
U s e r’ s G u i d e

S I E S T A 3.0-rc2

July 5, 2010

Emilio Artacho University of Cambridge

José Maŕıa Cela Barcelona Supercomputing Center

Julian D. Gale Curtin University of Technology, Perth

Alberto Garćıa Institut de Ciència de Materials, CSIC, Barcelona

Javier Junquera Universidad de Cantabria, Santander

Richard M. Martin University of Illinois at Urbana-Champaign

Pablo Ordejón Centre de Investigació en Nanociència
i Nanotecnologia, (CSIC-ICN), Barcelona

Daniel Sánchez-Portal Unidad de F́ısica de Materiales,
Centro Mixto CSIC-UPV/EHU, San Sebastián

José M. Soler Universidad Autónoma de Madrid

http://www.uam.es/siesta

Copyright c⃝ Fundación General Universidad Autónoma de Madrid: E.Artacho, J.D.Gale,
A.Garćıa, J.Junquera, P.Ordejón, D.Sánchez-Portal and J.M.Soler, 1996-2010



Contents

1 INTRODUCTION 5

2 COMPILATION 7

2.1 The building directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Multiple-target compilation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The arch.make file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 EXECUTION OF THE PROGRAM 9

4 THE FLEXIBLE DATA FORMAT (FDF) 11

5 PROGRAM OUTPUT 12

5.1 Standard output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Output to dedicated files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 DETAILED DESCRIPTION OF PROGRAM OPTIONS 14

6.1 General system descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.3 Basis set and KB projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.3.1 Overview of atomic-orbital bases implemented in Siesta . . . . . . . . . . 16

6.3.2 Type of basis sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.3.3 Size of the basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.3.4 Range of the orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3.5 Generation of multiple-zeta orbitals . . . . . . . . . . . . . . . . . . . . . 21

6.3.6 Soft-confinement options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3.7 Kleinman-Bylander projectors . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3.8 The PAO.Basis block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3.9 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.10 Saving and reading basis-set information . . . . . . . . . . . . . . . . . . . 27

6.3.11 Tools to inspect the orbitals and KB projectors . . . . . . . . . . . . . . . 28

6.3.12 Basis optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3.13 Low-level options regarding the radial grid . . . . . . . . . . . . . . . . . 28

6.4 Structural information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4.1 Traditional structure input in the fdf file . . . . . . . . . . . . . . . . . . . 30

1



6.4.2 Z-matrix format and constraints . . . . . . . . . . . . . . . . . . . . . . . 32

6.4.3 Output of structural information . . . . . . . . . . . . . . . . . . . . . . . 36

6.4.4 Input of structural information from external files . . . . . . . . . . . . . 38

6.4.5 Input from a FIFO file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4.6 Precedence issues in structural input . . . . . . . . . . . . . . . . . . . . . 39

6.4.7 Interatomic distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5 k-point sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.5.1 Output of k-point information . . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 Exchange-correlation functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.7 Spin polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.8 The self-consistent-field loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.8.1 Mixing options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.8.2 Initialization of the density-matrix . . . . . . . . . . . . . . . . . . . . . . 45

6.8.3 Initialization of the SCF cycle with charge densities . . . . . . . . . . . . 48

6.8.4 Output of density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.8.5 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.9 The real-space grid and the eggbox-effect . . . . . . . . . . . . . . . . . . . . . . 50

6.10 Matrix elements of the Hamiltonian and overlap . . . . . . . . . . . . . . . . . . 53

6.10.1 The auxiliary supercell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.11 Calculation of the electronic structure . . . . . . . . . . . . . . . . . . . . . . . . 54

6.11.1 Diagonalization options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.11.2 Output of eigenvalues and wavefunctions . . . . . . . . . . . . . . . . . . 56

6.11.3 Occupation of electronic states and Fermi level . . . . . . . . . . . . . . . 56

6.11.4 Order(N) calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.12 Band-structure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.12.1 Format of the .bands file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.13 Output of wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.14 Densities of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.14.1 Total density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.14.2 Partial (projected) density of states . . . . . . . . . . . . . . . . . . . . . 64

6.14.3 Local density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.15 Options for chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.15.1 Mulliken charges and overlap populations . . . . . . . . . . . . . . . . . . 65

