(lntel) Look Inside”

Intel® Inspector XE 2015

Memory and thread debugger

Agenda

Intro to Intel® Inspector XE

Analysis workflow
Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results

Integration with debugger
Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Motivation for The Inspector XE

Memory Errors Threading Errors

Problems
D Problem So

P1 * Mismatched allocation... fin

e
main (7B52)
thread_video (G444)
threadstartex (8550)

P2 @ Invalid memory access fin
Pz @ Mernory leak fin

 Data Races
 Deadlocks
* Cross Stack References

* Invalid Accesses
 Memory Leaks
* Uninitialized Memory Accesses

Multi-threading problems

* Hard to reproduce, _
. Difficult to debug » Let the tool do it for you
* Expensive to fix

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel Inspector XE: Dynamic analysis

Application Binary |€&——— Source
process

|
|
| Inspector XE scope !
|
. . |
! Dynamic binary Inspector XE GUI I
. . I
[Instrumentation - I
[| Detect Memory Problems |
1 & Target Analysis Type|| & Collection Log m 1
|
1 Problems 1
|
I Type Sources Modules Severity I
| ; A]] i
Mismatched allocati... find_and_fix_memory_errors.... find_and_fix_memory...] Error 1
! Inspector XE v : : : : _ ,
I emory leak find_and_fix_memory_errors.... find_and_fix_memory... " JRUEIRT]
1 COlleCtor @ Invalid memory acce... find_and_fix_memory_errors.... find_and_fix_memaory... s :
1 Memory not dealloc... api.cpp; mlock.c; util.cpp; vid... find_and_fix_-memory.. 8 |nzlid me. 1 + |
|
| 41 10of16 b | Al :
: Description Source Funct.. Module Object.. Offset 1
I Allocatio .. find_and_fix_mem... oper.. find_and_fix_mem.. 1008 - 1
1 161 unsigned int serial=1; find and fix memo I
1 Resu lts 162 unsigned int mboxsize = sizeof (un||(find and fix memo 1
I 163 unsigned int * local mbox = (unsi||(find and fix memo 1
| 164 find and_ fix memo |
165 for (unsigned int i1=0;i<=(mboxsiz||tkk debug.dll!loc 1
! |
! |
! |
|

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

How it looks: Visual Studio* Integration

Dq tachyon_insp_xe - Microsoft Visual Studio (Administrator) L) Y QuickLaunch (Ctri+Q) P - B X
EILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP Sign in B
O - BF-2 WM | i ‘ P Local Windows Debugger ~ |Auto - ~ Debug ~ - [~ | L -

Solution Explorer MWl find_and_fix_threading_errors.cpp r000ti2 rd0Imiz & X
@ | o-d@d ™ Detect Memory Problems Run analysis from

Search Solution Explorer (¢ S ~ " Analysis Type|| B Collection Log toolbar

L ; ‘) ¥ o #
m Solution tachyon_insp_xe" (il |5 105 G5 Problems found: Filters Sort

b [% create_and_use_suppress &,
© RAES memory leaks

@ Mismatched allelati .. TN _ G ARSI Y S 2, find_and_fix_memor}f...

1310]dx3 Janas

F Y

Maodules Severity
4 [%] find_and_fix_memory_er
P @ External Dependenci
B %+ find_and_fix_memonry
4 [%| find_and_fix_threading,

b @ External Depe “onri

Error 3

Memory leak find_and_fix_memory_errors.... find_and_fix_memory ... “JRUETGT) 1

Invalid memory acce... find_and_fix_memory_errors... find_and_fix_memory... Type

Invalid me.. 1 «

saiuadold xogjoo]

@
B Memory not dealloc... api.cpp; mlock.c; util.cpp; vid... find_and_fix_memory...

o

P %+ find_a i
b [tachyonc NO Special configuration tunct 1 Module Object... Offset g
: :
AlULAUU ... HHd_dliu_nx_inem.. oper.. find_and_fix_mem... 1008

16l unsigned int serial=1; find and fix memo

162 unsigned int mboxsize = sizeof (un||find and fix memo

163 unsigned int * local mbox = (unsi||find and fix memo

14 find and fix memo

debug.dll!loc Call stack

Memory allocation site in source code

ptimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Standalone GUI: Windows* and Linux*

|1} CA\Temp\My Inspector XE Results - Intel Inspector - B -
File View Help
‘M| B EEr| b @O
el X | Welcome | New Inspector Result -
CAT:
“‘_\L Intel Inspector XE 2015
EIE My Inspector XE
& roooti2
E r001ti2
ﬂ ro02ti2 2x-20x Detect Leaks
. r003ti2 ﬁ e
: —5] [10x-40x Detect Memory Problems|
L
- |I|][|[||]””
S e B 20x-80x Locate Memaory Problems
Analysis Time Overhead Memaory Overhead
Detect Memory Problems Copy
Medium scope memoary errar analysis type. Increases the load on the
system and the time and resources required to perform analysis. Press F1
for mare details.
[] Detect uninitialized memaory reads ~
Revert to previous uninitialized memory algorithm (not recommende
Detect memory leaks upon application exit
Detect resource leaks Project Properties...
= 5 Enable interactive memory growth detection "
6/4/2016

ptimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Key Features at a glance

Data collection

Result analyses

GUI

Compilers
supported

oS

Languages

Optimization Notice

Dynamic Memory and Threading Analysis (including .NET* analysis)
MPI applications analysis

GUI data mining: source code analysis, filtering, exploring call paths, etc.
Debugger integration

Result comparison

Problem life cycle management

Command line interface (especially useful for regression testing)

Microsoft* Visual Studio IDE integration (2010, 2012 and 2013)
Stand alone GUI on both Windows* and Linux*

Microsoft* Visual* C++ and .NET*

Intel® C/C++ Compiler XE 12.0 or higher

Intel® Visual Fortran Compiler XE 12.0 or higher
gcc

Windows* 7, 8, 8.1,
Windows* Server 2008, 2008 R2, 2012
Linux*: RedHat, Fedora, CentOS, SUSE, Debian, Ubuntu

