEx
SendMessage
SendNotifyMessage
SetCaretBlinkTime
SetClassLongPtr
SetClipboardViewer
SetDebugErrorLevel
SetDoubleClickTime
SetKeyboardState
SetMenu

SetMenulnfo

IsWindowVisible
IsZoomed
LoadAccelerators
LoadCursor2
Loadlcon2

LoadMenu1

LoadString
LockWorkStation
LRESULT
MapVirtualKeyEx
MessageBeep
MessageBoxIndirect
MonitorFromPoint
mouse_event
MsgWaitForMultipleObjectsEx
OemToChar
OpenClipboard
OpenlnputDesktop
PeekMessage
PostThreadMessage
PtinRect
RedrawWindow
RegisterClipboardFormat
RegisterRawInputDevices
ReleaseCapture
RemoveProp

ScrollDC
SendDlgltemMessage
SendMessageCallback
SetActiveWindow
SetCaretPos
SetClassWord
SetCursor
SetDIgltemint
SetFocus
SetlLastErrorEx
SetMenuContextHelpld

SetMenultemBitmaps

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

IsWinEventHookInstalled
keybd_event

LoadBitmap
LoadCursorFromFile
LoadImage

LoadMenu2
LockSetForegroundWindow
LookuplconldFromDirectory
MapDialogRect
MapWindowPoints
MessageBox

ModifyMenu1
MonitorFromRect
MoveWindow
NotifyWinEvent
OemToCharBuff
OpenDesktop
OpenWindowStation
PostMessage

PrintWindow
RealChildWindowFromPoint
RegisterClass
RegisterDeviceNotification
RegisterShellHookWindow
ReleaseDC

ReplyMessage
ScrollWindow

SendInput
SendMessageTimeout
SetCapture

SetClassLong
SetClipboardData
SetCursorPos
SetDIgltemText
SetForegroundWindow
SetLayeredWindowAttributes
SetMenuDefaultitem

SetMenultemInfo

Fortran Module/Library Interfaces for Windows

189

SetMessageExtralnfo
SetProcessDefaultLayout
SetRect

SetScrollPos
SetSystemCursor
SetUserObjectinformation
SetWindowLong
SetWindowPos
SetWindowsHookEx
SetWinEventHook
ShowOwnedPopups
ShowWindowAsync
SwitchDesktop
TabbedTextOut

ToAsCiiEx
TrackMouseEvent
TranslateAccelerator
UnhookWindowsHook
UnionRect
UnregisterDeviceNotification
UpdateLayeredWindowlIndirect
ValidateRect
VkKeyScanEx
WindowFromDC

wsprintf

7.5.9. winver

SetMessageQueue
SetProcessWindowStation
SetRectEmpty
SetScrollRange
SetThreadDesktop
SetUserObjectSecurity
SetWindowLongPtr
SetWindowRgn
SetWindowText
ShowCaret
ShowScrollBar
SubtractRect
SwitchToThisWindow
TileWindows
ToUnicode
TrackPopupMenu
TranslateMDISysAccel
UnhookWindowsHookEx
UnloadKeyboardLayout
UnregisterHotKey
UpdateWindow
ValidateRgn
WaitForlnputldle
WindowFromPoint

wvsprintf

These are the functions that winver includes:

GetFileVersioninfo

GetFileVersionInfoSize

7.5.10. wsock32

VerFindFile

VerlnstallFile

These are the functions that wsock32 includes:

accept
closesocket
getpeername

getprotobynumber

AcceptEx
connect
gethostname

getservbyname

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

SetParent

SetProp

SetScrollinfo
SetSysColors

SetTimer
SetWindowContextHelpld
SetWindowPlacement
SetWindowsHook
SetWindowWord
ShowCursor
ShowWindow
SwapMouseButton
SystemParametersinfo
ToAscii

ToUnicodeEx
TrackPopupMenuEx
TranslateMessage
UnhookWinEvent
UnregisterClass
UpdateLayeredWindow
UserHandleGrantAccess
VkKeyScan
WaitMessage

WinHelp

VerLanguageName

VerQueryValue

bind
GetAcceptExSockaddrs
getprotobyname

getservbyport

Fortran Module/Library Interfaces for Windows

190

getsockname

htons

ioctlsocket

ntohs

send

shutdown
WSAAsyncGetHostByName
WSAAsyncGetServByName
WSACancelAsyncRequest
WSAGetLastError
WSASetBlockingHook

getsockopt

inet_addr

listen

recv

sendto

socket
WSAAsyncGetProtoByName
WSAAsyncGetServByPort
WSACancelBlockingCall
WSAIsBlocking
WSASetLastError

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

htonl

inet_ntoa

ntohl

select

setsockopt
TransmitFile
WSAAsyncGetProtoByNumber
WSAAsyncSelect
WSACleanup
WSARecvEx
WSAStartup

Fortran Module/Library Interfaces for Windows

191

Chapter 8.
C/C++ MMX/SSE INTRINSICS

Anintrinsic is afunction available in a given language whose implementation is handled
specifically by the compiler. Typically, an intrinsic substitutes a sequence of automatically-
generated instructions for the original function call. Since the compiler has an intimate knowledge
of theintrinsic function, it can better integrate it and optimize it for the situation.

PGI provides support for MM X and SSE/SSE2/SSE3/SSSE3/SSE4a/ABM intrinsicsin C/C++
programs.

Intrinsics make the use of processor-specific enhancements easier because they provide a C/C++
language interface to assembly instructions. In doing so, the compiler manages things that the
user would normally have to be concerned with, such as register names, register allocations, and
memory locations of data.

This section contains these seven tables associated with inline intrinsics:

A table of MMX inline intrinsics (mmintrin.h)
A table of SSE inlineintrinsics (xmmintrin.h)
A table of SSE2 inline intrinsics (emmintrin.h)
A table of SSE3 inline intrinsics (pmmintrin.h)
A table of SSSE3 inline intrinsics (tmmintrin.h)
A table of SSE4ainline intrinsics (ammintrin.h)
A table of ABM inlineintrinsics (intrin.h)

A table of AV X inlineintrinsics (immintrin.h)

vV V. vV v v v v Y

8.1. Using Intrinsic functions

The definitions of the intrinsics are provided in the corresponding header files.

8.1.1. Required Header File

To call these intrinsic functions from a C/C++ source, you must include the corresponding header
file—one of the following:

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 192

C/C++ MMX/SSE Intrinsics

For SSSE3 use tmmintrin.h
For SSE4a use ammintrin.h
For ABMuse intrin.h
For AVXuse intrin.h

For MMX, use mmintrin.h

For SSE, use xmmintrin.h
For SSE2, use emmintrin.h
For SSE3, use pmmintrin.h

v vV v Vv
v vV v Vv

8.1.2. Intrinsic Data Types

The following table describes the data types that are defined for intrinsics:

Data Types Defined in Description

__mo64 mmintrin.h For use with MMX intrinsics, this 64-bit data type stores one 64-bit or two 32-bit integer
values.

__m128 xmmintrin.h For use with SSE intrinsics, this 128-bit data type, aligned on 16-byte boundaries,

stores four single-precision floating point values.

_ m128d emmintrin.h For use with SSE2/SSES3 intrinsics, this 128-bit data type, aligned on 16-byte
boundaries, stores two double-precision floating point values.

__m128i emmintrin.h For use with SSE2/SSES3 intrinsics, this 128-bit data type, aligned on 16-byte
boundaries, stores two 64-bit integer values.

__m256 immintrin.h For use with AVX intrinsics, this 256-bit data type, aligned on 31-byte boundaries,
stores eight single-precision floating point values.

__m256d immintrin.h For use with AVX intrinsics, this 256-bit data type, aligned on 32-byte boundaries,
stores four double-precision floating point values.

__m256i immintrin.h For use with AVX intrinsics, this 256-bit data type, aligned on 16-byte boundaries,
stores four 64-bit integer values.

8.1.3. Intrinsic Example

The MMX/SSE intrinsics include functions for initializing variables of the types defined in the
preceding table. The following sample program, example. c, illustrates the use of the SSE
intrinsics_mm_add psand _mm_set_ps.

#include<xmmintrin.h>

int main () {

_ ml28 A, B, result;

A = mm set ps(23.3, 43.7, 234.234, 98.746); /* initialize A */
B = mm set ps(15.4, 34.3, 4.1, 8.6); /* initialize B */

result = mm add ps (A, B);

return O0O;

}
To compile this program, use the following command:

$ pgcc example.c -0 myprog

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 193

C/C++ MMX/SSE Intrinsics

8.2. MMX Intrinsics

PGI supports a set of MM X Intrinsics which allow the use of the MM X instructions directly
from C/C++ code, without writing the assembly instructions. The following table lists the MM X
intrinsics that PGI supports.

n Intrinsics with a * are only available on 64-bit systems.

Table 39 MMX Intrinsics (mmintrin.h)

_mm_empty _m_paddd _m_psllw _m_pand
_m_empty _mm_add_si64 _mm_slli_pi16 _mm_andnot_sit4
_mm_cvtsi32_si64 _mm_adds_pi8 _m_psliwi _m_pandn
_m_from_int _m_paddsb _mm_sll_pi32 _mm_or_si64
_mm_cvtsi6dx_si64* _mm_adds_pi16 _m_pslid _m_por
_mm_set_pi64x* _m_paddsw _mm_slli_pi32 _mm_xor_si64
_mm_cvtsi64_si32 _mm_adds_pu8 _m_pslidi _m_pxor
_m_to_int _m_paddusb _mm_sll_si64 _mm_cmpeq_pi8
_mm_cvtsi64_si64x* _mm_adds_pu16 _m_psliq _m_pcmpegb
_mm_packs_pi16* _m_paddusw _mm_slli_si64 _mm_cmpgt_pi8
_m_packsswb _mm_sub_pi8 _m_psliqi _m_pcmpgtb
_mm_packs_pi32 _m_psubb _mm_sra_pi16 _mm_cmpeq_pi16
_m_packssdw _mm_sub_pi16 _m_psraw _m_pcmpeqw
_mm_packs_pu16 _m_psubw _mm_srai_pi16 _mm_cmpgt_pi16
_m_packuswb _mm_sub_pi32 _m_psrawi _m_pcmpgtw
_mm_unpackhi_pi8 _m_psubd _mm_sra_pi32 _mm_cmpeq_pi32
_m_punpckhbw _mm_sub_si64 _m_psrad _m_pcmpeqd
_mm_unpackhi_pi16 _mm_subs_pi8 _mm_srai_pi32 _mm_cmpgt_pi32
_m_punpckhwd _m_psubsb _m_psradi _m_pcmpgtd
_mm_unpackhi_pi32 _mm_subs_pi16 _mm_srl_pi16 _mm_setzero_si64
_m_punpckhdq _m_psubsw _m_psriw _mm_set_pi32
_mm_unpacklo_pi8 _mm_subs_pu8 _mm_srli_pi16 _mm_set_pi16
_m_punpcklbw _m_psubusb _m_psrlwi _mm_set_pi8
_mm_unpacklo_pi16 _mm_subs_pu16 _mm_srl_pi32 _mm_setr_pi32
_m_punpckiwd _m_psubusw _m_psrld _mm_setr_pi16
_mm_unpacklo_pi32 _mm_madd_pi16 _mm_srli_pi32 _mm_setr_pi8
_m_punpckldg _m_pmaddwd _m_psrldi _mm_set1_pi32
_mm_add_pi8 _mm_mulhi_pi16 _mm_srl_si64 _mm_set1_pi16

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 194

C/C++ MMX/SSE Intrinsics

_m_paddb _m_pmulhw _m_psrlq _mm_set1_pi8
_mm_add_pi16 _mm_mullo_pi16 _mm_srli_si64

_m_paddw _m_pmullw _m_psrlqi

_mm_add_pi32 _mm_sll_pi16 _mm_and_si64

8.3. SSE Intrinsics

PGI supports a set of SSE Intrinsics which allows the use of the SSE instructions directly
from C/C++ code, without writing the assembly instructions. The following tableslist the SSE
intrinsics that PGI supports.

n Intrinsics with a * are only available on 64-bit systems.