6.15.2 Crystal-Orbital overlap and hamilton populations (COOP/COHP) . . . . 66

2



6.16 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.17 Macroscopic polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.18 Systems with net charge or dipole, and electric fields . . . . . . . . . . . . . . . . 70

6.19 Output of charge densities and potentials on the grid . . . . . . . . . . . . . . . . 72

6.20 Auxiliary Force field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.21 Parallel options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.22 Efficiency options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.23 Memory accounting options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.24 The catch-all option UseSaveData . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.25 Output of information for Denchar . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 STRUCTURAL RELAXATION, PHONONS, AND MOLECULAR DY-
NAMICS 77

7.1 Structural relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.1 Conjugate-gradients optimization . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.2 Broyden optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.3 FIRE relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.4 Quenched MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Target stress options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Output options for dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.5 Restarting geometry optimizations and MD runs . . . . . . . . . . . . . . . . . . 86

7.6 Use of general constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.7 Phonon calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.8 Interface to the PHONON program . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 TRANSIESTA 90

8.1 Brief description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2 Source code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.4 Running a fast example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.5 Brief explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.6 Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.7 TranSiesta Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.7.1 General options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3



8.7.2 Electrode description options . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.7.3 Complex contour integration options . . . . . . . . . . . . . . . . . . . . . 96

8.7.4 Bias contour integration options . . . . . . . . . . . . . . . . . . . . . . . 97

8.8 Matching TranSiesta coordinates: basic rules . . . . . . . . . . . . . . . . . . . 97

8.9 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.10 Utilities for analysis: tbtrans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.10.1 Compiling TBTtrans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9 ANALYSIS TOOLS 100

10 SCRIPTING 100

11 PROBLEM HANDLING 100

11.1 Error and warning messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11.2 Known but unsolved problems and bugs . . . . . . . . . . . . . . . . . . . . . . . 101

12 REPORTING BUGS 101

13 ACKNOWLEDGMENTS 102

14 APPENDIX: Physical unit names recognized by FDF 103

15 APPENDIX: NetCDF 105

16 APPENDIX: Parallel Siesta 107

17 APPENDIX: File Formats 110

18 APPENDIX: XML Output 112

18.1 Controlling XML output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

18.2 Converting XML to XHTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

19 APPENDIX: Selection of precision for storage 114

Index 114

4



1 INTRODUCTION

This Reference Manual contains descriptions of all the input, output and execution features
of Siesta, but is not really a tutorial introduction to the program. The development team
is planning a documentation overhaul that will address this shortcoming. In the meantime,
interested users can find tutorial material prepared for Siesta schools and workshops at the
project’s web page http://www.uam.es/siesta

Siesta (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is both a
method and its computer program implementation, to perform electronic structure calculations
and ab initio molecular dynamics simulations of molecules and solids. Its main characteristics
are:

• It uses the standard Kohn-Sham self-consistent density functional method in the local
density (LDA-LSD) or generalized gradient (GGA) approximations.

• It uses norm-conserving pseudopotentials in their fully nonlocal (Kleinman-Bylander)
form.

• It uses atomic orbitals as a basis set, allowing unlimited multiple-zeta and angular mo-
menta, polarization and off-site orbitals. The radial shape of every orbital is numerical
and any shape can be used and provided by the user, with the only condition that it
has to be of finite support, i.e., it has to be strictly zero beyond a user-provided distance
from the corresponding nucleus. Finite-support basis sets are the key for calculating the
Hamiltonian and overlap matrices in O(N) operations.

• Projects the electron wavefunctions and density onto a real-space grid in order to calculate
the Hartree and exchange-correlation potentials and their matrix elements.

• Besides the standard Rayleigh-Ritz eigenstate method, it allows the use of localized linear
combinations of the occupied orbitals (valence-bond or Wannier-like functions), making
the computer time and memory scale linearly with the number of atoms. Simulations with
several hundred atoms are feasible with modest workstations.

• It is written in Fortran 95 and memory is allocated dynamically.

• It may be compiled for serial or parallel execution (under MPI).

It routinely provides:

• Total and partial energies.

• Atomic forces.

• Stress tensor.

• Electric dipole moment.

• Atomic, orbital and bond populations (Mulliken).

• Electron density.

5



And also (though not all options are compatible):

• Geometry relaxation, fixed or variable cell.