C/C++
C# (.NET 2.0 to 3.5, .NET 4.0 with limitations)
Fortran

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE

Analysis workflow

Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results

Integration with debugger
Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: Dynamic Analysis

One-time / Optional

Choose /Create Configure
project project

Set up

Run Configure
dynamic dynamic
analysis analysis

: Launch analysis in
o Re'::::l:t‘i(:)n conjunction with debugger to
PP stop at problem(s) of interest

Collect resuit

Choose
problem

4

Investigate result

Interpret Examine
result data/ application
Resolve issue state

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: Dynamic Analysis

One-time / Optional

Choose /Create Configure

project project

Set up

Run Configure
dynamic dynamic
analysis analysis

: Launch analysis in
o Re'::::l:t‘i(:)n conjunction with debugger to
PP stop at problem(s) of interest

Collect resuit

Choose
problem

4

Investigate result

Interpret Examine
result data/ application
Resolve issue state

6/4/2016 i@ | 10

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: setup project

My Inspector XE Results - find_hotspots - Project Properties ?

J Target] Suppressions] Binary/Symbol Search] Source Search]

Launch Application
Specify and configure your analysis target: an application or a script to execute. Press F1 for more details.

Application: CATemp\find_hotspots.exe ¥ Browse...

Application parameters: v Modify...

[|Use application directory as working directory:

Working directory: CATemp v Browse...

User-defined envirp==== Ll
Specify Application, vodty.
arguments and
Microsoft* runtime ~ working directory |«

(®) Store result in the project directory: | C\Temp\My Inspector XE Results - find_hotspots

() Store result in (and create link file to) another directory

CATemp\My Inspector XE Results - find_hotspots Browse...

Result location:
CATemp\My Inspector XE Results - find_hotspots\r@@@/{at} b

OK Cancel

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: Dynamic Analysis

One-time / Optional

Choose /Create Configure
project project

Set up

Run Configure
dynamic dynamic
analysis analysis

: Launch analysis in
o Re'::::l:t‘i(:)n conjunction with debugger to
PP stop at problem(s) of interest

Collect resuit

Choose
problem

4

Investigate result

Interpret Examine
result data/ application
Resolve issue state

6/4/2016 i@ | 12

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: select analysis and start

Intel Inspector XE 2015

(| Configure Analysis Type

A Analysis Type

2. Click Start
; 10x-40x Detect Deadlocks
E] 200-80 Detect Deadlocks and Data Races
[
Locate Deadlocks and Data Races il
Tt E m Locate Deadlocks and Data Races
Memory Error Analysis Analysis Time Overhead Memory Overhead
Threading Error Analysis
Custom Analysis Types Locate Deadlocks and Data Races Copy
I Widest scope threading error analysis type. Maximizes the load on the system

: and the time and resources required to perform analysis; however, detects the

1. Select Analy5|s widest set of errors and provides context and maximum detail for those errors.

Type Press F1 for more details.

[| Terminate on deadlock

Stack frame depth: |16 W

Scope; Mormal W

Remove duplicates

Project Properties...

[| Use maximum resources

6/4/2016

ptimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: Dynamic Analysis

One-time / Optional

6/4/2016

Investigate result

Choose /Create
project

Set up

Run
dynamic
analysis

Configure
project

Configure
dynamic
analysis

Rebuild

Collect resuit

Choose
problem

Interpret
result data/

Launch an:l s:)s in
ke conjunction with debugger to
application stop at problem(s) of interest

Resolve issue ! 3

4

Examine
application
state

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: manage results

Fh?fl Intel Inspector XE 2015

Detect Deadlocks and Data Races
@ Target Analysis Type|| = Collection Log | K RITLTLETY Powerful filtration
Problems Double click on Problem feature
Da @ Type to navigate to source Stal Data race

=P @ Data race find_and_fix_threading_errors.cp.. find_and_fix_threading_errors.exe R New Source
=p2 = Data race winvideo.h find_and_fix_threading_errors.exe ' New find_and_fix_thre...
Data race winvideo.h:270 find_and_fix_threading_errors.exe R New task_scheduler_i..
Data race winvideo.h:270 find_and_fix_threading_errors.exe R New winvideo.h
ata race winvideo.h:201; winvideo.h:270 find_and_fix_threading_errors.exe Module
Code locations grouped -
into Problems to simplify
results management LTI 'main (4960)
Read winvideo.h:270 next_frame find_and_fix_threading_errors.exe thread_video (4672)

268 find and fix threading er ¥ TBB Worker Thread (2848)
269 if(!running) return false; find and fix threading er *TBB Worker Thread (1724)

270 g updates++; // Fast but inaccura)} .
271 if (!threaded) while (loop once (thi TBB Worker Thread (6004)
0t else if(g handles[1]) { Read: winvideo.h:270

ead winvideo.h:270 next_frame find_and_fix_threading_errors.exe

268 find and fix threading er Write: winvideo.h:270
269 if(!running) return false; find and fix threading er

270 g updates++; // Fast but inaccura
271 if (!threaded) while(loop once (thi
272 else if (g handle=[1]) {

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: navigate to sources

@ e Intel Inspector XE 2015
IWrite - Thread TBB Worker Thread (1724) (find_and_fix_threading_errors.exe!next_frame - winvideo.h:270) g [
|winvideo.h | Disassembly (find_and_fix_threading_errors.exel0x9257) Call Stack |

267 bool video::next frame() <. Bfind_and_fix_threading_errors.exelnext_fral
268 |

269 if{!running) return fals=se;

270 g updates++; // Fast but inaccurate counter. The data race h

271 if (!threaded) while{loop once(this));