Table 40 SSE Intrinsics (xmmintrin.h)

_mm_add_ss _mm_comige_ss _mm_load_ss
_mm_sub_ss _mm_comineq_ss _mm_load1_ps
_mm_mul_ss _mm_ucomieq_ss _mm_load_ps1
_mm_div_ss _mm_ucomilt_ss _mm_load_ps
_mm_sqrt_ss _mm_ucomile_ss _mm_loadu_ps
_mm_rcp_ss _mm_ucomigt_ss _mm_loadr_ps
_mm_rsqrt_ss _mm_ucomige_ss _mm_set_ss
_mm_min_ss _mm_ucomineq_ss _mm_set1_ps
_mm_max_ss _mm_cvtss_si32 _mm_set_ps1
_mm_add_ps _mm_cvt_ss2si _mm_set_ps
_mm_sub_ps _mm_cvtss_si64x* _mm_setr_ps
_mm_mul_ps _mm_cvtps_pi32 _mm_store_ss
_mm_div_ps _mm_cvt_ps2pi _mm_store_ps
_mm_sqrt_ps _mm_cvitss_si32 _mm_store1_ps
_mm_rcp_ps _mm_cvtt_ss2si _mm_store_ps1
_mm_rsqrt_ps _mm_cvitss_si64x* _mm_storeu_ps
_mm_min_ps _mm_cvttps_pi32 _mm_storer_ps
_mm_max_ps _mm_cvtt_ps2pi _mm_move_ss
_mm_and_ps _mm_cvtsi32_ss _mm_extract_pi16
_mm_andnot_ps _mm_cvt_si2ss _m_pextrw
_mm_or_ps _mm_cvtsi64x_ss* _mm_insert_pi16
_mm_xor_ps _mm_cvtpi32_ps _m_pinsrw
_mm_cmpeq_ss _mm_cvt_pi2ps _mm_max_pi16
_mm_cmplt_ss _mm_movelh_ps _m_pmaxsw

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 195

C/C++ MMX/SSE Intrinsics

_mm_cmple_ss _mm_setzero_ps _mm_max_pu8
_mm_cmpgt_ss _mm_cvtpi16_ps _m_pmaxub
_mm_cmpge_ss _mm_cvtpu16_ps _mm_min_pi16
_mm_cmpneq_ss _mm_cvtpi8_ps _m_pminsw
_mm_cmpnlt_ss _mm_cvtpu8_ps _mm_min_pu8
_mm_cmpnle_ss _mm_cvtpi32x2_ps _m_pminub
_mm_cmpngt_ss _mm_movehl_ps _mm_movemask_pi8
_mm_cmpnge_ss _mm_cvtps_pi16 _m_pmovmskb
_mm_cmpord_ss _mm_cvtps_pi8 _mm_mulhi_pu16
_mm_cmpunord_ss _mm_shuffle_ps _m_pmulhuw
_mm_cmpeq_ps _mm_unpackhi_ps _mm_shuffle_pi16
_mm_cmplt_ps _mm_unpacklo_ps _m_pshufw
_mm_cmple_ps _mm_loadh_pi _mm_maskmove_si64
_mm_cmpgt_ps _mm_storeh_pi _m_maskmovq
_mm_cmpge_ps _mm_loadl_pi _mm_avg_pu8
_mm_cmpneq_ps _mm_storel_pi _m_pavgb
_mm_cmpnlt_ps _mm_movemask_ps _mm_avg_pu16
_mm_cmpnle_ps _mm_getcsr _m_pavgw
_mm_cmpngt_ps _MM_GET_EXCEPTION_STATE _mm_sad_pu8
_mm_cmpnge_ps _MM_GET_EXCEPTION_MASK _m_psadbw
_mm_cmpord_ps _MM_GET_ROUNDING_MODE _mm_prefetch
_mm_cmpunord_ps _MM_GET_FLUSH_ZERO_MODE _mm_stream_pi
_mm_comieq_ss _mm_setcsr _mm_stream_ps
_mm_comilt_ss _MM_SET_EXCEPTION_STATE _mm_sfence
_mm_comile_ss _MM_SET_EXCEPTION_MASK _mm_pause
_mm_comigt_ss _MM_SET_ROUNDING_MODE _MM_TRANSPOSE4_PS

_MM_SET_FLUSH_ZERO_MODE
Table 41 lists the SSE2 intrinsics that PGl supports and that are available in emmintrin.h.

Table 41 SSE2 Intrinsics (emmintrin.h)

_mm_load_sd _mm_cmpge_sd _mm_cvtps_pd _mm_srl_epi32
_mm_load1_pd _mm_cmpneq_sd _mm_cvtsd_si32 _mm_srl_epi64
_mm_load_pd1 _mm_cmpnlt_sd _mm_cvtsd_si64x* _mm_slli_epi16
_mm_load_pd _mm_cmpnle_sd _mm_cvitsd_si32 _mm_slli_epi32
_mm_loadu_pd _mm_cmpngt_sd _mm_cvttsd_si64x* _mm_slli_epi64
_mm_loadr_pd _mm_cmpnge_sd _mm_cvtsd_ss _mm_srai_epi16
_mm_set_sd _mm_cmpord_sd _mm_cvtsi32_sd _mm_srai_epi32
_mm_set1_pd _mm_cmpunord_sd _mm_cvtsi64x_sd* _mm_srli_epi16

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 196

C/C++ MMX/SSE Intrinsics

_mm_set_pd1 _mm_comieq_sd _mm_cvtss_sd _mm_srli_epi32
_mm_set_pd _mm_comilt_sd _mm_unpackhi_pd _mm_srli_epi64
_mm_setr_pd _mm_comile_sd _mm_unpacklo_pd _mm_and_si128
_mm_setzero_pd _mm_comigt_sd _mm_loadh_pd _mm_andnot_si128
_mm_store_sd _mm_comige_sd _mm_storeh_pd _mm_or_si128
_mm_store_pd _mm_comineq_sd _mm_loadl_pd _mm_xor_si128
_mm_store1_pd _mm_ucomieq_sd _mm_storel_pd _mm_cmpeq_epi8
_mm_store_pd1 _mm_ucomilt_sd _mm_movemask_pd _mm_cmpeq_epi16
_mm_storeu_pd _mm_ucomile_sd _mm_packs_epi16 _mm_cmpeq_epi32
_mm_storer_pd _mm_ucomigt_sd _mm_packs_epi32 _mm_cmplt_epi8
_mm_move_sd _mm_ucomige_sd _mm_packus_epi16 _mm_cmplt_epi16
_mm_add_pd _mm_ucomineq_sd _mm_unpackhi_epi8 _mm_cmplt_epi32
_mm_add_sd _mm_load_si128 _mm_unpackhi_epi16 _mm_cmpgt_epi8
_mm_sub_pd _mm_loadu_si128 _mm_unpackhi_epi32 _mm_cmpgt_epi16
_mm_sub_sd _mm_loadl_epi64 _mm_unpackhi_epi64 _mm_srl_epi16
_mm_mul_pd _mm_store_si128 _mm_unpacklo_epi8 _mm_cmpgt_epi32
_mm_mul_sd _mm_storeu_si128 _mm_unpacklo_epi16 _mm_max_epi16
_mm_div_pd _mm_storel_epit4 _mm_unpacklo_epi32 _mm_max_epu8
_mm_div_sd _mm_movepi64_pi64 _mm_unpacklo_epi64 _mm_min_epi16
_mm_sqrt_pd _mm_move_epit4 _mm_add_epi8 _mm_min_epu8
_mm_sqrt_sd _mm_setzero_si128 _mm_add_epi16 _mm_movemask_epi8
_mm_min_pd _mm_set_epi64 _mm_add_epi32 _mm_mulhi_epu16
_mm_min_sd _mm_set_epi32 _mm_add_epi64 _mm_maskmoveu_si128
_mm_max_pd _mm_set_epi64x* _mm_adds_epi8 _mm_avg_epu8
_mm_max_sd _mm_set_epi16 _mm_adds_epi16 _mm_avg_epu16
_mm_and_pd _mm_set_epi8 _mm_adds_epu8 _mm_sad_epu8
_mm_andnot_pd _mm_set1_epi64 _mm_adds_epu16 _mm_stream_si32
_mm_or_pd _mm_set1_epi32 _mm_sub_epi8 _mm_stream_si128
_mm_xor_pd _mm_set1_epi64x* _mm_sub_epi16 _mm_stream_pd
_mm_cmpeq_pd _mm_set1_epi16 _mm_sub_epi32 _mm_movpi64_epic4
_mm_cmplt_pd _mm_set1_epi8 _mm_sub_epi64 _mm_lIfence
_mm_cmple_pd _mm_setr_epit4 _mm_subs_epi8 _mm_mfence
_mm_cmpgt_pd _mm_setr_epi32 _mm_subs_epi16 _mm_cvtsi32_si128
_mm_cmpge_pd _mm_setr_epi16 _mm_subs_epu8 _mm_cvtsi64x_si128*
_mm_cmpneq_pd _mm_setr_epi8 _mm_subs_epu16 _mm_cvitsi128_si32
_mm_cmpnlt_pd _mm_cvtepi32_pd _mm_madd_epi16 _mm_cvtsi128_si64x*
_mm_cmpnle_pd _mm_cvtepi32_ps _mm_mulhi_epi16 _mm_srli_si128
_mm_cmpngt_pd _mm_cvtpd_epi32 _mm_mullo_epi16 _mm_slli_si128

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 197

C/C++ MMX/SSE Intrinsics

_mm_cmpnge_pd _mm_cvtpd_pi32 _mm_mul_su32 _mm_shuffle_pd
_mm_cmpord_pd _mm_cvtpd_ps _mm_mul_epu3?2 _mm_shufflehi_epi16
_mm_cmpunord_pd _mm_cvttpd_epi32 _mm_sll_epi16 _mm_shufflelo_epi16
_mm_cmpeq_sd _mm_cvttpd_pi32 _mm_sll_epi32 _mm_shuffle_epi32
_mm_cmplt_sd _mm_cvtpi32_pd _mm_sll_epi64 _mm_extract_epi16
_mm_cmple_sd _mm_cvtps_epi32 _mm_sra_epi16 _mm_insert_epi16
_mm_cmpgt_sd _mm_cvttps_epi32 _mm_sra_epi32

Table 42 lists the SSE3 intrinsics that PGl supports and that are available in pmmintrin.h.

Table 42 SSE3 Intrinsics (pmmintrin.h)

_mm_addsub_ps _mm_moveldup_ps _mm_loaddup_pd _mm_mwait
_mm_hadd_ps _mm_addsub_pd _mm_movedup_pd

_mm_hsub_ps _mm_hadd_pd _mm_lddqu_si128

_mm_movehdup_ps _mm_hsub_pd _mm_monitor

Table 43 lists the SSSE3 intrinsics that PGl supports and that are available in tmmintrin.h.

Table 43 SSSE3 Intrinsics (tmmintrin.h)

_mm_hadd_epi16 _mm_hsubs_pi16 _mm_sign_pi16
_mm_hadd_epi32 _mm_maddubs_epi16 _mm_sign_pi32
_mm_hadds_epi16 _mm_maddubs_pi16 _mm_alignr_epi8
_mm_hadd_pi16 _mm_mulhrs_epi16 _mm_alignr_pi8
_mm_hadd_pi32 _mm_mulhrs_pi16 _mm_abs_epi8
_mm_hadds_pi16 _mm_shuffle_epi8 _mm_abs_epi16
_mm_hsub_epi16 _mm_shuffle_pi8 _mm_abs_epi32
_mm_hsub_epi32 _mm_sign_epi8 _mm_abs_pi8
_mm_hsubs_epi16 _mm_sign_epi16 _mm_abs_pi16
_mm_hsub_pi16 _mm_sign_epi32 _mm_abs_pi32
_mm_hsub_pi32 _mm_sign_pi8

Table 44 lists the SSE4a intrinsics that PGl supports and that are available in ammintrin.h.

Table 44 SSE4a Intrinsics (ammintrin.h)

_mm_stream_sd _mm_extract_si64 _mm_insert_si64

_mm_stream_ss _mm_extracti_si64 _mm_inserti_si64

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 198

C/C++ MMX/SSE Intrinsics

8.4. ABM Intrinsics

PGI supports a set of ABM Intrinsics which allow the use of the ABM instructions directly
from C/C++ code, without writing the assembly instructions. The following table lists the ABM
intrinsics that PGI supports.

Table 45 ABM Intrinsics (intrin.h)

__lzent16 __lzent64 __popent __rdtscp
__lzent __popent16 __popcnt64

8.5. AVX Intrinsics

The following table lists the AV X intrinsics that PGI supports.

Table 46 AVX Intrinsics (immintrin.h)

_mm256_add_pd _mm256_add_ps _mm256_addsub_pd
_mm256_addsub_ps _mm256_and_pd _mm256_and_ps
_mm256_andnot_pd _mm256_andnot_ps _mm256_blendv_pd
_mm256_blendv_ps _mm256_broadcast_pd _mm256_broadcast_ps
_mm256_broadcast_sd _mm256_broadcast_ss _mm256_castpd_si256
_mm256_castps_si256 _mm256_castpd_ps _mm256_castps_pd
_mm256_castpd128_pd256 _mm256_castpd256_pd128 _mm256_castsi256_pd
_mm256_castsi256_ps _mm256_cvtepi32_pd _mm256_cvtepi32_ps
_mm256_cvtpd_epi32 _mm256_cvtps_epi32 _mm256_cvtpd_ps
_mm256_cvtps_pd _mm256_cvttpd_epi32 _mm256_cvttps_epi32
_mm256_div_pd _mm256_div_ps _mm256_hadd_pd
_mm256_hadd_ps _mm256_hsub_pd _mm256_hsub_ps
_mm256_load_pd _mm256_load_ps _mm256_loadu_pd
_mm256_loadu_ps _mm256_maskload_pd _mm256_maskload_ps
_mm256_maskstore_pd _mm256_maskstore_ps _mm256_max_pd
_mm256_max_ps _mm256_min_pd _mm256_min_ps
_mm256_movemask_pd _mm256_movemask_ps _mm256_mul_pd
_mm256_mul_ps _mm256_or_pd _mm256_or_ps
_mm256_rcp_ps _mm256_rsqrt_ps _mm256_set_pd
_mm256_set_ps _mm256_setr_pd _mm256_setr_ps
_mm256_set1_pd _mm256_set1_ps _mm256_set_epi32
_mm256_set_epi64x _mm256_setzero_pd _mm256_setzero_ps