• Constant-temperature molecular dynamics (Nose thermostat).

• Variable cell dynamics (Parrinello-Rahman).

• Spin polarized calculations (collinear or not).

• k-sampling of the Brillouin zone.

• Local and orbital-projected density of states.

• COOP and COHP curves for chemical bonding analysis.

• Dielectric polarization.

• Vibrations (phonons).

• Band structure.

• Ballistic electron transport (through TranSiesta)

Starting from version 3.0, Siesta includes the TranSiesta module. TranSiesta provides the
ability to model open-boundary systems where ballistic electron transport is taking place. Using
TranSiesta one can compute electronic transport properties, such as the zero bias conductance
and the I-V characteristic, of a nanoscale system in contact with two electrodes at different
electrochemical potentials. The method is based on using non equilibrium Green’s functions
(NEGF), that are constructed using the density functional theory Hamiltonian obtained from a
given electron density. A new density is computed using the NEGF formalism, which closes the
DFT-NEGF self consistent cycle.

For more details on the formalism, see the mainTranSiesta reference cited below. A section has
been added to this User’s Guide, that describes the necessary steps involved in doing transport
calculations, together with the currently implemented input options.

References:

• “Unconstrained minimization approach for electronic computations that scales linearly
with system size” P. Ordejón, D. A. Drabold, M. P. Grumbach and R. M. Martin, Phys.
Rev. B 48, 14646 (1993); “Linear system-size methods for electronic-structure calcula-
tions” Phys. Rev. B 51 1456 (1995), and references therein.

Description of the order-N eigensolvers implemented in this code.

• “Self-consistent order-N density-functional calculations for very large systems” P. Ordejón,
E. Artacho and J. M. Soler, Phys. Rev. B 53, 10441, (1996).

Description of a previous version of this methodology.

6



• “Density functional method for very large systems with LCAO basis sets” D. Sánchez-
Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quantum Chem., 65, 453 (1997).

Description of the present method and code.

• “Linear-scaling ab-initio calculations for large and complex systems” E. Artacho, D.
Sánchez-Portal, P. Ordejón, A. Garćıa and J. M. Soler, Phys. Stat. Sol. (b) 215, 809
(1999).

Description of the numerical atomic orbitals (NAOs) most commonly used in the code,
and brief review of applications as of March 1999.

• “Numerical atomic orbitals for linear-scaling calculations” J. Junquera, O. Paz, D.
Sánchez-Portal, and E. Artacho, Phys. Rev. B 64, 235111, (2001).

Improved, soft-confined NAOs.

• “The Siesta method for ab initio order-N materials simulation” J. M. Soler, E. Artacho,
J.D. Gale, A. Garćıa, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens.
Matter 14, 2745-2779 (2002)

Extensive description of the Siesta method.

• “Computing the properties of materials from first principles with Siesta”, D. Sánchez-
Portal, P. Ordejón, and E. Canadell, Structure and Bonding 113, 103-170 (2004).

Extensive review of applications as of summer 2003.

• “Density-functional method for nonequilibrium electron transport”, Mads Brandbyge,
Jose-Luis Mozos, Pablo Ordejón, Jeremy Taylor, and Kurt Stokbro, Phys. Rev. B 65,
165401 (2002).

Description of the TranSiesta method.

For more information you can visit the web page http://www.uam.es/siesta.

2 COMPILATION

2.1 The building directory

Rather than using the top-level Src directory as building directory, the user has to use an ad-
hoc building directory (by default the top-level Obj directory, but it can be any (new) directory
in the top level). The building directory will hold the object files, module files, and libraries
resulting from the compilation of the sources in Src. The VPATH mechanism of modern make

programs is used. This scheme has many advantages. Among them:

• The Src directory is kept pristine.

• Many different object directories can be used concurrently to compile the program with
different compilers or optimization levels.

7



If you just want to compile the program, go to Obj and issue the command:

sh ../Src/obj_setup.sh

to populate this directory with the minimal scaffolding of makefiles, and then make sure that
you create or generate an appropriate arch.make file (see below, in Sect. 2.2). Then, type

make

The executable should work for any job. (This is not exactly true, since some of the parameters
in the atomic routines are still hardwired (see Src/atmparams.f), but those would seldom need
to be changed.)

To compile utility programs (those living in Util), you can just simply use the provided make-
files, typing “make” as appropriate.