272 else if (g handles=[1]) {

273 SetEvent (g handles[1]); Problematic line in source code

274 YIELD TC THREAD();

Call stacks

1
q

A
|Rear.l - Thread TBBE Worker Thread (6004) (find_and_fix_threading_errors.exelnext_frame - winvideo.h:270) w [
|winvia -~ h| Disassembly (find_and_fix_threading_errors.exel0x924e) Call Stack |
267 1 '20::next frame () - Nfind_and_fix_threading_errors.exelnext_fral
All code locations for a prOblem find_and_fix_threading_errors.exeloperato
265 if (!running) return false;
270 g_updates++; // Fast but inaccur Gujitch to disassembly for more details
271 if (!threaded) while{loop once(th
272 el=e if{g_handles[l]} {
273 SetEvent (g_handles[1]);
274 YIELD TC THREAD(); -
T4 >
6/4/2016 iﬁ@ | 16

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow: timeline view

™ Detect Deadlocks and Data Races Intel Inspector XE 2015
Problems % Q Filters Sort ¥
IDa @& Type Sources Modules State “~ j Datarace 2 -
=P @ Data race find_and_fix_threading_errors.cp... find_and_fix_threading_errors.exe R New Source
=p2 @ Data race winvideo.h find_and_fix_threading_errors.exe R New b find_and_fix_thre.. 1
Nata race winviden h-270 find_and fiv threadinn errars.exe R New task scheduler i.. 1
Individual Code Locations are seen in Timeline cexe Rnew winvideo.h 1
view in the context of their respective threads sexe RNew _ [jodule .

q b Code Locations: Data .. 2 | Timeline
Description Source Function Module *ﬂiﬂain (4960)
Read winvideo.h:270 next_frame find_and_fix_threading_errors.exe |‘th[ead_videg (4672)
268 | find and fix threadin 11 TBB Worker Thread (2848)
2E5 if (!running) return false;||find and fix threadin i::']'BB Worker Thread (1724)
270 g updates++; f/ Fast but i I .
271 if (!threaded) while (loop d)/ TBB Worker Thread (6004)
272 elze if (g handle=[1]) {
.]]] Read: winvideo.h:270
Read winvideo.h:270 next_frame find_and_fix_threading_errors.exe '
268 | find and fix threadin Write: winvideo.h:270
269 if(!running) return false;||find and fix threadin
270 g updates++; // Fast but i
271 if (!threaded) while (loop_g Hover gives details
272 elze if (g handle=[1]) { - -
6/4/2016

ptimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow

Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results

Integration with debugger
Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Memory problem Analysis

Analyzed as software runs
« Data (workload) -driven execution
* Program can be single or multi-threaded
« Diagnostics reported incrementally as they occur

Includes monitoring of:
 Memory allocation and allocating functions
« Memory deallocation and deallocating functions
« Memory leak reporting
* Inconsistent memory APl usage

Analysis scope
* Native code only: C, C++, Fortran
* Code path must be executed to be analyzed
 Workload size affects ability to detect a problem

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Memory problems

Memory leak
* ablock of memory is allocated
* never deallocated char *pStr = (char*) malloc(512);
 not reachable (there is no pointer available | "eturn;

to deallocate the block)
» Severity level = (Error)

// Memory leak

Memory not deallocated // Memory not deallocated

* ablock of memory is allocated static char *pStr = malloc(512);

* never deallocated return;

 still reachable at application exit (there is a
pointer available to deallocate the block).

« Severity level = (Warning)

Memory growth // Memory growth

* ablock of memory is allocated /) start , o

. art measuring grow
not deallocat_ed,wnhlm a.specn‘|c time static char *pStr = malloc(512);
segment durlng appllcatlon execution. // Stop measuring growth

» Severity level = (Warning)

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Memory problems

Uninitialized memory access /i TS e Geiey Aseese
* Read of an uninitialized memory location void func()
{
int a;
int b = a * 4;
h
Invalid Memory Access fi Dnvalisl [Riery Aecess
* Read or write instruction references memory | cnar *pstr = (char*) malloc(20);
that is logically or physically invalid free(pStr);
strcpy(pStr, "my string");
Kernel Resource Leak Jf Termel Heselres Ll
« Kernel object handle is created but never HANDLE hThread = CreateThread(e,
closed 8192, worke, NULL, ©, NULL);
return;
GDI Resource Leak // GDI Resource Leak
* GDI object is created but never deleted HPEN pen = CreatePen(@, @, 0);
return;

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Analyze Memory Growth
During Analysis:

Set Start Point

Fz. Reset Growth Tracking Set End Point

<7 Measure Growth

%, Reset Leak Tracking
=¥ Find Leaks

(I

Detect Memory Problems

& Target Analysis Type || & Collection Log m

Problems

[a & Type Sources Modules Object .. State
. HP @ Memory leak ixe_mem_growth.cpp ixe_mem_growth.e.. 144 R New
AnalyS|S ReSUItS: P & Memory growth [Unknown]; ixe_mem_gro.. Unknown; ixe_mem... 272 Re New
Start memory growth det... [Unknown] Unknown Fr Mot fixed
Memory Growth Memory growth Ixe_mem_growth.cpp:7 ixe_mem_growth.e.. 272 Y New
Problem Set End memory growth det.. [Unknown] Unknown F Mot fixed
L]
41 1of1 b
Description Source Function Module Object Size Offset
COde locatlon for Allocation site ixe_mem_growth.cpp:7 transaction ixe_mem_growth.exe 272
eaCh bIOCk Of memory 5 { ixe mem growth.exe!transaction
& char *str; ixe mem growth.exe!main - ixe m
that was allocated bUt 7 str = (char*) malloc(lg); ixe mem growth.exe! tmainCRTSta
8 } ixe mem growth.exe!mainCRTStart
nOt de_allocated =) kernel32.dl]l!BaseThreadInitThun
during the time period

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

On-demand leak detection

* Check code regions between points
B Stop '‘A' and 'B' for leaks

% Close Set Start Point * Check daemon processes for leaks

%, Reset Growth Tracking * Check crashing processes for leaks

" Measure Growth Set End Point

%, Reset Leak Tracking

¥ Find Leaks £:7

Detect Memory Problems

& Target Analysis Type || B¢ Collection Log

. . Problems
AnalySIS Resu lts' Da & Type Sources Modules Object Size State
=P @ Memeory leak ixe_mem_growth.cpp ixe_rnem_growth.exe 192 R Mew
M emo ry Lea k Memory leak e_mem_growth.cppd ixe_mem_growth.exe 192 1 Mew
S_hown during run HP2Z A Memory growth [Unknown]; ixe_mem_gr... Unknown; ixe_merm_gr... 368
time 41 1of1 [