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 199

C/C++ MMX/SSE Intrinsics

_mm256_sqrt_pd _mm256_sqrt_ps _mm256_store_pd
_mm256_store_ps _mm256_storeu_pd _mm256_storeu_ps
_mm256_stream_pd _mm256_stream_ps _mm256_stream_si256
_mm256_sub_pd _mm256_sub_ps _mm256_testz_pd
_mm256_testz_ps _mm256_testc_pd _mm256_testc_ps
_mm256_testnzc_pd _mm256_testnzc_ps _mm256_unpackhi_pd
_mm256_unpackhi_ps _mm256_unpacklo_pd _mm256_unpacklo_ps
_mm256_xor_pd _mm256_xor_ps _mm256_zeroupper
_mm256_macc_pd _mm256_macc_ps _mm256_msub_pd
_mm256_msub_ps _mm256_nmacc_pd _mm256_nmacc_ps
_mm256_nmsub_pd _mm256_nmsub_ps _mm256_maddsub_pd
_mm256_maddsub_ps _mm256_msubadd_pd _mm256_msubadd_ps
_mm_macc_pd _mm_macc_ps _mm_msub_pd
_mm_msub_ps _mm_nmacc_pd _mm_nmacc_ps
_mm_nmsub_pd _mm_nmsub_ps _mm_maddsub_pd
_mm_maddsub_ps _mm_msubadd_pd _mm_msubadd_ps
_mm_macc_sd _mm_macc_ss _mm_msub_sd
_mm_msub_ss _mm_nmacc_sd _mm_nmacc_ss
_mm_nmsub_sd _mm_nmsub_ss _mm256_extractf128_pd
_mm256_extractf128_ps _mm256_extractf128_si256 _mm256_permute_pd
_mm256_permute_ps _mm256_permute2f128_pd _mm256_permute2f128_ps
_mm256_permute2f128_si256 _mm256_blend_pd _mm256_blend_ps
_mm256_shuffle_pd _mm256_shuffle_ps _mm256_cmp_pd
_mm256_cmp_ps _mm256_round_pd _mm256_round_ps
_mm256_insertf128_pd _mm256_insertf128_ps _mm256_insertf128_si256
_mm256_dp_ps

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 200

Chapter 9.
MESSAGES

This section describes the various messages that the compiler produces. These messages include
the sign-on message and diagnostic messages for remarks, warnings, and errors. The compiler
always displays any error messages, along with the erroneous source line, on the screen. If you
specify the -M11 st option, the compiler places any error messagesin the listing file. You can
also use the —v option to display more information about the compiler, assembler, and linker
invocations and about the host system. For more information on the -M1ist and -v options,
refer to ‘ Using Command-line Options’ in the PGI Compiler User’s Guide.

9.1. Diagnostic Messages

Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information includes information such as syntax errors. Semantic information includes
information such as unreachable code, incorrect number of arguments specified for acall to a
routine, illegal datatype usage, etc.

Y ou can specify that the compiler displays error messages at a certain level with the -Minform
option.

The compiler messages refer to a severity level, a message number, and the line number where
the error occurs.

The compiler can also display internal error messages on standard error. If your compilation
produces any internal errors, contact The Portland Group’ s technical reporting service by sending
email to trs@pgroup.com.

If you usethe listing file option -M11i st, the compiler places diagnostic messages after the
source linesin thelisting file, in the following format:

PGFTN-etype-enum-message (filename: line)

Where:
etype

is acharacter signifying the severity level
enum

isthe error number

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 201

Messages

message
isthe error message

filename
isthe source filename

line
is the line number where the compiler detected an error.

9.2. Phase Invocation Messages

Y ou can display compiler, assembler, and linker phase invocations by using the -+ command
line option. For further information about this option, refer to the * Using Command-line Options
section of the PGl Compiler User’s Guide.

9.3. Fortran Compiler Error Messages

This section presents the error messages generated by the PGF77, PGF95, and PGFORTRAN
compilers. The compilers display error messages in the program listing and on standard output.
They can aso display internal error messages on standard error.

9.3.1. Message Format

Each message is numbered. Each message also lists the line and column number where the error
occurs. A dollar sign ($) in amessage represents information that is specific to each occurrence of

the message.

9.3.2. Message List

Error message severities:

I
informative
w
warning
S
severe error
F
fatal error
\Y,
variable
V000 Internal compiler error. $ $
This message indicates an error in the compiler, rather than a user error — athough it may be
possible for a user error to cause an internal error. The severity may vary; if it isinformative or

warning, correct object code was probably generated, but it is not safe to rely on this. Regardless
of the severity or cause, internal errors should be reported to trs@pgroup.com.

F001 Source input file name not specified

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 202

http://www.pgroup.com/resources/docs.htm

Messages

On the command line, source file name should be specified either before all the switches, or after
them.
F002 Unable to open source input file: $

Source file name is misspelled, fileis not in current working directory, or file is read protected.
FO03 Unable to open listing file

This message typically occurs when the user does not have write permission for the current
working directory.
F004 $ $

Generic message for file errors.
FO005 Unable to open temporary file

Compiler uses directory "/usr/tmp" or "/tmp" inwhich to create temporary files. If neither of
these directories is available on the node on which the compiler is being used, this error will
occur.

S006 Input file empty

Source input file does not contain any Fortran statements other than comments or compiler
directives.

F007 Subprogram too large to compile at this optimization level $

Internal compiler data structure overflow, working storage exhausted, or some other non-
recoverable problem related to the size of the subprogram. If this error occurs at opt level

2, reducing the opt level to 1 may work around the problem. Moving the subprogram being
compiled to its own source file may eliminate the problem. If this error occurs while compiling a
subprogram of fewer than 2000, report the problem to trs@pgroup.com.

FO008 Error limit exceeded

The compiler gives up because too many severe errors were issued; the error limit can be reset on
the command line.

F009 Unable to open assembly file

This message typically occurs when the user does not have write permission for the current
working directory.

F010 File write error occurred $

Thefile system may be full.

S011 Unrecognized command line switch: $

Refer to the PGI Compiler User’s Guide for alist of allowed compiler switches.

S012 Value required for command line switch: $

Certain switches require an immediately following value, such as "-opt 2".

S013 Unrecognized value specified for command line switch: $

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.

WO01l5 Hexadecimal or octal constant truncated to fit data type
I016 Identifier, $, truncated to 63 chars

Anidentifier may be at most 63 charactersin length; characters after the 63rd are ignored.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 203

Messages

S017 Unable to open include file: $

File ismissing, read protected, or maximum include depth (10) exceeded. Remember that the file
name should be enclosed in quotes.
S018 Illegal label $ $

Used for labd ‘field” errorsor illegal values. E.g., in fixed source form, the label field (first five
characters) of the indicated line contains a non-numeric character.
S019 Illegally placed continuation line

A continuation line does not follow an initia line, or more than 99 continuation lines were
specified.

S020 Unrecognized compiler directive

Refer to Directives and Pragmas Reference for list of allowed compiler directives.

5021 Label field of continuation line is not blank

Thefirst five characters of a continuation line must be blank.
S022 Unexpected end of file - missing END statement

The source fileis missing and END statement, or the file is truncated.

S023 Syntax error - unbalanced $

Unbalanced parentheses or brackets.
W024 CHARACTER or Hollerith constant truncated to fit data type

A character or hollerith constant was converted to a data type that was not large enough to
contain all of the charactersin the constant. This type conversion occurs when the constant is
used in an arithmetic expression or is assigned to a non-character variable. The character or
hollerith constant is truncated on the right, that is, if 4 characters are needed then the first 4 are
used and the remaining characters are discarded.

W025 Illegal character ($) - ignored

The current line contains a character, possibly non-printing, which is not alegal Fortran character
(charactersinside of character or Hollerith constants cannot cause this error). As agenera rule,
all non-printing characters are treated as white space characters (blanks and tabs); no error
message is generated when this occurs. If for some reason, a non-printing character is not treated
as awhite space character, its hex representation is printed in the form dd where each d is a hex
digit.

S026 Unmatched quote

A character constant is missing a closing quote or the source file is truncated.

S027 Illegal integer constant: $

Integer constant istoo large for 32 bit word.

S028 Illegal real or double precision constant: $
S029 Illegal $ constant: $

Illegal hexadecimal, octal, or binary constant. A hexadecimal constant consists of digits 0..9 and
letters A..F or a..f; any other character in a hexadecimal constant isillegal. An octal constant
consists of digits 0..7; any other digit or character in an octal constant isillegal. A binary constant
consists of digits 0 or 1; any other digit or character in abinary constant isillegal.

S030 Explicit shape must be specified for $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 204

Messages

A shape for an array expression is effected in this context.
S031 Illegal data type length specifier for $

The data type length specifier (e.g. 4 in INTEGER*4) is not a constant expression that isa
member of the set of allowed values for this particular data type.
W032 Data type length specifier not allowed for $

The data type length specifier (e.g. 4 in INTEGER*4) is not allowed in the given syntax (e.g.
DIMENSION A(10)*4).

S033 Illegal use of constant $

A constant was used in anillegal context, such as on the left side of an assignment statement or as
the target of a datainitialization statement.

S034 Syntax error at or near $

Illegal command specified.
I035 Predefined intrinsic $ loses intrinsic property
An intrinsic name was used in a manner inconsistent with the language definition for that

intrinsic. The compiler, based on the context, will treat the name as a variable or an external
function.

S036 Illegal implicit character range

First character must alphabetically precede second.

S037 Contradictory data type specified for $

The indicated identifier appears in more than one type specification statement and different data
types are specified for it.

S038 Symbol, $, has not been explicitly declared

The indicated identifier must be declared in atype statement; thisis required when the IMPLICIT

NONE statement occurs in the subprogram.
W039 Symbol, $, appears illegally in a SAVE statement $

Anidentifier appearing in a SAVE statement must be alocal variable or array.
S040 Illegal common variable $

Indicated identifier isadummy variable, is aready in acommon block, or has previously been
defined to be something other than avariable or array.
W041 Illegal use of dummy argument $

This error can occur in several situations. It can occur if dummy arguments were specified

on a PROGRAM statement. It can also occur if adummy argument name occursin aDATA,
COMMON, SAVE, or EQUIVALENCE statement. A program statement must have an empty
argument list.

S042 $ is a duplicate dummy argument

Each dummy argument must have a unique name.
S043 Illegal attempt to redefine $ $

An attempt was made to define a symbol in a manner inconsistent with an earlier definition of
the same symbol. This can happen for a number of reasons. The message attempts to indicate the
situation that occurred.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 205

Messages

intrinsic — An attempt was made to redefine an intrinsic function. A symbol that represents

an intrinsic function may be redefined if that symbol has not been previously verified to be
an intrinsic function. For example, the intrinsic sin can be defined to be an integer array. If a
symbol is verified to be an intrinsic function viathe INTRINSIC statement or viaan intrinsic
function reference then it must be referred to as an intrinsic function for the remainder of the
program unit.

symbol — An attempt was made to redefine a symbol that was previously defined. An example
of thisisto declare a symbol to be aPARAMETER which was previously declared to be a
subprogram argument.

S044 Multiple declaration for symbol $

A redundant declaration of a symbol has occurred. For example, an attempt was made to declare a
symbol asan ENTRY when that symbol was previously declared as an ENTRY .
S045 Data type of entry point $ disagrees with function $

The current function has entry points with data types inconsi stent with the data type of the

current function. For example, the function returns type character and an entry point returns type
complex.

S046 Data type length specifier in wrong position

The CHARACTER data type specifier has a different position for the length specifier from the
other data types. Suppose, we want to declare arrays ARRAY A and ARRAY B to have 8 elements
each having an element length of 4 bytes. The difference isthat ARRAY A is character and
ARRAYB isinteger. The declarations would be CHARACTER ARRAYA(8)*4 and INTEGER
ARRAYB*4(8).

S047 More than seven dimensions specified for array

The compiler currently supports up to seven dimensions for arrays.

S048 Illegal use of '*' in declaration of array $

An asterisk may be used only as the upper bound of the last dimension.

S049 Illegal use of '*' in non-subroutine subprogram

The aternate return specifier ‘*’ islegal only in the subroutine statement. Programs, functions,
and block data are not allowed to have alternate return specifiers.
S050 Assumed size array, $, 1s not a dummy argument

Arrayswith “*’ in their dimension(s) may only be declared as dummy arguments.

o)

S051 Unrecognized built-in % function

The allowable built-in functions are %V AL, %REF, %L OC, and %FILL. One was encountered
that did not match one of these alowed forms.
S052 Illegal argument to %VAL or S%LOC

S053 SREF or %VAL not legal in this context

The built-in functions %REF and %V AL can only be used as actual parametersin procedure
cals.

W054 Implicit character $ used in a previous implicit statement

Animplicit character has been given an implied data type more than once. The implied data type
for theimplicit character is changed anyway.
WO055 Multiple implicit none statements

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 206

Messages

The IMPLICIT NONE statement can occur only once in a subprogram.
WO056 Implicit type declaration

The -Mdclchk switch and an implicit declaration following an IMPLICIT NONE statement will
produce a warning message for IMPLICIT statements.
S057 Illegal equivalence of dummy variable, $

Dummy arguments may not appear in EQUIVALENCE statements.

S058 Equivalenced variables $ and $ not in same common block

A common block variable must not be equivalenced with a variable in another common block.

S059 Conflicting equivalence between $ and $

The indicated equivalence implies a storage layout inconsistent with other equivalences.

S060 Illegal equivalence of structure variable, $

STRUCTURE and UNION variables may not appear in EQUIVALENCE statements.

S061 Equivalence of $ and $ extends common block backwards

W062 Equivalence forces $ to be unaligned

EQUIVALENCE statements have defined an address for the variable which has an alignment not
optimal for variables of its datatype. This can occur when INTEGER and CHARACTER data are
equivalenced, for instance.