2.1.1 Multiple-target compilation

The mechanism described here can be repeated in other directories at the same level as Obj,
with different names. In this way one can compile as many different versions of the Siesta
executable as needed (for example, with different levels of optimization, serial, parallel, debug,
etc), by working in separate building directories.

Simply provide the appropriate arch.make, and issue the setup command above. To compile
utility programs, you need to use the form:

make OBJDIR=ObjName

where ObjName is the name of the object directory of your choice. Be sure to type make clean

before attempting to re-compile a utility program.

(The pristine Src directory should be kept ”clean”, without objects, or else the compilation in
the build directories will get confused)

2.2 The arch.make file

The compilation of the program is done using a Makefile that is provided with the code. This
Makefile will generate the executable for any of several architectures, with a minimum of tuning
required from the user and encapsulated in a separate file called arch.make.

You are strongly encouraged to look at Src/Sys/DOCUMENTED-TEMPLATE.make for information
about the fine points of the arch.make file. You can also get inspiration by looking at the actual
arch.make examples in the Src/Sys subdirectory. If you intend to create a parallel version of
Siesta, make sure you have all the extra support libraries (MPI, scalapack, blacs... (see
Sect. 16).

One important compilation option is -DGRID DP, which tells the compiler to use double pre-
cision arithmetic in grid-related arrays. Unless you find memory problems running siesta, we

8



strongly recommend it, and we will likely make it the default in future versions. If you use
GRID DP, please note that it is advantageous to enable also PHI GRID SP, since the array
that stores orbital values on the grid can safely be kept in single precision, with significant
savings in memory and negligible numerical changes.

Optionally, the command ../Src/configure will start an automatic scan of your system and
try to build an arch.make for you. Please note that the configure script might need some help in
order to find your Fortran compiler, and that the created arch.make may not be optimal, mostly
in regard to compiler switches and preprocessor definitions, but the process should provide a
reasonable first version. Type ../Src/configure --help to see the flags understood by the
script, and take a look at the Src/Confs subdirectory for some examples of their explicit use.

3 EXECUTION OF THE PROGRAM

A fast way to test your installation of Siesta and get a feeling for the workings of the program
is implemented in directory Tests. In it you can find several subdirectories with pre-packaged
FDF files and pseudopotential references. Everything is automated: after compiling Siesta you
can just go into any subdirectory and type make. The program does its work in subdirectory
work, and there you can find all the resulting files. For convenience, the output file is copied to
the parent directory. A collection of reference output files can be found in Tests/Reference.
Please note that small numerical and formatting differences are to be expected, depending on
the compiler. (For non-standard execution environments, including queuing systems, so can
have a look at the Scripts in Tests/Scripts, and see also Sect. 16.)

Other examples are provided in the Examples directory. This directory contains basically .fdf

files and the appropriate pseudopotential generation input files. Since at some point you will have
to generate your own pseudopotentials and run your own jobs, we describe here the whole process
by means of the simple example of the water-molecule. It is advisable to create independent
directories for each job, so that everything is clean and neat, and out of the siesta directory,
so that one can easily update version by replacing the whole siesta tree. Go to your favorite
working directory and:

$ mkdir h2o

$ cd h2o

$ cp path-to-package/Examples/H2O/h2o.fdf .

You need to make the siesta executable visible in your path. You can do it in many ways, but
a simple one is

ln -s path-to-package/Obj/siesta .

We need to generate the required pseudopotentials. (We are going to streamline this process for
this time, but you must realize that this is a tricky business that you must master before using
Siesta responsibly. Every pseudopotential must be thoroughly checked before use. Please refer
to the ATOM program manual in Pseudo/atom/Docs for details regarding what follows.)

$ cd path-to-package/Pseudo/atom

$ make

9



$ cd Tutorial/PS Generation/O

$ cat O.tm2.inp

This is the input file, for the oxygen pseudopotential, that we have prepared for you. It is in a
standard (but ancient and obscure) format that you will need to understand in the future:

------------------------------------------------------------

pg Oxygen

tm2 2.0

n=O c=ca

0.0 0.0 0.0 0.0 0.0 0.0

1 4

2 0 2.00 0.00

2 1 4.00 0.00

3 2 0.00 0.00

4 3 0.00 0.00

1.15 1.15 1.15 1.15

------------------------------------------------------------

To generate the pseudopotential do the following;

$ sh ../../Utils/pg.sh O.tm2.inp

Now there should be a new subdirectory called O.tm2 (O for oxygen) and O.tm2.vps (binary)
and O.tm2.psf (ASCII) files.