Description Source Function Module Object Size Offset

Allocation site ixe_rmem_growth.cpp:? transaction ixe_mem_growth.exe 192
3 { ixe mem growth.exe!transaction
char *str; ixe mem growth.exe!main - ixe
3tr = (char*) malloc(l&); ixe mem growth.exe! tmainCRTISt
ixe mem growth.exe!mainCRTStar
malloc{4): kernel32.dll!BaseThreadlnitThu

6/4/2016 i@ | 23

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Define analysis scope in source code

#include <ittnotify.h>

void ProcessPipeline()

{
__itt heap_reset _detection(_ _itt heap leaks); // Start measuring memory leaks
pipeline_stagel(); // Run pipeline stage 1
__itt heap_record(__itt heap_leaks); // Report leaks in stage 1
DoSomeOtherWork();
__itt heap_reset detection(__itt heap_growth); // Start measuring memory growth
pipeline_stage2(); // Run pipeline stage 2
__itt heap_record(__itt heap_growth); // Report memory growth in stage 2

}

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

* Lab 1. Finding memory errors

Threading problem Analysis
Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results
Integration with debugger

Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

@ |

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
« Lab 2. Finding threading errors

Preparing setup for analysis

Managing analysis results

Integration with debugger

Automated regression testing

User API

Using the Intel® Inspector XE with MPI

Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Threading problem Analysis

Analyzed as software runs
« Data (workload) -driven execution
* Program needs to be multi-threaded
« Diagnostics reported incrementally as they occur

Includes monitoring of:
 Thread and Sync APIs used
 Thread execution order
* Scheduler impacts results
« Memory accesses between threads

Analysis scope
* Native code: C, C++, Fortran
* Managed or mixed code: C# (NET 2.0 to 3.5, .NET 4.0 with limitations)
 Code path must be executed to be analyzed
* Workload size doesn't affect ability to detect a problem

6/4/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Data race

CRITICAL_SECTION cs;

// Preparation

int *p = malloc(sizeof(int)); // Allocation Site

*p = 0;

InitializeCriticalSection(&cs);

Write -> Write Data Race

Thread #1

Thread #2

*p = 1; // First Write

EnterCriticalSection(&cs);
*p = 2; // Second Write
LeaveCriticalSection(&cs);

Read -> Write Data Race

6/4/2016

Thread #1

Thread #2

int x;
X = *p; // Read

EnterCriticalSection(&cs);
*p = 2; // Write
LeaveCriticalSection(&cs);

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Deadlock

CRITICAL_SECTION csi;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;

InitializeCriticalSection(&csl); // Allocation Site (csl)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

Thread #1

EnterCriticalSection(&csl);

X++;
EnterCriticalSection(&cs2);
y++;
LeaveCriticalSection(&cs2);

LeaveCriticalSection(&csl);

Thread #2

EnterCriticalSection(&cs2);

y++;
EnterCriticalSection(&csl);
X++;
LeaveCriticalSection(&csl);

LeaveCriticalSection(&cs2);

6/4/2016

Optimization Notice

NaaAdla-l
Lock Hierarchy Violation

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Deadlock

CRITICAL_SECTION csi;
CRITICAL_SECTION cs2;
int x = 0;
int y = 0;

InitializeCriticalSection(&csl); // Allocation Site (csl)
InitializeCriticalSection(&cs2); // Allocation Site (cs2)

Thread #1 Thread #2
EnterCriticalSection(&csl); EnterCriticalSection(&cs2);
X++; y++;
EnterCriticalSection(&cs2); EnterCriticalSection(&csl);
y++; X++;

LeaveCriticalSection(&cs2);
LeaveCriticalSection(&csl);

LeaveCriticalSection(&csl);
LeaveCriticalSection(&cs2);

Deadlock

1. EnterCriticalSection(&cs1); in thread #1

2. EnterCriticalSection(&cs2); in thread #2

6/4/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Lock Hierarchy Violation

EnterCriticalSection(&cs1); in thread #1
EnterCriticalSection(&cs2); in thread #1
EnterCriticalSection(&cs2); in thread #2

-l

EnterCriticalSection(&cs1); in thread #2

Cross-thread Stack Access

// A pointer visible for two threads
int *p;

CreateThread(..., thread #1, ...);
CreateThread(..., thread #2, ...);

Thread #1 Thread #2
// Allocated on Thread #1's stack // Thread #1's stack accessed
int q[1024]; *p = 2;
P=0q;
q[@] = 1)
6/4/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

Lab 1. Finding memory errors

Threading problem Analysis

* Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results
Integration with debugger

Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

@ | -

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
* Lab 2. Finding threading errors

Preparing setup for analysis

Managing analysis results

Integration with debugger
Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Prepare build for analysis

Compile
* Use dynamically linked thread-safe runtime libraries
/MDd on Windows
* Generate symbolic information
/ZI on Windows
« Disable optimization
/Od on Windows

Link
* Preserve symbolic information
/DEBUG on Windows

« Specify relocatable code sections
/FIXED:NO on Windows

Prior to using Inspector XE, sources should compile & link cleanly

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Search directories

Inspector XE needs to locate paths to:
* Binary files
* Symbol files
* Source files

No need for extra search directories configuration if:
* Binary, symbol and source files were not modified and moved
* Results are collected and viewed on the same machine

find_and_fix_memory_errors - Project Properties E

[Target l Suppressions l Binary/Symbol Search] Source Search l

Additional Source File Locations

Specify local directories to include in the search. Press F1 for more details.

Search Directories

Chprojects\tachyo n\source5|

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Correctness analyses overhead

Inspector XE tracks
 Thread and Sync APIs
« Memory accesses

Inspector XE performs binary instrumentation using PIN

* Dynamic instrumentation system provided by Intel
(http://www.pintool.org)

* Injected code used for observing the behavior of the running process
* Source modification/recompilation is not needed

¥

Increases execution time and memory consumed (potentially
significantly)

The Inspector XE dilates both time and memory consumed significantly!