I063 Gap in common block $ before $

S064 Illegal use of $ in DATA statement implied DO loop

Theindicated variable is referenced whereit is not an active implied DO index variable.

S065 Repeat factor less than zero

S066 Too few data constants in initialization statement

S067 Too many data constants in initialization statement

S068 Numeric initializer for CHARACTER $ out of range 0 through 255

A CHARACTER*1 variable or character array element can be initialized to an integer, octal, or
hexadecimal constant if that constant is in the range O through 255.
S069 Illegal implied DO expression

The only operations allowed within an implied DO expression are integer +, -, *, and /.

S070 Incorrect sequence of statements $

The statement order isincorrect. For instance, an IMPLICIT NONE statement must precede a
specification statement which in turn must precede an executable statement.
S071 Executable statements not allowed in block data

S072 Assignment operation illegal to $ $

The destination of an assignment operation must be avariable, array reference, or vector
reference. The assignment operation may be by way of an assignment statement, a data statement,
or theindex variable of an implied DO-loop. The compiler has determined that the identifier used
asthe destination is not a storage location. The error message attempts to indicate the type of
entity used.

entry point — An assignment to an entry point that was not afunction procedure was attempted.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 207

Messages

external procedure— An assignment to an external procedure or a Fortran intrinsic name
was attempted. If the identifier isthe name of an entry point that is not a function, an external
procedure.

S073 Intrinsic or predeclared, $, cannot be passed as an argument

S074 Illegal number or type of arguments to $ $

The indicated symbol is an intrinsic or generic function, or a predeclared subroutine or function,
requiring a certain number of arguments of afixed datatype.

S075 Subscript, substring, or argument illegal in this context for $

This can happen if you try to doubly index an array such as ra(2)(3). This also appliesto substring
and function references.

S076 Subscripts specified for non-array variable $

S077 Subscripts omitted from array $

S078 Wrong number of subscripts specified for $

S079 Keyword form of argument illegal in this context for $$
S080 Subscript for array $ is out of bounds

S081 Illegal selector $ $

S082 Illegal substring expression for variable $

Substring expressions must be of type integer and if constant must be greater than zero.

S083 Vector expression used where scalar expression required

A vector expression was used in anillegal context. For example, iscalar = iarray, wherea
scalar is assigned the value of an array. Also, character and record references are not vectorizable.
S084 Illegal use of symbol $ $

This message is used for many different errors.

S085 Incorrect number of arguments to statement function $
S086 Dummy argument to statement function must be a variable
S087 Non-constant expression where constant expression required

S088 Recursive subroutine or function call of $

A function may not call itself.
S089 Illegal use of symbol, $, with character length = *

Symboals of type CHARACTER* (*) must be dummy variables and must not be used as statement
function dummy parameters and statement function names. Also, adummy variable of type
CHARACTER*(*) cannot be used as a function.

S090 Hollerith constant more than 4 characters

In certain contexts, Hollerith constants may not be more than 4 characters long.

S091 Constant expression of wrong data type

S092 Illegal use of variable length character expression

A character expression used as an actual argument, or in certain contexts within 1/O statements,
must not consist of a concatenation involving apassed length character variable.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 208

Messages

W093 Type conversion of expression performed

An expression of some data type appears in a context which requires an expression of some other
datatype. The compiler generates code to convert the expression into the required type.
S094 Variable $ is of wrong data type $

Theindicated variable is used in a context which requires a variable of some other datatype.
S095 Expression has wrong data type

An expression of some data type appears in a context which requires an expression of some other
datatype.

S096 Illegal complex comparison

Therelations .LT., .GT., .GE., and .LE. are not alowed for complex values.

S097 Statement label $ has been defined more than once

More than one statement with the indicated statement number occurs in the subprogram.
S098 Divide by zero

S099 Illegal use of $

Aggregate record references may only appear in aggregate assignment statements, unformatted
I/0 statements, and as parameters to subprograms. They may not appear, for example, in
expressions. Also, records with differing structure types may not be assigned to one another.

S100 Expression cannot be promoted to a vector
An expression was used that required a scalar quantity to be promoted to a vector illegally. For

example, the assignment of a character constant string to a character array. Records, too, cannot
be promoted to vectors.

S101 Vector operation not allowed on $

Record and character typed entities may only be referenced as scalar quantities.

S102 Arithmetic IF expression has wrong data type

The parenthetical expression of an arithmetic if statement must be an integer, real, or double
precision scalar expression.

S103 Type conversion of subscript expression for $

The data type of a subscript expression must be integer. If it isnot, it is converted.

S104 Illegal control structure $

This message isissued for a number of errorsinvolving IF-THEN statements, DO loops, and

directives. Y ou may see one of the following messages:

PGF90-S-0104-Illegal control structure - unterminated PARALLEL directive
PGF90-S-0104-I1legal control structure - unterminated block IF

If the line number specified isthe last line (END statement) of the subprogram, the error
is probably an unterminated DO loop or IF-THEN statement. If the message contains

unterminated PARALLEL directive,itislikely youare missingtherequired ! Somp end
parallel directive.

S105 Unmatched ELSEIF, ELSE or ENDIF statement

An ELSEIF, ELSE, or ENDIF statement cannot be matched with a preceding IF-THEN
statement.

S106 DO index variable must be a scalar variable

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 209

Messages

The DO index variable cannot be an array name, a subscripted variable, a PARAMETER name, a
function name, a structure name, etc.

S107 Illegal assigned goto variable $
S108 Illegal variable, $, in NAMELIST group $

A NAMELIST group can only consist of arrays and scalars.

I109 Overflow in $ constant $, constant truncated at left

A non-decimal (hexadecimal, octal, or binary) constant requiring more than 64-bits
produces an overflow. The constant is truncated at left (e.g. * 1234567890abcdef1’ x will be
*234567890abcdef1’ x).

I110 <reserved message number>

I111 Underflow of real or double precision constant
I112 Overflow of real or double precision constant
S113 Label $ is referenced but never defined

S114 Cannot initialize $

W11l5 Assignment to DO variable $ in loop

S116 Illegal use of pointer-based variable $ $

S117 Statement not allowed within a $ definition

The statement may not appear in a STRUCTURE or derived type definition.
S118 Statement not allowed in DO, IF, or WHERE block

I119 Redundant specification for $

Data type of indicated symbol specified more than once.

1120 Label $ is defined but never referenced

I121 Operation requires logical or integer data types

An operation in an expression was attempted on data having a data type incompatible with the
operation. For example, alogical expression can consist of only logical elements of type integer
or logical. Real datawould beinvalid.

I122 Character string truncated

Character string or Hollerith constant appearing in a DATA statement or PARAMETER
statement has been truncated to fit the declared size of the corresponding identifier.
W123 Hollerith length specification too big, reduced

The length specifier field of ahollerith constant specified more characters than were present in
the character field of the hollerith constant. The length specifier was reduced to agree with the
number of characters present.

S124 Relational expression mixes character with numeric data

A relational expression is used to compare two arithmetic expressions or two character
expressions. A character expression cannot be compared to an arithmetic expression.
I125 Dummy procedure $ not declared EXTERNAL

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 210

Messages

A dummy argument which is not declared in an EXTERNAL statement is used as the subprogram
namein a CALL statement, or is called as afunction, and is therefore assumed to be a dummy
procedure. This message can result from afailure to declare adummy array.

I126 Name $ is not an intrinsic function
I127 Optimization level for $ changed to opt 1 $

W128 Integer constant truncated to fit data type: $

Aninteger constant will be truncated when assigned to data types smaller than 32-bits, such asa
BYTE.

I129 Floating point overflow. Check constants and constant expressions
I130 Floating point underflow. Check constants and constant expressions
I131 Integer overflow. Check floating point expressions cast to integer
I132 Floating pt. invalid oprnd. Check constants and constant expressions
I133 Divide by 0.0. Check constants and constant expressions

S134 Illegal attribute $ $

W135 Missing STRUCTURE name field

A STRUCTURE name field is required on the outermost structure.
W136 Field-namelist not allowed

The field-namelist field of the STRUCTURE statement is disallowed on the outermost structure.

W137 Field-namelist is required in nested structures

W138 Multiply defined STRUCTURE member name $

A member name was used more than once within a structure.
W139 Structure $ in RECORD statement not defined

A RECORD statement contains a reference to a STRUCTURE that has not yet been defined.
S140 Variable $ is not a RECORD

S141 RECORD required on left of $
S142 $ is not a member of this RECORD
S143 $ requires initializer

W144 NEED ERROR MESSAGE $ $

Thisis used as atemporary message for compiler development.
W145 SFILL only valid within STRUCTURE block

The %FILL special name was used outside of a STRUCTURE multiline statement. It isonly
valid when used within a STRUCTURE multiline statement even though it isignored.

S146 Expression must be character type
S147 Character expression not allowed in this context

S148 Reference to $ required

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 211

Messages

An aggregate reference to arecord was expected during statement compilation but another data
type was found instead.

S149 Record where arithmetic value required

An aggregate record reference was encountered when an arithmetic expression was expected.

S150 Structure, Record, derived type, or member $ not allowed in this context

A structure, record, or member reference was found in a context which is not supported.
S151 Empty TYPE, STRUCTURE, UNION, or MAP

TYPE - ENDTYPE, STRUCTURE - ENDSTRUCTURE, UNION - ENDUNION or MAP -
ENDMAP declaration contains no members.

S152 All dimension specifiers must be ':'

S153 Array objects are not conformable $

S154 DISTRIBUTE target, $, must be a processor

S155 $ S

S156 Number of colons and triplets must be equal in ALIGN $ with $
S157 Illegal subscript use of ALIGN dummy $ - $

S158 Alternate return not specified in SUBROUTINE or ENTRY

An dternate return can only be used if alternate return specifiers appeared in the SUBROUTINE
or ENTRY statements.

S159 Alternate return illegal in FUNCTION subprogram

An aternate return cannot be used in a FUNCTION.
S160 ENDSTRUCTURE, ENDUNION, or ENDMAP does not match top

S161 Vector subscript must be rank-one array
W162 Not equal test of loop control variable $ replaced with < or > test.
S163 <reserved message number>

S164 Overlapping data initializations of $

An attempt was made to data initialize a variable or array element aready initialized.

S165 $ appeared more than once as a subprogram

A subprogram name appeared more than once in the source file. The message is applicable only
when an assembly file is the output of the compiler.

S166 $ cannot be a common block and a subprogram

A name appeared as a common block name and a subprogram name. The message is applicable
only when an assembly file is the output of the compiler.

I167 Inconsistent size of common block $

A common block occurs in more than one subprogram of a source file and its sizeis not identical.

The maximum size is chosen. The message is applicable only when an assembly file is the output
of the compiler.

S168 Incompatible size of common block $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 212

Messages

A common block occurs in more than one subprogram of a source file and isinitialized in one
subprogram. Itsinitialized size was found to be less than its size in the other subprogram(s). The
message is applicable only when an assembly file is the output of the compiler.

W169 Multiple data initializations of common block $

A common block isinitialized in more than one subprogram of a source file. Only the first set of
initializations apply. The message is applicable only when an assembly file is the output of the
compiler.

W170 PGI Fortran extension: $ $

Use of anonstandard feature. A description of the feature is provided.

W171 PGI Fortran extension: nonstandard statement type $
W172 PGI Fortran extension: numeric initialization of CHARACTER $

A CHARACTER*1 variable or array element was initialized with a numeric value.

W173 PGI Fortran extension: nonstandard use of data type length specifier
W174 PGI Fortran extension: type declaration contains data initialization
W175 PGI Fortran extension: IMPLICIT range contains nonalpha characters
W176 PGI Fortran extension: nonstandard operator $

W177 PGI Fortran extension: nonstandard use of keyword argument $

W178 <reserved message number>

W179 PGI Fortran extension: use of structure field reference $

W180 PGI Fortran extension: nonstandard form of constant

W181 PGI Fortran extension: & alternate return

W182 PGI Fortran extension: mixed non-character and character elements in COMMON

$
W183 PGI Fortran extension: mixed non-character and character EQUIVALENCE ($,9$)
W184 Mixed type elements (numeric and/or character types) in COMMON $
W185 Mixed numeric and/or character type EQUIVALENCE ($,$)
S186 Argument missing for formal argument $
S187 Too many arguments specified for $
S188 Argument number $ to $: type mismatch

S189 Argument number $ to $: association of scalar actual argument to array
dummy argument

S190 Argument number $ to $: non-conformable arrays

S191 Argument number $ to $ cannot be an assumed-size array
S192 Argument number $ to $ must be a label

W193 Argument number $ to $ does not match INTENT (OUT)

W194 INTENT (IN) argument cannot be defined - $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 213

Messages

S195 Statement may not appear in an INTERFACE block $
S196 Deferred-shape specifiers are required for $

S197 Invalid qualifier or qualifier value (/$) in OPTIONS statement

Anillega qualifier was found or avalue was specified for a qualifier which does not expect a
value. In either case, the qualifier for which the error occurred isindicated in the error message.
S198 $ $ in ALLOCATE/DEALLOCATE

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment requirement.
S200 Missing UNIT/FILE specifier

S201 Illegal I/O specifier - $
5202 Repeated I/0 specifier - §
5203 FORMAT statement has no label

S204 $ s

Miscellaneous I/O error.

S205 Illegal specification of scale factor

The integer following + or - has been omitted, or P does not follow the integer value.

S206 Repeat count is zero

S207 Integer constant expected in edit descriptor

S208 Period expected in edit descriptor

S209 Illegal edit descriptor

S210 Exponent width not used in the Ew.dEe or Gw.dEe edit descriptors
S211 Internal I/O not allowed in this I/O statement

S212 Illegal NAMELIST I/O

Namelist I/0 cannot be performed with internal, unformatted, formatted, and list-directed 1/0.
Also, /O lists must not be present.
S213 $ is not a NAMELIST group name

S214 Input item is not a variable reference

S215 Assumed sized array name cannot be used as an I/0 item or specifier

An assumed size array was used as an item to be read or written or as an |1/O specifier (i.e, FMT
= array-name). In these contexts the size of the array must be known.
S216 STRUCTURE/UNION cannot be used as an I/O item

S217 ENCODE/DECODE buffer must be a variable, array, or array element
5218 Statement labeled $ $
S219 <reserved message number>

S220 Redefining predefined macro $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 214

Messages

S221 #elif after #else

A preprocessor #elif directive was found after a#else directive; only #endif is allowed in this
context.
S222 #else after i#else

A preprocessor #else directive was found after a#else directive; only #endif isalowed in this
context.
S223 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).
S224 Actual parameters too long for $

Thetotal length of the parametersin amacro call to the indicated macro exceeded the maximum
allowed (currently 2048).

W225 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the
number of parametersin the macro’s definition.
F226 Can't find include file $

The indicated include file could not be opened.
S227 Definition too long for $

The length of the macro definition of the indicated macro exceeded the maximum allowed
(currently 2048).

5228 EOF in comment

The end of afile was encountered while processing a comment.
S229 EOF in macro call to $

The end of afile was encountered while processing a call to the indicated macro.
S230 EOF in string

The end of afile was encountered while processing a quoted string.

S231 Formal parameters too long for $

Thetotal length of the parameters in the definition of the indicated macro exceeded the maximum
allowed (currently 2048).

5232 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).

S233 <reserved message number>

W234 Illegal directive name

The sequence of characters following a# sign was not an identifier.

W235 Illegal macro name

A macro name was not an identifier.
S236 Illegal number $

The indicated number contained a syntax error.
F237 Line too long

The input source line length exceeded the maximum allowed (currently 2048).
W238 Missing #endif

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 215

Messages

End of file was encountered before a required #endif directive was found.
W239 Missing argument list for $

A call of the indicated macro had no argument list.
S240 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W241 Redefinition of symbol $

The indicated macro name was redefined.
I242 Redundant definition for symbol $

A definition for the indicated macro name was found that was the same as a previous definition.
F243 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

S244 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.

W245 Syntax error in #define, missing blank after name or arglist

There was ho space or tab between a macro name or argument list and the macro’ s definition.
S246 Syntax error in #if

A syntax error was found while parsing the expression following a#if or #elif directive.

S247 Syntax error in #include

The #include directive was not correctly formed.

W248 Syntax error in #line

A #line directive was not correctly formed.

W249 Syntax error in #module

A #module directive was not correctly formed.
W250 Syntax error in #undef

A #undef directive was not correctly formed.
W251 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.
W252 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.

S253 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).

S254 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed

(currently 31).
F255 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be
recursive.

W256 Undefined directive $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 216

Messages

The identifier following a# was not a directive name.
F257 POS value must be positive.

A value for POS <= 0 was encountered. Negative and 0 values areillegal for aposition in afile.
S257 EOF in #include directive

End of file was encountered while processing a#include directive.
S258 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.
S259 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S260 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
S261 Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).

S262 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

S263 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

1264 Possible nested comment

The characters /* were found within a comment.

S265 <reserved message number>
S266 <reserved message number>
S267 <reserved message number>
W268 Cannot inline subprogram; common block mismatch

W269 Cannot inline subprogram; argument type mismatch

This message may be severe if the compilation has gone too far to undo the inlining process.
F270 Missing -exlib option

W271 Can't inline $ - wrong number of arguments

I272 Argument of inlined function not used

S273 Inline library not specified on command line (-inlib switch)
F274 Unable to access file $/TOC

S275 Unable to open file $ while extracting or inlining

F276 Assignment to constant actual parameter in inlined subprogram
I277 Inlining of function $ may result in recursion

S278 <reserved message number>

W279 Possible use of $ before definition in $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 217

Messages

The optimizer has detected the possibility that a variable is used before it has been assigned a
value. The names of the variable and the function in which the use occurred are listed. The line
number, if specified, isthe line number of the basic block containing the use of the variable.

W280 Syntax error in directive $

M essages 280-300 reserved for directives handling
W281 Directive ignored - $ $

S300 Too few data constants in initialization of derived type $
S301 $ must be TEMPLATE or PROCESSOR

S302 Unmatched END$ statement

S303 END statement for $ required in an interface block

S304 EXIT/CYCLE statement must appear in a DO/DOWHILE loop$$
S305 $ cannot be named, $

5306 $ names more than one construct

S307 $ must have the construct name $

S308 DO may not terminate at an EXIT, CYCLE, RETURN, STOP, GOTO, or arithmetic
IF

S309 Incorrect name, $, specified in END statement

S$310 $ S

Generic message for MODULE errors.

W31l Non-replicated mapping for $ array, $, ignored
W312 Array $ should be declared SEQUENCE
W313 Subprogram $ called within INDEPENDENT loop not PURE

E314 IPA: actual argument $ is a label, but dummy argument $ is not an asterisk

The call passes alabel to the subprogram; the corresponding dummy argument in the subprogram
should be an asterisk to declare this as the aternate return.

I315 IPA: routine $, $ constant dummy arguments

This many dummy arguments are being replaced by constants due to interprocedural analysis.
I316 IPA: routine $, $ INTENT (IN) dummy arguments

This many dummy arguments are being marked as INTENT(IN) due to interprocedural analysis.
I317 IPA: routine $, $ array alignments propagated

This many array alignments were propagated by interprocedural analysis.
I318 IPA: routine $, $ distribution formats propagated

This many array distribution formats were propagated by interprocedural analysis.
I319 IPA: routine $, $ distribution targets propagated

This many array distribution targets were propagated by interprocedural analysis.

I320 IPA: routine $, $ common blocks optimized

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 218

Messages

This many mapped common blocks were optimized by interprocedural analysis.

I321 IPA: routine $, $ common blocks not optimized

This many mapped common blocks were not optimized by interprocedural analysis, either
because they were declared differently in different routines, or they did not appear in the main
program.

I322 IPA: analyzing main program $

Interprocedural analysisis building the call graph and propagating information with the named
main program.
I323 IPA: collecting information for $

Interprocedural analysisis saving information for the current subprogram for subsequent analysis
and propagation.
W324 IPA file $ appears to be out of date

W325 IPA file $ is for wrong subprogram: $

W326 Unable to open file $ to propagate IPA information to $

I327 IPA: $ subprograms analyzed

I328 IPA: $ dummy arguments replaced by constants

I329 IPA: $ INTENT (IN) dummy arguments should be INTENT (INOUT)
I330 IPA: $ dummy arguments changed to INTENT (IN)

I331 IPA: $ inherited array alignments replaced

I332 IPA: $ transcriptive distribution formats replaced

I333 IPA: $ transcriptive distribution targets replaced

I334 IPA: $ descriptive/prescriptive array alignments verified
I335 IPA: $ descriptive/prescriptive distribution formats verified
I336 IPA: $ descriptive/prescriptive distribution targets verified
I337 IPA: $ common blocks optimized

I338 IPA: $ common blocks not optimized

S339 Bad IPA contents file: $

S340 Bad IPA file format: $

S341 Unable to create file $ while analyzing IPA information

S342 Unable to open file $ while analyzing IPA information

S343 Unable to open IPA contents file $

S344 Unable to create file $ while collecting IPA information

F345 Internal error in $: table overflow

Analysis failed due to atable overflowing its maximum size.
W346 Subprogram $ appears twice

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 219

Messages

The subprogram appears twice in the same source file; IPA will ignore the first appearance.
F347 Missing -ipalib option

Interprocedural analysis, enabled with the -ipacollect, -ipaanalyze, Of -ipapropagate
options, requiresthe -ipalib option to specify the library directory.

W348 Common /$/ $ has different distribution target

The array was declared in acommon block with a different distribution target in another
subprogram.

W349 Common /$/ $ has different distribution format

The array was declared in acommon block with a different distribution format in another
subprogram.

W350 Common /$/ $ has different alignment

The array was declared in acommon block with a different alignment in another subprogram.

W351 Wrong number of arguments passed to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call.

W352 Wrong number of arguments passed to $ when bound to $

The subroutine or function statement for the given subprogram has a different number of dummy
arguments than appear in the call to the EXTERNAL name given.
W353 Subprogram $ is missing

A call to asubroutine or function with this name appears, but it could not be found or analyzed.
I354 Subprogram $ is not called

No calls to the given subroutine or function appear anywhere in the program.
W355 Missing argument in call to $

A nonoptional argument ismissing in a call to the given subprogram.

I356 Array section analysis incomplete

Interprocedural analysis for array section arguments is incompl ete; some information may not be
available for optimization.

I357 Expression analysis incomplete

Interprocedural analysis for expression arguments is incomplete; some information may not be
available for optimization.
W358 Dummy argument $ is EXTERNAL, but actual is not subprogram

The call statement passes a scalar or array to adummy argument that is declared EXTERNAL.
W359 SUBROUTINE $ passed to FUNCTION dummy argument $

The call statement passes a subroutine name to a dummy argument that is used as a function.
W360 FUNCTION $ passed to FUNCTION dummy argument $ with different result type

The call statement passes a function argument to a function dummy argument, but the dummy has
adifferent result type.
W361 FUNCTION $ passed to SUBROUTINE dummy argument $

The call statement passes a function name to adummy argument that is used as a subroutine.
W362 Argument $ has a different type than dummy argument $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 220

Messages

Thetype of the actual argument is different than the type of the corresponding dummy argument.
W363 Dummy argument $ is a POINTER but actual argument $ is not

The dummy argument is a pointer, so the actual argument must be also.

W364 Array or array expression passed to scalar dummy argument $

The actual argument is an array, but the dummy argument is ascalar variable.

W365 Scalar or scalar expression passed to array dummy argument $

The actual argument is a scalar variable, but the dummy argument is an array.

F366 Internal error: interprocedural analysis fails

Aninternal error occurred during interprocedural analysis; please report this to the compiler
maintenance group. If user errors were reported when collecting IPA information or during 1PA
analysis, correcting them may avoid this error.

I367 Array $ bounds cannot be matched to formal argument

Passing a nonsequential array to a sequential dummy argument may require copying the array
to sequential storage. The most common causeis passing an ALLOCATABLE array or array
expression to a dummy argument that is declared with explicit bounds. Declaring the dummy
argument as assumed shape, with bounds (:,:,:), will remove this warning.

W368 Array-valued expression passed to scalar dummy argument $

The actual argument is an array-valued expression, but the dummy argument is a scalar variable.

W369 Dummy argument $ has different rank than actual argument

The actual argument is an array or array-valued expression with a different rank than the dummy
argument.

W370 Dummy argument $ has different shape than actual argument

The actual argument is an array or array-valued expression with a different shape than the dummy
argument; this may require copying the actual argument into sequential storage.
W371 Dummy argument $ is INTENT (IN) but may be modified

The dummy argument was declared as INTENT(IN), but analysis has found that the argument
may be modified; the INTENT(IN) declaration should be changed.

W372 Cannot propagate alignment from $ to $

The most common cause is when passing an array with an inherited alignment to a dummy
argument with non- inherited alignment.

I373 Cannot propagate distribution format from $ to $

The most common cause is when passing an array with a transcriptive distribution format to a
dummy argument with prescriptive or descriptive distribution format.
I374 Cannot propagate distribution target from $ to $

The most common cause is when passing an array with a transcriptive distribution target to a
dummy argument with prescriptive or descriptive distribution target.

I375 Distribution format mismatch between $ and $

Usually this arises when the actual and dummy arguments are distributed in different dimensions.
I376 Alignment stride mismatch between $ and $

This may arise when the actual argument has a different stride in its alignment to its template than
does the dummy argument.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 221

Messages

I377 Alignment offset mismatch between $ and $

This may arise when the actual argument has a different offset in its alignment to its template
than does the dummy argument.

I378 Distribution target mismatch between $ and $

This may arise when the actual and dummy arguments have different distribution target sizes.
I379 Alignment of $ is too complex

The alignment specification of the array istoo complex for interprocedural analysisto verify or
propagate; the program will work correctly, but without the benefit of IPA.

I380 Distribution format of $ is too complex

The distribution format specification of the array istoo complex for interprocedural analysisto
verify or propagate; the program will work correctly, but without the benefit of IPA.
I381 Distribution target of $ is too complex

The distribution target specification of the array istoo complex for interprocedural analysisto
verify or propagate; the program will work correctly, but without the benefit of IPA.

I382 IPA: $ subprograms analyzed

Interprocedural analysis succeeded in finding and analyzing this many subprograms in the whole
program.

I383 IPA: $ dummy arguments replaced by constants

Interprocedural analysis has found this many dummy arguments in the whole program that can be

replaced by constants.
I384 IPA: $ dummy arguments changed to INTENT (IN)

Interprocedural analysis has found this many dummy arguments in the whole program that are not
modified and can be declared as INTENT(IN).