6/4/2016 i@ | 36

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

http://www.pintool.org/

Workload guidelines

Use small data set
* Smaller number of threads
* Minimize data set size (e.g. smaller image sizes)
* Minimize loop iterations or time steps
* Minimize update rates (e.g. lower frames per second)

Use small but representative data set
* Only actually executed code paths are analyzed

Scale down workload to speed up analysis!

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Analysis scope guidelines

There is a trade-off between analysis speed and thoroughness

* Low level of analysis implies high speed and missing problems
« Start with low level analysis, then increase thoroughness, e.g.:
1. Detect Leaks
2. Detect Memory Problems
3. Locate Memory Problems

Limit analysis scope
* Exclude unnecessary modules by configuring analysis
* Use collection control API

Scale down workload to speed up analysis!

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Include and Exclude modules

My Inspector XE Results - find_and_fix_threading_errors - Project Propertie: L& ﬂ

J Target [Suppressions] Binary/Symbol Search l Source Search]

Launch Application 3. Choose modules you want to l
Specify and configure the application executable ¢ jnclude or exclude from ana[ysis

ryay - -

Modules
C:\home\tbb_debug.dll]

C\home\projects\tachyon_insp_xe\tachyon_insp_xe\vc8\My Inspector XE Res

Result location:
Chhomel\projects\tachyon_insp_xe\tachyon_insp_xe\vc8\My Inspector XE Res

-~ Advanced

() Do not apply suppressions Add new line

Suppressions: @ Apply suppressions

Child application:

Enable collection progress information

(") Include only the following module(s) l oK] ’ Cancel l

(@ Exclude the following module(s):

2. Press Modify

Modules:

1. There are two options:
- Include modules of interest

-

- Exclude unnecessary modules ok || cancel |

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
* Lab 2. Finding threading errors

Preparing setup for analysis

Managing analysis results

Integration with debugger
Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Filtering - focus on what is important

Filter — Show only one source file

Problems

la @& Type Sources Modules - St. § Source

=Pl @ Mismatched allocation/de... find_and_fix_memory... find_and_fix_mem... apl.cpp

Fe
=HpP2 @ Memory leak find_and_fix_memory... find_and_fix_mem... 28672 R
Fe

find_and_fix_memory_error...

T O 7% —

Invalid memory access find_and_fix_memory... find_and_fix_mem... util.cpp
Memaory not deallocated api.cpp; util.cpp; vide ... find_and_fix_mem ... video.cpp
Memaory not deallocated video.cpp:82 find_and_fix_mem... 8192 Fe Module
Memaory not deallocated util.cpp:163 find_and_fix_mem... 1808 R find_and_fix_memory_error.. 4
Memory not deallocated api.cpp:218 find_and_fix_mem.. 376 Fe
State b4

_".”‘y related errors are shown

Type Sources Modules Object.. St. § Warning 1| 58
S S Memory not deallocated api.cpp; util.cpp; vide... find_and_fix_mem... 10376 R Type
Memory not deallocated video.cpp:82 find_and_fix_mem... 8192 R Memory not deallocated 1
Memory not deallocated util.cpp:163 find_and_fix_mem... 1808 Fe Al
Memory not deallocated api.cpp:218 find_and_fix_mem... 376 Fe api.cpp 1 item(s)
Module
find_and_fix_memory_error...
~ State
6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Suppressions: manage false errors

Suppressions are marked

or hidden entirely
a Type Sources

Problems

Modules

Name: Suppression Save in:

Choose problem type =P &

Memaory growth [Unknown]; ixe_mem...

st Lype; lMemory leak =

Rule:

Objec... St..

Unknown; ixe_m... 272 Fe

Code Location Descr.. Number of Frame... Start Frame in Rule

Allocation site - _ ixe_mem_growth.exeltransaction - i...

Select Stack Frame(s)

Create suppression rule based on selected call stack frame(s):

Choose stack frames

to match the rule Use in Rule Module Function Source

| ’ B ‘ixe_mem_grow... ixe_mem_gro N v |7 v

i iXe_mem_grow... main ixe_mem_gro ...
I ixe_mem_grow.. _tmainCRTStart.. crtexe.c

I ixe_mem_grow.. mainCRTStartup crtexe.c

i~ kernel32.dll BaseThreadlInit... * (any)

Line

16
555
370

* (any)

e Suppressions are saved in one or more files
Tool suppresses all files from specified folder(s)

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Suppressions: extended features

Import suppressions from third party tools:
Valgrind* and Rational Purify*

inspxe-cl -convert-suppression-file -
from=known_problems.pft -to=known_problems.sup

User editable suppressions

suppression = {
name = "Suppress all diagnostics on memory
which has been allocated by myalloc() 1n alloc.c";
type = { reachable_leak }
stacks = {
allocation = {
func=myalloc, src=alloc.c;

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Exporting results

Save results with sources — copy and browse anywhere without
setting search paths

CLI: inspxe-cl -export -archive-name r000mi2.inspxez
' -include-sources -result-dir r0O00mi?2

GUI:
e — 2 " Export 'r001mi2" result | |

3 CAhom e\productsil...

- ixe_mem_growth | Saveto: C:home\001miZinspxez
B tac 2
= m h]'ﬂll_l.ll (= Open Result [¥] Indude source files

W r000mi Export Result...

m : Re-inspect

m r002miZ Re-resolve

% Delete Result

Fename Result

53 Copy Result Path to Clipboard

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Problem State Lifecycle

ID &
=Pl
= P2

o
) N Edit Source

Sources Modules Obje... State '~ | 182 Copy to Clipboard
find_and_fi.. find_and_.. F Mot fixed Explain Problem
api.cpp; uti... find_and_... P> Not fixed - Create Problem Report... Not fixed
find_and_fi... find_and_.. 1232 | = Not fixed Change State > E““:meG
. . . . Merge States... xe
find_and_fi.. find_and_.. 672 F Mot fixed g i [
find_and_fi.. find_and_.. 672 F Mot fixed b Deferred

L) Problem

@ Invalid memo...

iy Memory not ...

Memary leak

@ Memory leak
@ Memory leak

______ StateDescripton

New Detected by this run

Not Fixed Previously seen error detected by this run

Not a Problem Set by user

Confirmed Set by user

Fixed Setby user

Regression Error detected with previous state of “Fixed”

Deferred Set by user

6/4/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Merge arbitrary results

« Merge states from another result to current one
« Incorporate states from other users

Problems
IDa @& Problem Sources Modules Obje... State
Invalid memor... find_and_fi... View Source

HP2 A& Memory notd.. api.cpp; uti.. find_and_.. Edit Source

HP3I @ Memory leak find_and_fi... find_and_..] 53 Copy to Clipboard

=HP4 @ Memory leak find_and_fi... find_and_... Explain Problem

=P @ Memory leak find_and_fi.. find_and_.. Create Problem Eeport...

#P6 @ Memory leak find_and_fi... find_and_ Change State ,
Select a result with an overlapping assortment of problems:
Chhome\projects\tachyon_insp_xe\tachyon_insp_xe\v Browse...

Merge | | Cancel |
6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Team collaboration

Problem reports
* Plain text reports with stacks and source snippets
 Exported Inspector XE results
Share suppression files with the team
Automated regression testing

[m.- Detect Memory Problems

i Analysis Type || B Collection Log

Problems

I0 an, Problem Sources Modules Obiject Size Skate

+p1os @ Memary leak Window, ... StreamingTestapplicatio.., 520 Fe Mew

HP1os @ Memory leak. Streamin... Streamingviewport.dll 19292 Fe Mew

Fp1o7 @ Memory leak. Streamin,., Streamingviewport,dl 36 Fe Mew

FPiog @ Memary leak, Streamin, .. Streamingiiewport.dll a556 Fe Mew

rA 1 1 b k. H {H bl ERnTmlmlml Fi_r -,
Problems Report E]

“ews Problem PL10S: Error: Memary leak
G IviswsStorelLocal_aa037014 _viewlvobs\ISIMG, components! Streaming Streaminglappt Pathologyiewer
1 Pathologyiewer|\Window, xaml, cs(430): Error ¥153: P10S: Memory leak: Allocation site: Funckion
StreamingTeskApplication: :MainFrame: :PrefetchingCreryiswstartingPaint: Module D:Client_withLeakiwin3z
1 Skreaming TestApplication, exe

Stack {1 of 1 instancels)

=StreamingTestApplication, exe! StreamingTeskApplication: :MainFrame:: PrefetchingCverWiewstartingPoint - G:
IWiewStorelLocal_aal37014_viewvobs ISIMG component st Streaming! Streaming) App'PathologyYiewer

LW T o g | (NH L | 1 Ao

HEEE BB EE

6/4/2016 .

ptimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
* Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results

Integration with debugger

Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Debugger integration

Break into debugger wy 22 | Detecties
* Analysis can stop when it detects a ;'5] i LScl oy e
prob[em 20%-80x Locate Memory Problems

Analysis Time Overhead

 Useris putinto a standard

. . Col
debugg|ng session Detect Memory Problems py
Medium scope memory error analysis type. Increases the load on
. * the system and the time and resources required to perform
Windows

analysis. Press F1 for more details.

* Microsoft* Visual Studio Debugger

() Analyze without debugger

L| N ux* Run an analysis and report all detected problems. Use
to view correctness issues without stopping in the
° gdb debugger to examine them.

@ Enable debugger when problem detected

Run an analysis under the debugger and stop every
time a problem is detected. Use to allow investigation
of every problem detected.

m

(") Select analysis start location with debugger

Run target application under the debugger with
analysis disabled until you choose to turn on analysis.
Before starting, set a code breakpoint to stop execution
prior to where you want analysis to begin. Sele...

6/4/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Debug this problem

r010mi2 r008mi2 + X gEnleeele simple_dll.cpp @ X -

™ Detect Memory Problems Intel Inspector XE 2015

@ Target Analysis Type || % Collection Log m

Problems

Type
=P @ Memory leak

Invalid memory access

Right click on a problem

o HILCAT (s & New

= Mat f

MC.Cpp mc.exe
View Source

Edit Source
=3 Copy to Clipboard
Explain Problem

2MOory acCess

g1 1ofl [Al

Description Source Function Module Object Create Problem Report... D (5556)

Write mc.cpp:150 main mc.exe Debug This Problem

148 mc.exe!s

149 for (unsigned int i = 0;||mc.exe!| Change 5State 4

150 lr:ncal_mbr:nx[i] = 0; mc.exe !l Mergef . .
151 RERNEL3%+ e Inspector XE will set breakpoint,
132 return 0; ntdll.dll!BRtlRed]

and launch debug session at the
place of the problem occurrence

w

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Debug this problem

r010mi2 r000mi2 Disassembly mcepp R X simple_dll.cpp = X
(Global Scope) ~ | @ main() -
{ +
unsigned int max_objectid = 28; “
unsigned int mboxsize = sizeof(unsigned int)*max_objectid;
unsigned int * local mbox = (unsigned int *)malloc(mboxsize); 1
for (unsigned int 1 = @; 1 <= (mboxsize / (sizeof(unsigned int))); 1i++)
[local mbox[i] = 6: . .
@ local mboxli]| 4261281277 = Problematlc code location -
4 with context values 3
Autos v I X | |Problem Details v I X
Name Value Type &1 Source @ Intel Inspector € Disable Breakpoint F» Re-enabl
@i 28 unsigned int Invalid memory access at 0x002e5ac0 for thread 5088
> @ local_mbox O0x002e5a50 {0} unsigned int *
@ local_mbox[i] 4261281277 unsigned int) Inspector XE prOblem_ context
@ mboxsize 112 unsigned int Descri.. a Source wnctl.. Module ObjectS.. Offset
EIWrite H mc.cpp:150 main mc.exe
Local variable values 148
145 for (unsigned int 1 = 0; i1 <= (mbox
150 local mbox([i] = 0;
151
UGl | ocals Threads Modules Watch 1 Mol [SRNMEEN Call Stack Breakpoints QOutput

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Debugger options

2x-20x Detect Leaks
@« =
: —_ m Detect Memory Problems|

&
- C 20x-80x Locate Memory Problems "”l]l]l]
Memaory Error Analysis v
Analysis Time Overhead Memary Overhead
Detect Memory Problems Copy

Medium scope memory error analysis type. Increases the load on the system and
the time and resources reguired to perform analysis. Press F1 for more details.