W385 IPA: $ INTENT (IN) dummy arguments should be INTENT (INOUT)

Interprocedural analysis has found this many dummy arguments in the whole program that were
declared as INTENT(IN) but should be INTENT(INOUT).

I386 IPA: $ array alignments propagated

Interprocedural analysis has found this many array dummy arguments that could have the
inherited array alignment replaced by a descriptive alignment.
I387 IPA: $ array alignments verified

Interprocedural analysis has verified that the prescriptive or descriptive alignments of this many
array dummy arguments match the alignments of the actual argument.
I388 IPA: $ array distribution formats propagated

Interprocedural analysis has found this many array dummy arguments that could have the
transcriptive distribution format replaced by a descriptive format.

I389 IPA: $ array distribution formats verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution formats of
this many array dummy arguments match the formats of the actual argument.
I390 IPA: $ array distribution targets propagated

Interprocedural analysis has found this many array dummy arguments that could have the
transcriptive distribution target replaced by a descriptive target.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 222

Messages

I391 IPA: $ array distribution targets verified

Interprocedural analysis has verified that the prescriptive or descriptive distribution targets of this
many array dummy arguments match the targets of the actual argument.
I392 IPA: $ common blocks optimized

Interprocedural analysis has found this many common blocks that could be optimized.
I393 IPA: $ common blocks not optimized

Interprocedural analysis has found this many common blocks that could not be optimized, either
because the common block was not declared in the main program, or because it was declared
differently in different subprograms.

I394 IPA: $ replaced by constant value

The dummy argument was replaced by a constant as per interprocedural analysis.
I395 IPA: $ changed to INTENT (IN)

The dummy argument was changed to INTENT(IN) as per interprocedural analysis.
I396 IPA: array alignment propagated to $

The template alignment for the dummy argument was changed as per interprocedural analysis.
I397 IPA: distribution format propagated to $
The distribution format for the dummy argument was changed as per interprocedural analysis.
I398 IPA: distribution target propagated to $

The distribution target for the dummy argument was changed as per interprocedural analysis.
I399 IPA: common block $ not optimized

The given common block was not optimized by interprocedural analysis either because it was not
declared in the main program, or because it was declared differently in different subprograms.

E400 IPA: dummy argument $ is an asterisk, but actual argument is not a label

The subprogram expects an alternate return label for this argument.

E401 Actual argument $ is a subprogram, but Dummy argument $ is not declared
EXTERNAL

The call statement passes a function or subroutine name to a dummy argument that is a scalar

variable or array.

E402 Actual argument $ is illegal

E403 Actual argument $ and formal argument $ have different ranks

The actual and formal array arguments differ in rank, which is allowed only if both arrays are
declared with the HPF SEQUENCE attribute.

E404 Sequential array section of $ in argument $ is not contiguous

When passing an array section to aformal argument that has the HPF SEQUENCE attribute, the

actual argument must be awhole array with the HPF SEQUENCE attribute, or an array section of

such an array where the section is a contiguous sequence of elements.

E405 Array expression argument $ may not be passed to sequential dummy argument
$

When the dummy argument has the HPF SEQUENCE attribute, the actual argument must be a

whole array with the HPF SEQUENCE attribute or a contiguous array section of such an array,

unless an INTERFACE block is used.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 223

Messages

E406 Actual argument $ and formal argument $ have different character lengths

The actual and formal array character arguments have different character lengths, which is
alowed only if both character arrays are declared with the HPF SEQUENCE attribute, unless an
INTERFACE block is used.

W407 Argument $ has a different character length than dummy argument $

The character length of the actual argument is different than the length specified for the
corresponding dummy argument.
W408 Specified main program $ is not a PROGRAM

The main program specified on the command line is a subroutine, function, or block data
subprogram.

W409 More than one main program in IPA directory: $ and $

There is more than one main program analyzed in the | PA directory shown. The first one found is
used.

W410 No main program found; IPA analysis fails.

The main program must appear in the IPA directory for analysisto proceed.

W41l Formal argument $ is DYNAMIC but actual argument is an expression
W412 Formal argument $ is DYNAMIC but actual argument $ is not

I413 Formal argument $ has two reaching distributions and may be a candidate for
cloning

I414 $ and $ may be aliased and one of them is assigned

Interprocedural analysis has determined that two formal arguments may be aliased because the
same variableis passed in both argument positions; or one formal argument and a global or
COMMON variable may be aliased, because the global or COMMON variable is passed as an
actual argument. If either aliasis assigned in the subroutine, unexpected results may occur; this
message alerts the user that this situation is disallowed by the Fortran standard.

F415 IPA fails: incorrect IPA file

Interprocedural analysis savesitsinformation in special 1PA filesin the specified IPA directory.
One of these files has been renamed or corrupted. This can arise when there are two files with the
same prefix, suchasa.hpf and a. £90.

E416 Argument $ has the SEQUENCE attribute, but the dummy parameter $ does not

When an actual argument is an array with the SEQUENCE attribute, the dummy parameter must
have the SEQUENCE attribute or an INTERFACE block must be used.

E417 Interface block for $ is a SUBROUTINE but should be a FUNCTION
E418 Interface block for $ is a FUNCTION but should be a SUBROUTINE
E419 Interface block for $ is a FUNCTION has wrong result type

W420 Earlier $ directive overrides $ directive

W421 $ directive can only appear in a function or subroutine

E422 Nonconstant DIM= argument is not supported

E423 Constant DIM= argument is out of range

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 224

Messages

E424 Equivalence using substring or vector triplets is not allowed
E425 A record is not allowed in this context

E426 WORD type cannot be converted

E427 Interface block for $ has wrong number of arguments

E428 Interface block for $ should have $

E429 Interface block for $ should not have $

E430 Interface block for $ has wrong $

W431 Program is too large for Interprocedural Analysis to complete
W432 Illegal type conversion $

E433 Subprogram $ called within INDEPENDENT loop not LOCAL

W434 Incorrect home array specification ignored

W435 Array declared with zero size

An array was declared with a zero or negative dimension bound, as ‘real a(-1)’, or an upper
bound less than the lower bound, as ‘real a(4:2)’.

W436 Independent loop not parallelized$
W437 Type $ will be mapped to $

Where DOUBLE PRECISION is not supported, it is mapped to REAL, and similarly for
COMPLEX(16) or COMPLEX*32.

E438 $ $ not supported on this platform

This construct is not supported by the compiler for thistarget.

S439 An internal subprogram cannot be passed as argument - $

S440 Defined assignment statements may not appear in WHERE statement or WHERE
block

S441 $ may not appear in a FORALL block

E442 Adjustable-length character type not supported on this host - $ $

S443 EQUIVALENCE of derived types not supported on this host - $

S444 Derived type in EQUIVALENCE statement must have SEQUENCE attribute - $

A variable or array with derived type appearsin an EQUIVALENCE statement. The derived type
must have the SEQUENCE attribute, but does not.

E445 Array bounds must be integer $ $

The expressions in the array bounds must be integer.

S446 Argument number $ to $: rank mismatch

The number of dimensionsin the array or array expression does not match the number of
dimensions in the dummy argument.

S447 Argument number $ to $ must be a subroutine or function name

S448 Argument number $ to $ must be a subroutine name

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 225

Messages

S449 Argument number $ to $ must be a function name

S450 Argument number $ to $: kind mismatch

S451 Arrays of derived type with a distributed member are not supported
S452 Assumed length character, $, is not a dummy argument

S453 Derived type variable with pointer member not allowed in IO - $ $

S454 Subprogram $ is not a module procedure

Only names of module procedures declared in this module or accessed through USE association
can appear inaMODULE PROCEDURE statement.

S455 A derived type array section cannot appear with a member array section - $

A referencelike A(:)%B(:), where ‘A’ isaderived type array and ‘B’ isamember array, is not
allowed; a section subscript may appear after ‘A’ or after ‘B’, but not both.
S456 Unimplemented for data type for MATMUL

S457 Illegal expression in initialization

S458 Argument to NULL () must be a pointer

S459 Target of NULL() assignment must be a pointer

S460 ELEMENTAL procedures cannot be RECURSIVE

S461 Dummy arguments of ELEMENTAL procedures must be scalar

S462 Arguments and return values of ELEMENTAL procedures cannot have the POINTER
attribute

S463 Arguments of ELEMENTAL procedures cannot be procedures

S464 An ELEMENTAL procedure cannot be passed as argument - $

S465 Functions returning a POINTER require an explicit interface

S466 Member $ of derived type $ has PRIVATE type

S467 Target of NULL() assignment must have the ALLOCATABLE attribute

W468 Argument to ISO C BINDING intrinsic must have TARGET attribute set
W469 Character argument to C LOC intrinsic must have length of one

W470 Accelerator feature license not found; accelerator features disabled
W471 CUDA Fortran feature license not found; CUDA Fortran features disabled

E472 A Scalar element of a nonsequential array cannot be passed to a dummy array
argument - $

A subroutine or function call may not pass an el ement of an array, like 'A(N)’, to adummy array
argument if the array 'A' is not sequential. If the array is sequential, then Fortran sequence and
storage association rules will treat the dummy argument as anew array equivalenced to the actual
argument starting at the element passed. If the array is not sequential, then Fortran sequence and
storage association rules do not apply.

W473 $ must have the PURE attribute

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 226

Messages

F474 This type EXTRINSIC is not yet implemented - $

Contact PGI to ask when this EXTRINSIC type will be implemented.
E475 A dummy argument may not be distributed in a PURE interface - $

A dummy argument to a routine defined with a PURE interface may not have the DISTRIBUTE
attribute.

E476 A dummy argument may only be aligned with another dummy in a PURE interface

-3

E477 The device array section actual argument was not stride-1 in the leading
dimension - $

A device (device, shared, or constant attribute) array passed as an array section to an assumed-

shape dummy argument must be stride-1 in the leading dimension.

E478 Invalid actual argument to REFLECTED dummy argument - $

The actual argument symbol or expression to adummy argument with the Accelerator
REFLECTED attribute must be a symboal that has a visible device copy. Expressions are not
alowed.

E479 The dummy argument $ is REFLECTED; the actual argument $ must have a
visible device copy

If adummy argument has the Accelerator REFLECTED attribute, the actual argument must be
a symbol with avisible device copy. This may be because the symbol appeared in aMIRROR,
REFLECTED, COPYIN, COPYOUT, COPY or LOCAL declarative Accelerator directive, or
because it appeared in a COPYIN, COPYOUT, COPY or LOCAL clause for an Accelerator
DATA REGION or REGION surrounding the procedure call.

E480 Argument $ is passed to dummy argument $, which is REFLECTED; the actual
argument must not require runtime reshaping

When an actual argument is an array section or pointer array section, sometimes the actual

argument must be copied to atemporary array. This may occur if the dummy argument is not

assumed-shape, and so must be contiguous in memory, or if the actual argument isnot stride-1 in

the leftmost (first) dimension. In these cases, the REFLECTED argument is not supported.

F481 An ENTRY name must not appear as a dummy argument - $

The name of the subprogram or an ENTRY to the subprogram must not appear as a dummy
argument to the subprogram.
482 COMMON /$/ is declared differently in two subprograms - $

The COMMON block name was declared with different distribution or alignment for one or more

members in two different subprograms.

E483 Storage association due to EQUIVALENCE ($,$) causes HPF alignments and
distributions to be ignored

An EQUIVALENCE statement causes Fortran storage association between entriesin this

COMMON block. The storage association overrides the HPF alignments and distributions for the

COMMON block members.

E484 Datatype conflict in EQUIVALENCE between two distributed or aligned COMMON
block members: $ and $

Two distributed COMMON block members that appear in a COMMON block must have the

same datatype.

E485 Datatype conflict in EQUIVALENCE between a distributed or aligned COMMON
block member and another: $ and $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 227

Messages

A distributed COMMON block member may not be EQUIVALENCEd with another COMMON

member.

E486 The dummy argument $ is REFLECTED; an array element cannot be passed to a
REFLECTED argument

An actual argument that is an array element cannot be passed to a REFLECTED dummy

argument.

E487 Index variable $ does not appear in a subscript on the left hand side of
the FORALL assignment

InaFORALL statement, each index variable in the FORALL must appear in some subscript of

the left hand side of the FORALL assignment. Otherwise, the FORALL will assign the same |eft

hand side elements for different values of that index.

I489 An ALLOCATE of a POINTER with transcriptive or inherited distribution
causes replication - $

When an array with the POINTER attribute and with a distribution that is transcriptive or

inherited is allocated, the alignment and distribution are ignored and the array pointer is treated as

replicated, since there is no symbol from which to inherit a distribution.

E488 The function call in the FORALL does not have the PURE attribute - $

In aFORALL statement, all functions used must be PURE or ELEMENTAL. Otherwise, they

cannot be called in paralel.

E490 An array section of $ is passed to the REFLECTED argument $, which is not
supported

When an actual argument is an array section, the dummy argument must not have the

REFLECTED attribute.

W491 EXTRINSIC(S) subprograms require an explicit interface - $

An EXTRINSIC subprogram with the LOCAL or SERIAL attributes require an explicit interface,
either through an INTERFACE black, or by being in the same MODULE asthe caller, or being
inaMODULE that is referenced with a USE statement.

E492 DYNAMIC distribution is only supported in HPF GLOBAL subprograms - $

Variableswith DY NAMIC distribution are not supported in EXTRINSIC(F77_LOCAL),
EXTRINSIC(F77_SERIAL), EXTRINSIC(FO0_LOCAL), EXTRINSIC(F90_SERIAL),
EXTRINSIC(HPF_LOCAL) or EXTRINSIC(HPF_SERIAL) subprograms.

E493 $ arrays may not be aligned with ALLOCATABLE arrays - $

Static local arrays, common arrays, and dummy argument arrays may not be aligned with arrays
that have the ALLOCATABLE attribute, since the allocatable alignee may not be allocated.

E494 COMMON arrays may not be aligned with dummy argument arrays - $

An array in aCOMMON block may not specify an alignment with a dummy argument array.
W495 The SHADOW directive for CYCLIC distributed dimensions is ignored - $

A shadow boundary specified for array dimensions that are distributed with the CYCLIC
distribution is ignored.

I496 A $ of an unused template is eliminated

The HPF executable REDISTRIBUTE or REALIGN directive appeared specifying an HPF
TEMPLATE that is not used; the REDISTRIBUTE or REALIGN is eliminated.

E497 EXTRINSIC(F77 LOCAL) does not support distributed symbols of this datatype
-8

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 228

Messages

This HPF implementation does not support distributed symbols of character or derived typein
EXTRINSIC(F77_LOCAL) subprograms.

E498 Alignment cycle involving two or more arguments - $

This dummy argument appearsin an HPF ALIGN directive specifying alignment to another
dummy argument that is then aligned to this argument, or aligned to another dummy argument
that is eventually aligned to this argument.

W499 The descriptive distribution or alignment for this dummy argument is
treated as prescriptive - $

Even though the distribution or alignment for this dummy argument was specified as descriptive,
it istreated as prescriptive.

E500 MODULE $ uses (directly or indirectly) MODULE $, which causes a USE cycle
If MODULE A has a USE statement for MODULE B, we say that MODULE A directly uses
MODULE B. If MODULE B has a USE statement for MODULE C, we say that MODULE A

indirectly uses MODULE C. If MODULE C then has a USE statement for MODULE A, then
MODULE A indirectly usesitself, which isa USE cycle, and is not allowed.

E504 DIM argument out of range for this symbol - $

The DIM argument to this transformation intrinsic (CSHIFT, EOSHIFT, ...) must be between 1
and the rank of the array or expression being transformed.

E505 DIM argument out of range for this reduction - $§

The DIM argument to this reduction intrinsic (SUM, PRODUCT, ...) must be between 1 and the
rank of the expression being reduced.
E506 The argument to ASSOCIATED must be a pointer - $

The argument to the ASSOCIATED intrinsic function must be a variable or array with the
POINTER attribute.

E507 The arguments to MOVE ALLOC must be ALLOCATABLE - $

The arguments to the MOVE_ALLOC procedure must have the ALLOCATABLE attribute.

E508 The array objects in a call to an elemental function are not conformable -

$

When calling an elemental function, the arguments must be scalars or conformable arrays or array
expressions.
E509 Variables in a PURE subprogram may not have the SAVE attribute - $

PURE subprograms cannot refer to external, module, or COMMON data, and cannot save state in
aSAVEd variable.

E510 Only assignment statements are allowed in a WHERE construct

A WHERE construct is the WHERE statement and all the statements until the matching
ENDWHERE. The body of the WHERE construct can only contain assignment statements.

E511 The WHERE mask expression and the array assignment do not conform

The assignment under control of a WHERE mask must have the same shape as the WHERE
mask.

E512 The WHERE mask is not an array expression

The WHERE mask expression must be alogical array expression.

E513 The alignment or distribution target may not be a private variable - $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 229

Messages

ThisisaHPF_CRAFT restriction.
E514 The alignment extends beyond the bounds of the template - $

When aligning to atemplate, the entire array must align to template elements that lie within the
bounds of the template.
E515 Static variable aligned with allocatable symbol - $

A nonallocatable symbol cannot be aligned to an allocatable symbol.
E516 PURE subprograms may not have distributed variables - $

Distributed arrays are not allowed in PURE subprograms.
E517 Variables in HPF LOCAL subprograms may not be distributed - $

Distributed arrays are not allowed in HPF_L OCAL subprograms.
W518 Function result could not be distributed; replicating - $

The compiler will replicate the function result.

E519 More than one device-resident object in assignment

Only one device-resident variable or array is allowed in an assignment.
E520 Host MODULE data cannot be used in a DEVICE or GLOBAL subprogram - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access host data directly.

E521 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless
compiling for compute capability >= 2.0 - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any MODULE

except the MODULE containing the subprogram, unless they are being compiled for compute

capability 2.0 or higher. This feature requires the unified memory system provided in compute

capability 2.0.

E522 MODULE data cannot be used in a DEVICE or GLOBAL subprogram unless
compiling with CUDA Toolkit 3.0 or later - $

CUDA Fortran DEVICE or GLOBAL subprograms cannot access data from any MODULE

except the MODULE containing the subprogram, unless they are being compiled for compute

capability 2.0 or higher with the CUDA Toolkit 3.0 or later.

This feature requires the unified memory system provided in compute capability 2.0.

W523 MODULE data used in a DEVICE or GLOBAL subprogram forces compute capability
>= 2.0 only - $

CUDA Fortran DEVICE or GLOBAL subprograms can access MODULE data only when

compiled for compute capability 2.0 or gresater.

E524 Dependency in assignment causes allocation of a temporary which is not
supported in DEVICE or GLOBAL subprograms

The compiler has identified a possible dependency in an assignment statement which requires

allocation of temporary storage to produce a correct result. Dynamic allocation of memory is not

supported in subprograms that run on the device.

E525 Array reshaping is not supported for device subprogram calls: argument $ to
subprogram $

Passing an array section or assumed-shape array to a non-assumed-shape dummy argument is not

supported in global or device subprograms. Thiswould require arun-time test and a possible run-

time copy to a dynamically allocated temporary array.

W526 SHARED attribute ignored on dummy argument $

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 230

Messages

The SHARED attribute has no meaning when applied to a dummy argument.

E527 Argument number $ requires allocation of a temporary which is not supported
in DEVICE or GLOBAL subprograms

Evaluation of the specified argument requires allocation of temporary storage for the result to
be passed to the subprogram being called. Dynamic allocation of memory is not supported in
subprograms that run on the device.

E528 Argument number $ to $: device attribute mismatch

Device attributes of the actual and formal arguments are not the same.

E529 PRINT and WRITE statements in device subprograms are only supported when
compiling with CUDA Toolkit 4.0 or later

Support for PRINT * or WRITE(*,*) statementsin CUDA Fortran device subprograms requires
CUDA Toolkit 4.0 or later and compute capahility 2.0 or higher.

E530 PRINT and WRITE statements in device subprograms are only supported with
compute capability 2.0 or higher

Support for PRINT * or WRITE(*,*) statementsin CUDA Fortran device subprograms requires
CUDA Toolkit 4.0 or later and compute capability 2.0 or higher.

W531 PGI extension to OpenACC: $

This program isusing a PGl extension to OpenACC.
W532 OpenACC feature not yet implemented: $

This OpenACC feature is not yet implemented. This program isusing a PGl extension to
OpenACC.

E533 Clause $ not allowed in $ directive

This clause is not allowed on the specified directive.
E534 A loop scheduling directive may not appear within a KERNEL loop

An accelerator or OpenACC loop directive that specifies a schedule, such as PARALLEL,
VECTOR, WORKER or GANG, may not appear inside aloop that has an accelerator |oop
directive with the KERNEL clause. This clause is not allowed on the specified directive.
E535 Undeclared symbol $ used in directive

Symbols used in OpenA CC directives must be declared.
S901 #elif after #else

A preprocessor #elif directive was found after a#else directive; only #endif is allowed in this
context.

S902 #else after #else

A preprocessor #else directive was found after a#else directive; only #endif isalowed in this
context.

W905 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the
number of parameters in the macro's definition.
F906 Can't find include file $

The indicated include file could not be opened.
5908 EOFin comment

The end of afile was encountered while processing a comment.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 231

S909 EOFin macro call to $

The end of afile was encountered while processing a call to the indicated macro.
S912 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).
W914 Illegal directive name

The sequence of characters following a# sign was not an identifier.

W915 Illegal macro name

A macro name was not an identifier.
W918 Missing #endif

End of file was encountered before a required #endif directive was found.
W919 Missing argument list for $

A call of the indicated macro had no argument list.
S920 Number too long

The length of a number exceeded the maximum allowed (currently 2048).
W921 Redefinition of symbol $

The indicated macro name was redefined.
1922 Redundant definition for symbol $

Messages

A definition for the indicated macro name was found that was the same as a previous definition.

F923 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

S924 Syntax error in #define, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.
5926 Syntax error in #if

A syntax error was found while parsing the expression following a#if or #elif directive.

S927 Syntax error in #include

The #include directive was not correctly formed.

W928 Syntax error in #line

A #line directive was not correctly formed.

W929 Syntax error in #module

A #module directive was not correctly formed.
W930 Syntax error in #undef

A #undef directive was not correctly formed.
W931 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.
W932 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.

S933 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed
(currently 31).

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

232

Messages

S934 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed
(currently 31).
S935 Illegal context for VA ARGS

WO936 Undefined directive $

The identifier following a# was not a directive name.
S937 EOFin #include directive

End of file was encountered while processing a#include directive.
S938 Unmatched #elif

A #elif directive was encountered with no preceding #if or #elif directive.
S939 Unmatched #else

A #else directive was encountered with no preceding #if or #elif directive.
S940 Unmatched #endif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.
W941 TIllegal token in directive, $

A directive token contains aillegal character.

S942 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

S943 Unterminated string or character constant

A newline with no preceding backdash was found in a quoted string.

1944 Possible nested comment

The characters /* were found within a comment.
1945 Redefining predefined macro $

1946 Undefining predefined macro $
W947 Can't redefine predefined macro $
W948 Can't undefine predefined macro $
F949 #error -- $

User defined preprocessor error message.
W950 #ident not followed by quoted string

W951 Extraneous tokens ignored following # directive
F952 Unexpected EOF following #directive

W953 Unexpected # ignored in #if expression

S954 Illegal number in directive

S955 Illegal token in #if expression

S956 Missing > in #include

W957 Arguments in macro $ are not unique

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 233

Messages

S959 ## directive occurs at beginning or end of macro definition
S960 $ is not an argument

W961 No macro replacement within a character constant

W962 Macro replacement within a character constant

W964 Macro replacement within a string literal

F965 Recursive include file $

W966 Null argument to macro

Argument to macro isanull value.
F967 #warning -- $

User defined preprocessor warning message.
5969 Pragma $

Pragma operator errors.

9.4. Fortran Run-time Error Messages

This section presents the error messages generated by the run-time system. The run-time system
displays error messages on standard output.

9.4.1. Message Format

The messages are numbered but have no severity indicators because they all terminate program
execution.

9.4.2. Message List

Here are the run-time error messages:
201 illegal value for specifier

An improper specifier value has been passed to an 1/0 run-time routine. Example: within an
OPEN statement, form="unknown'.

202 conflicting specifiers

Conflicting specifiers have been passed to an I/O run-time routine. Example: within an OPEN
statement, form="unformatted', blank="null".

203 record length must be specified

A recl specifier required for an 1/0 run-time routine has not been passed. Example: within an
OPEN statement, access="direct' has been passed, but the record length has not been specified
(recl=specifier).

204 illegal use of a readonly file
Self explanatory. Check file and directory modes for readonly status.

205 '"SCRATCH' and 'SAVE'/'KEEP' both specified

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 234

Messages

In an OPEN statement, afile disposition conflict has occurred. Example: within an OPEN
statement, status="scratch’ and dispose='keep' have both been passed.

206 attempt to open a named file as 'SCRATCH'
207 file is already connected to another unit
208 'NEW' specified for file that already exists
209 'OLD' specified for file that does not exist

210 dynamic memory allocation failed

Memory allocation operations occur only in conjunction with namelist I/0. The most probable
cause of fixed buffer overflow is exceeding the maximum number of simultaneously open file
units.

211 invalid file name

212 invalid unit number

A file unit number less than or equal to zero has been specified.
215 formatted/unformatted file conflict
Formatted/unformatted file operation conflict.

217 attempt to read past end of file

219 attempt to read/write past end of record
For direct access, the record to be read/written exceeds the specified record length.

220 write after last internal record

221 syntax error in format string
A run-time encoded format contains alexical or syntax error.

222 unbalanced parentheses in format string
223 illegal P or T edit descriptor - value missing

224 illegal Hollerith or character string in format
An unknown token type has been found in aformat encoded at run-time.

225 lexical error -- unknown token type

226 unrecognized edit descriptor letter in format
An unexpected Fortran edit descriptor (FED) was found in arun-time format item.

228 end of file reached without finding group

229 end of file reached while processing group

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 235

Messages

230 scale factor out of range -128 to 127
Fortran P edit descriptor scale factor not within range of -128 to 127.

231 error on data conversion
233 too many constants to initialize group item

234 invalid edit descriptor

Aninvalid edit descriptor has been found in aformat statement.

235 edit descriptor does not match item type

Data types specified by 1/0 list item and corresponding edit descriptor conflict.

236 formatted record longer than 2000 characters
237 quad precision type unsupported

238 tab value out of range
A tab value of less than one has been specified.