() Analyze withou*awemoes :
o __ Start debugger session for
un an analysis a
correctness s« @ach problem detected em.
(_) Enable debugger when problem detected
Run an analysis under the debugger and stop every time a problem is
detected. Use to allow investigation of every problem detected.
(®) Select analysis start location with debugger
E;‘S - Inspector XE starts analysis only f't'c
stop exec after paSS|ng a breaprInt ug = b

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

Lab 1. Finding memory errors

Threading problem Analysis
Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results

Integration with debugger

Automated regression testing

User API
Using the Intel® Inspector XE with MPI
Summary

@ | -

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Automated regression testing

Data collection from script Create a baseline

« Command line interface (CLI) Collect result /
for running analysis g'g T
* Child process analysis g'g
_ g§ Create
Reporting CLI 4 -
* Exporting results (pack and send)
_ Change source code
* Textreports: XML, CSV and plain text ¥
* Detect new problems automatically Collect

result data

Report
result data

Check for
regressions

Check for regressions

Interpret
result data

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Command Line Interface

e inspxe-clis the command line:

— Windows: C:\Program Files\Intel\Inspector XE
\bin32\1nspxe-cl.exe

— Linux: /opt/intel/inspector_xe/bin64/inspxe-cl
e Help:
inspxe-cl -help

« Setup command line with GUI

E Configure Analysis Type or XE 2015

[A anayeis e
[% Close |

220 Detect Leais
- %

-— [T Detect Memory Problem
el

Memary Ermor Analysis w 20e-80x Locate Memory Problems .

Analysis Time Overnead Memaory Overhiead S8

Detect Memory Problems Cogy z
Medium scope memary error analysis type. Increases the load on the o
gystemn and the time and resources required 1o perform analysis. Press
r'hd L' F1 for more details. i
Comma Iine... , .

| Detect Uninitialized memory reads

| Revert to previows uninitialiZéd-mamory algorithm (not recommenc
W Detert memory beaks upan application exit

_Proji:f."l Properties.,

+| Datect rasource laaks

b I Command Line...

6/4/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collect results and create baseline

Collect data Result name

inspxe-cl|-collect/mil -r r002mil -- D:\tests\my_app.exe

Inspector XE Analysis type Target program
command line

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collect results and create baseline

inspxe-cl -collect mil -r r0O02mil -- D:\tests\my_app.exe

_ _ Filter particular modules

inspxe-cl -collect mil

-module-filter modulel.d11,module2.d11| -module-filter-
mode exclude -- D:\tests\my_app.exe

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collect results and create baseline

inspxe-cl -collect mil -r r0O02mil -- D:\tests\my_app.exe

inspxe-cl -collect mil
-module-filter modulel.dl11,module2.d11 -module-filter-
mode exclude -- D:\tests\my_app.exe

inspxe-cl -collect mil -executable-of-interest
mem_error.exe| --|D:\tests\startup_script.bat

Analyze only target executable Run application from script

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collect results and create baseline

inspxe-cl -collect mil -r r002mil -- D:\tests\my_app.exe

inspxe-cl -collect mil
-module-filter modulel.dl11,module2.d11 -module-filter-
mode exclude -- D:\tests\my_app.exe

inspxe-cl -collect mil -executable-of-interest

MEM_Error.exe -mmissst ottt ai i it
Suppress non-interesting problems

inspxe-cl |-create-suppression-file “D:\tests\mySup”
-result-dir r00Z2mil

6/4/2016 i@ ‘ =

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collect results and create baseline

inspxe-cl -collect mil -r r002mil -- D:\tests\my_app.exe

inspxe-cl -collect mil
-module-filter modulel.dl11,module2.d11 -module-filter-
mode exclude -- D:\tests\my_app.exe

inspxe-cl -collect mil -executable-of-interest
mem_error.exe -- D:\tests\startup_script.bat

inspxe-cl -create-suppression-file “D:\tests\mySup”

-result-dir r002mil Get baseline result

inspxe-cl -collect mil -suppression-file |"D:\tests\mySup"
-- D:\tests\my_app.exe

6/4/2016

=

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collect results and create baseline

inspxe-cl -collect mil -r r002mil -- D:\tests\my_app.exe

inspxe-cl -collect mil
-module-filter modulel.dl11,module2.dl1l -module-filter-
mode exclude -- D:\tests\my_app.exe

inspxe-cl -collect mil -executable-of-interest
mem_error.exe -- D:\tests\startup_script.bat

inspxe-cl -create-suppression-file “D:\tests\mySup”
-result-dir r002mil

inspxe-cl -collect mil -suppression-file "D:\tests\mySup"

" Findregressions comparingto the baseline

inspxe-cl -collect mil |-baseline-result mil_base --
D:\tests\my_app.exe

6/4/2016

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collect results and create baseline

inspxe-cl -collect mil -r r002mil -- D:\tests\my_app.exe

inspxe-cl -collect mil
-module-filter modulel.dl11,module2.dl11 -module-filter-
mode exclude -- D:\tests\my_app.exe

inspxe-cl -collect mil -executable-of-interest
mem_error.exe -- D:\tests\startup_script.bat

inspxe-cl -create-suppression-file “D:\tests\mySup”
-result-dir r002mil

inspxe-cl -collect mil -suppression-file "D:\tests\mySup"
-- D:\tests\my_app.exe

inspxe-cl -collect mil -baseline-result mil_base --
D:\tests\my_app.exe

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Reporting: regression status

inspxe-cl -report status -r r002mil

9 problem(s) found

2 Investigated

7/ Not i1nvestigated
Breakdown by state:

2 Cconfirmed

4 Not fixed

2 Regression

1 New

6/4/2016

Optimization Notice

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Reporting: problem list

inspxe-cl -report problems -r r002mil

Pl: Error: Memory leak

P1.9: Memory leak: 499500000 Bytes: New
/home/test.cpp(31): Error X9: Allocation site: Function
main: Module /home/test

P2: Error: Memory leak

P2.10: Memory leak: 99900000 Bytes: New
/home/test.cpp(32): Error X10: Allocation site:
Function main: Module /home/test

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Reporting: extended problem list

inspxe-cl -report problems -report-all -r r002mil

Pl: Error: Memory leak

P1.9: Memory leak: 499500000 Bytes: New
/home/test.cpp(31): Error X9: Allocation site: Function
main: Module /home/test
Code snippet:

29 __1tt_heap_record_memory_growth_begin();
30 for (i=0; i < 1000; i++) {
>31 a();
32 b(O;
33 free(p3);

Stack (1 of 1 instance(s))

>test!main - /home/test.cpp:31
Tibc.so.6!__1libc_start_main - /1i1b64/1ibc.so.6:0x1lecd9
ex!_start - /home/test:0x3ch4

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Reporting: other CLI options

XML output
inspxe-cl -report problems -format=xml -r r002mi3

CSV output

inspxe-cl -report problems -format csv -csv-delimiter tab
-report-output ./out/observations.csv

Filter from CLI

inspxe-cl -report problems -filter source=combine.cpp -
filter investigated=not_investigated

Export full result

inspxe-cl -export -archive-name rOOOmi2.inspxez -include-
sources -result-dir r0O00mi2

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
* Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results
Integration with debugger
Automated regression testing

User API

Using the Intel® Inspector XE with MPI
Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel Inspector XE: User APIs

Enable you to
* Control collection, limit analysis scope
* Specify non-standard synchronization primitives
* Specify custom memory allocation primitives

To use user APIs:
* Include ittnotify.h, located at <install dir>/include
 |nsert itt * notifications in your code

 Linktothe libittnotify.1lib file located at <install dir>/
<1ib32|1ib64>

* Available for C/C++ and Fortran

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collection control APlIs

e Besew

void __itt_suppress_push(Stop analyzing for errors on the current thread
unsigned int etype)

void __itt_suppress_pop (Resume analysis
void)

void _itt_suppfess_énark_rznge(Suppress or unsuppress error detection for the
__itt_suppress_mode_t mode, T :
Unsigned int etype, specific memory range (object).
void * address,
size_tsize);

void __itt_suppress_clear_range(Clear the marked memory range
__itt_suppress_mode_t mode,

unsigned int etype,
void * address,
size tsize);

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collection control APlIs

#include <ittnotify.h>

#pragma omp parallel
__itt_suppress_push(
__itt_suppress_threading_errors);
/* Any threading errors here will be
ignored by the calling thread.
In this case, each thread in the region */
not_analyzed code();

__itt_suppress_pop();
/* Any threading errors here will be
seen by Inspector*/

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Collection control APlIs

#include <ittnotify.h>

int variable_to_watch;
int other_variable;

// Change the default mode by using NULL and © as address and size
__itt_suppress_mark_range(
__itt suppress_range,
__itt suppress_threading errors,
NULL,
0);

// Ensure we see errors on variable to_watch
__itt_suppress_mark_range(
__itt_unsuppress_range,
__itt suppress_threading errors,
&variable to watch,
sizeof(variable to watch));

#pragma omp parallel

variable to_watch++; // Race will be reported
other_variable++; // Race will not be reported

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Custom memory allocation

#include <ittnotify.h>
__itt heap_function my_allocator;
__itt heap_function my_reallocator;

__itt heap_function my_freer;

void* my malloc(size t s)

{
void* p;
__itt_heap_allocate_begin (my_allocator, s, 0);
p = user_defined malloc (s);
__itt_heap_allocate_end (my_allocator, &p, s, 9);
return p;
}
... // Do similar markup for custom “realloc” and “free” operations

// Call this init routine before any calls to user defined allocators
void init_itt_calls()

{
my _allocator = ittt heap function _create("my malloc", "mydomain");
my reallocator = _itt heap function create("my realloc", "mydomain");
my freer = ittt heap function_create("my free", "mydomain");

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Custom synchronization

#include <ittnotify.h>

CSEnter (MyCriticalSection * cs)

{
while(cs->LockIsUsed)
{
if(cs->LockIsFree)
{
// Code to acquire the lock goes here
__itt_sync_acquired((void *) cs);
}
}
}
CSLeave (MyCriticalSection *cs)
{
if(cs->LockIsMine)
{
__itt_sync_releasing((void *) cs);
// Code to release the lock goes here
}
}

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
* Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results
Integration with debugger
Automated regression testing
User API

Using the Intel® Inspector XE with MPI

Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Using the Intel® Inspector XE with MPI

« Compile the inspector example.c code with the MPI scripts

e Use the command-line tool under the MPI run scripts to gather
report data

mpirun -n 4 inspxe-cl —--result-dir insp_results
-collect mil -- ./insp_example.exe
« Outputis: a results directory for each MPI rank in the job
Is | grep inspector_results on Linux

e Launch the GUI and view the results for each particular rank
inspxe-gui inspector_results.<rank#> on Linux

6/4/2016

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

Intro to Intel® Inspector XE
Analysis workflow
Memory problem analysis

« Lab 1. Finding memory errors

Threading problem Analysis
* Lab 2. Finding threading errors

Preparing setup for analysis
Managing analysis results

Integration with debugger
Automated regression testing

User API

Using the Intel® Inspector XE with MPI

Summary

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel Inspector XE: Summary

Advanced correctness checking
* Find issues that traditional testing misses
 Dynamic memory and threading error detection
Automated regression
« Command line interface
« Suitable for scripting
Wide analysis capabilities
* GUI data management
* Debugger integration

Ship high quality software products!

Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED *AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding

the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