239 entity name is not member of group

240 no initial left parenthesis in format string

241 unexpected end of format string

242 illegal operation on direct access file

243 format parentheses nesting depth too great

244 syntax error - entity name expected

245 syntax error within group definition

246 infinite format scan for edit descriptor

248 illegal subscript or substring specification

249 error in format - illegal E, F, G or D descriptor
250 error in format - number missing after '.', '-', or '+'
251 illegal character in format string

252 operation attempted after end of file

253 attempt to read non-existent record (direct access)

254 illegal repeat count in format

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 236

255

256

257

258

illegal asynchronous I/0 operation
POS can only be specified for a 'STREAM'
POS value must be positive

NEWUNIT requires FILE or STATUS=SCRATCH

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs

file

Messages

237

Chapter 10.
CONTACT INFORMATION

Y ou can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637

Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGl engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
guestions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/fag.htm

All technical support is by email or submissions using an online form at:
http://www.pgroup.com/support

Phone support is not currently available.

PGI documentation is available at http://www.pgroup.com/resources/docs.htm.

PGI Compiler Reference Guide for Intel 64 and AMD64 CPUs 238

mailto: sales@pgroup.com
mailto: trs@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
http://www.pgroup.com/support
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2016 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Fortran, C, and C++ Data Types
	1.1. Fortran Data Types
	1.1.1. Fortran Scalars
	1.1.2. FORTRAN 77 Aggregate Data Type Extensions
	1.1.3. Fortran 90 Aggregate Data Types (Derived Types)

	1.2. C and C++ Data Types
	1.2.1. C and C++ Scalars
	1.2.2. C and C++ Aggregate Data Types
	1.2.3. Class and Object Data Layout
	1.2.4. Aggregate Alignment
	1.2.5. Bit-field Alignment
	1.2.6. Other Type Keywords in C and C++

	Command-Line Options Reference
	2.1. PGI Compiler Option Summary
	2.1.1. Build-Related PGI Options
	2.1.2. PGI Debug-Related Compiler Options
	2.1.3. PGI Optimization-Related Compiler Options
	2.1.4. PGI Linking and Runtime-Related Compiler Options

	2.2. C and C++ Compiler Options
	2.3. Generic PGI Compiler Options
	2.3.1. -#
	Default
	Usage
	Description
	Related options

	2.3.2. -###
	Default
	Usage
	Description
	Related options

	2.3.3. -acc
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.4. -Bdynamic
	Default
	Usage
	Description
	Related options

	2.3.5. -Bstatic
	Default
	Usage
	Description
	Related options

	2.3.6. -Bstatic_pgi
	Default
	Usage
	Description
	Related options

	2.3.7. -byteswapio
	Default
	Usage
	Description
	Related options

	2.3.8. -C
	Default
	Usage
	Description
	Related options

	2.3.9. -c
	Default
	Usage
	Description
	Related options

	2.3.10. -d<arg>
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.11. -D
	Syntax
	Default
	Usage
	Description
	Related options

	2.3.12. -dryrun
	Default
	Usage
	Description
	Related options

	2.3.13. -drystdinc
	Default
	Usage
	Description
	Related options

	2.3.14. -dynamiclib
	Default
	Usage
	Description
	Related options

	2.3.15. -E
	Default
	Usage
	Description
	Related options

	2.3.16. -F
	Default
	Usage
	Description
	Related options

	2.3.17. -fast
	Default
	Usage
	Description
	Related options

	2.3.18. -fastsse
	2.3.19. --flagcheck
	Default
	Usage
	Description
	Related options

	2.3.20. -flags
	Default
	Usage
	Description
	Related options

	2.3.21. -fpic
	Default
	Usage
	Related options

	2.3.22. -fPIC
	2.3.23. -g
	Default
	Usage
	Description
	Related options

	2.3.24. -gopt
	Default
	Usage
	Description
	Related options

	2.3.25. -g77libs
	Default
	Usage
	Description
	Related options

	2.3.26. -help
	Default
	Usage
	Description
	Related options

	2.3.27. -I
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.28. -i2, -⁠i4, -⁠i8
	Default
	Usage
	Description
	Related options

	2.3.29. -K<flag>
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.30. --keeplnk
	Usage
	Description
	Related options

	2.3.31. -L
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.32. -l<library>
	Syntax
	Description
	Related options

	2.3.33. -M
	2.3.34. -m
	Default
	Usage
	Description
	Related options

	2.3.35. -m32
	Usage
	Description
	Related options

	2.3.36. -m64
	Usage
	Description
	Related options

	2.3.37. -M<pgflag>
	2.3.38. -mcmodel=medium
	Usage
	Description
	Related options

	2.3.39. -module <moduledir>
	Default
	Usage
	Description
	Related options

	2.3.40. -mp
	Default
	Usage
	Description
	Related options

	2.3.41. -noswitcherror
	Default
	Usage
	Description
	Related options

	2.3.42. -O<level>
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.43. -o
	Default
	Syntax
	Usage
	Related options

	2.3.44. -pc
	Syntax
	Usage
	Description
	Related options

	2.3.45. --pedantic
	Default
	Usage
	Related options

	2.3.46. -pg
	Default
	Usage:
	Description
	Related options

	2.3.47. -pgc++libs
	Default
	Usage
	Description
	Related options

	2.3.48. -pgf77libs
	Default
	Usage
	Description
	Related options

	2.3.49. -pgf90libs
	Default
	Usage
	Description
	Related options

	2.3.50. -R<directory>
	Usage
	Description
	Related options

	2.3.51. -r
	Default
	Usage
	Description
	Related options

	2.3.52. -r4 and -⁠r8
	Usage
	Description
	Related options

	2.3.53. -rc
	Syntax
	Usage
	Description
	Related options

	2.3.54. -s
	Default
	Usage
	Description
	Related options

	2.3.55. -S
	Default
	Usage
	Description
	Related options

	2.3.56. -shared
	Default
	Usage
	Description
	Related options

	2.3.57. -show
	Default
	Usage
	Description
	Related options

	2.3.58. -silent
	Default
	Usage
	Description
	Related options

	2.3.59. -soname
	Default
	Usage
	Description
	Related options

	2.3.60. -stack
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.61. -ta=tesla(tesla_suboptions),host
	Default
	Usage
	Description
	Multiple Targets
	Relocatable Device Code
	LLVM/SPIR and Native GPU Code Generation
	DWARF Debugging Formats
	Related options

	2.3.62. -time
	Default
	Usage
	Description
	Related options

	2.3.63. -tp <target>[,target...]
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.64. -[no]traceback
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.65. -u
	Default
	Syntax
	Usage
	Description
	Related options

	2.3.66. -U
	Syntax
	Usage
	Description
	Related options

	2.3.67. -V[release_number]
	Default
	Usage
	Description
	Related options

	2.3.68. -v
	Default
	Usage
	Description
	Related options

	2.3.69. -W
	Syntax
	Usage
	Description
	Related options

	2.3.70. -w
	Default
	Usage
	Description
	Related options

	2.3.71. -Xs
	Default
	Usage
	Description
	Related options

	2.3.72. -Xt
	Default
	Usage
	Description
	Related options

	2.4. C and C++ -specific Compiler Options
	2.4.1. -A
	Default
	Usage
	Description
	Related options

	2.4.2. -a
	Default
	Usage
	Description
	Related options

	2.4.3. -alias
	Syntax
	Default
	Usage
	Description
	Related options

	2.4.4. --[no_]alternative_tokens
	Default
	Usage
	Related options

	2.4.5. -B
	Default
	Usage
	Description
	Related options

	2.4.6. -b
	Default
	Usage
	Description
	Related options

	2.4.7. -b3
	Default
	Usage
	Description
	Related options

	2.4.8. --[no_]bool
	Default
	Usage
	Description
	Related options

	2.4.9. --[no_]builtin
	Default
	Usage
	Description
	Related options

	2.4.10. --cfront_2.1
	Default
	Usage
	Description
	Related options

	2.4.11. --cfront_3.0
	Default
	Usage
	Description
	Related options

	2.4.12. --[no_]compress_names
	Default
	Usage
	Description
	Related options

	2.4.13. --create_pch filename
	Default
	Usage
	Description
	Related options

	2.4.14. --diag_error <number>
	Default
	Description
	Related options

	2.4.15. --diag_remark <number>
	Default
	Description
	Related options

	2.4.16. --diag_suppress <number>
	Default
	Usage
	Description
	Related options

	2.4.17. --diag_warning <number>
	Default
	Usage
	Description
	Related options

	2.4.18. --display_error_number
	Default
	Usage
	Description
	Related options

	2.4.19. -e<number>
	2.4.20. --[no_]exceptions
	Default
	Usage
	Description
	Related options

	2.4.21. --gnu_version <num>
	Default
	Usage
	Description

	2.4.22. --[no]llalign
	Default
	Usage
	Description
	Related options

	2.4.23. -M
	Default
	Usage
	Description
	Related options

	2.4.24. -MD
	Default
	Usage
	Description
	Related options

	2.4.25. --optk_allow_dollar_in_id_chars
	Default
	Usage
	Description

	2.4.26. -P
	Default
	Usage
	Description
	Related options

	2.4.27. -+p
	Default
	Usage
	Description
	Related options

	2.4.28. --pch
	Default
	Usage
	Description
	Related options

	2.4.29. --pch_dir directoryname
	Usage
	Description
	Related options

	2.4.30. --[no_]pch_messages
	Description
	Related options

	2.4.31. --preinclude=<filename>
	Description
	Related options

	2.4.32. --use_pch filename
	Default
	Related options

	2.4.33. --[no_]using_std
	Default
	Usage
	Description
	Related options

	2.4.34. -Xfilename
	Default
	Usage
	Description
	Related options

	2.4.35. --[no]zc_eh
	Default
	Usage
	Description
	Related options

	2.5. -M Options by Category
	2.5.1. Code Generation Controls
	2.5.2. C/C++ Language Controls
	2.5.3. Environment Controls
	2.5.4. Fortran Language Controls
	2.5.5. Inlining Controls
	2.5.6. Optimization Controls
	2.5.7. Miscellaneous Controls

	C++ Name Mangling
	Directives and Pragmas Reference
	4.1. PGI Proprietary Fortran Directive and C/C++ Pragma Summary
	4.1.1. altcode (noaltcode)
	4.1.2. assoc (noassoc)
	4.1.3. bounds (nobounds)
	4.1.4. cncall (nocncall)
	4.1.5. concur (noconcur)
	4.1.6. depchk (nodepchk)
	4.1.7. eqvchk (noeqvchk)
	4.1.8. fcon (nofcon)
	4.1.9. invarif (noinvarif)
	4.1.10. ivdep
	4.1.11. lstval (nolstval)
	4.1.12. opt
	4.1.13. prefetch
	4.1.14. safe (nosafe)
	4.1.15. safe_lastval
	4.1.16. safeptr (nosafeptr)
	4.1.17. single (nosingle)
	4.1.18. tp
	4.1.19. unroll (nounroll)
	4.1.20. vector (novector)
	4.1.21. vintr (novintr)

	4.2. Prefetch Directives and Pragmas
	4.3. !$PRAGMA C
	4.4. IGNORE_TKR Directive
	4.4.1. IGNORE_TKR Directive Syntax
	4.4.2. IGNORE_TKR Directive Format Requirements
	4.4.3. Sample Usage of IGNORE_TKR Directive

	4.5. !DEC\$ Directives
	4.5.1. ALIAS Directive
	4.5.2. ATTRIBUTES Directive
	4.5.3. DECORATE Directive
	4.5.4. DISTRIBUTE Directive

	Runtime Environment
	5.1. Linux86 and Win32 Programming Model
	5.1.1. Function Calling Sequence
	5.1.2. Function Return Values
	5.1.3. Argument Passing

	5.2. Linux86-64 Programming Model
	5.2.1. Function Calling Sequence
	5.2.2. Function Return Values
	5.2.3. Argument Passing
	5.2.4. Linux86-64 Fortran Supplement

	5.3. Win64 Programming Model
	5.3.1. Function Calling Sequence
	5.3.2. Function Return Values
	5.3.3. Argument Passing
	5.3.4. Win64 Fortran Supplement

	C++ Dialect Supported
	6.1. Extensions Accepted in Normal C++ Mode
	6.2. cfront 2.1 Compatibility Mode
	6.3. cfront 2.1/3.0 Compatibility Mode
	6.4. Extensions accepted in GNU compatibility mode (pgc++)
	6.5. C++11 Language Features Accepted
	6.6. C++14 Language Features Accepted

	Fortran Module/Library Interfaces for Windows
	7.1. Source Files
	7.2. Data Types
	7.3. Using DFLIB, LIBM, and DFPORT
	7.3.1. DFLIB
	7.3.2. LIBM
	7.3.3. DFPORT

	7.4. Using the DFWIN module
	7.5. Supported Libraries and Modules
	7.5.1. advapi32
	7.5.2. comdlg32
	7.5.3. dfwbase
	7.5.4. dfwinty
	7.5.5. gdi32
	7.5.6. kernel32
	7.5.7. shell32
	7.5.8. user32
	7.5.9. winver
	7.5.10. wsock32

	C/C++ MMX/SSE Intrinsics
	8.1. Using Intrinsic functions
	8.1.1. Required Header File
	8.1.2. Intrinsic Data Types
	8.1.3. Intrinsic Example

	8.2. MMX Intrinsics
	8.3. SSE Intrinsics
	8.4. ABM Intrinsics
	8.5. AVX Intrinsics

	Messages
	9.1. Diagnostic Messages
	9.2. Phase Invocation Messages
	9.3. Fortran Compiler Error Messages
	9.3.1. Message Format
	9.3.2. Message List

	9.4. Fortran Run-time Error Messages
	9.4.1. Message Format
	9.4.2. Message List

	Contact Information