$ cp O.tm2.psf path-to-working-dir/h2o/O.psf

copies the generated pseudopotential file to your working directory. (The unformatted and
ASCII files are functionally equivalent, but the latter is more transportable and easier to look
at, if you so desire.) The same could be repeated for the pseudopotential for H, but you may as
well copy H.psf from Examples/Vps/ to your h2o working directory.

Now you are ready to run the program:

./siesta < h2o.fdf | tee h2o.out

(If you are running the parallel version you should use some other invocation, such as mpirun
-np 2 siesta ..., but we cannot go into that here — see Sect. 16).

After a successful run of the program, you should have several files in your directory including
the following:

• fdf.log (contains all the data used, explicit or chosen by default)

• O.ion and H.ion (complete information about the basis and KB projectors)

• h2o.XV (contains positions and velocities)

• h2o.STRUCT OUT (contains the final cell vectors and positions in “crystallographic”
format)

• h2o.DM (contains the density matrix to allow a restart)

10



• h2o.ANI (contains the coordinates of every MD step, in this case only one)

• h2o.FA (contains the forces on the atoms)

• h2o.EIG (contains the eigenvalues of the Kohn-Sham Hamiltonian)

• h2o.xml (XML marked-up output)

The prefix h2o of all these files is the SystemLabel specified in the input h2o.fdf file (see FDF
section below). The standard output of the program, that you have already seen passing on
the screen, was copied to file h2o.out by the tee command. Have a look at it and refer to the
output-explanation section if necessary. You may also want to look at the fdf.log file to see all
the default values that siesta has chosen for you, before studying the input-explanation section
and start changing them.

Now look at the other data files in Examples (all with an .fdf suffix) choose one and repeat the
process for it.

4 THE FLEXIBLE DATA FORMAT (FDF)

The main input file, which is read as the standard input (unit 5), contains all the physical data
of the system and the parameters of the simulation to be performed. This file is written in a
special format called FDF, developed by Alberto Garćıa and José M. Soler. This format allows
data to be given in any order, or to be omitted in favor of default values. Refer to documentation
in ∼/siesta/Src/fdf for details. Here we offer a glimpse of it through the following rules:

• The FDF syntax is a ’data label’ followed by its value. Values that are not specified in
the datafile are assigned a default value.

• FDF labels are case insensitive, and characters - . in a data label are ignored. Thus,
LatticeConstant and lattice constant represent the same label.

• All text following the # character is taken as comment.

• Logical values can be specified as T, true, .true., yes, F, false, .false., no. Blank is also
equivalent to true.

• Character strings should not be in apostrophes.

• Real values which represent a physical magnitude must be followed by its units. Look at
function fdf convfac in file ∼/siesta/Src/fdf/fdf.f for the units that are currently supported.
It is important to include a decimal point in a real number to distinguish it from an integer,
in order to prevent ambiguities when mixing the types on the same input line.

• Complex data structures are called blocks and are placed between ‘%block label’ and a
‘%endblock label’ (without the quotes).

• You may ‘include’ other FDF files and redirect the search for a particular data label to
another file. If a data label appears more than once, its first appearance is used.

11



• If the same label is specified twice, the first one takes precedence.

• If a label is misspelled it will not be recognized (there is no internal list of “accepted” tags
in the program). You can check the actual value used by siesta by looking for the label in
the output fdf.log file.

These are some examples:

SystemName Water molecule # This is a comment

SystemLabel h2o

SpinPolarized yes

SaveRho

NumberOfAtoms 64

LatticeConstant 5.42 Ang

%block LatticeVectors

1.000 0.000 0.000

0.000 1.000 0.000

0.000 0.000 1.000

%endblock LatticeVectors

KgridCutoff < BZ_sampling.fdf

# Reading the coordinates from a file

%block AtomicCoordinatesAndAtomicSpecies < coordinates.data

# Even reading more FDF information from somewhere else

%include mydefaults.fdf

The file fdf.log contains all the parameters used by Siesta in a given run, both those specified
in the input fdf file and those taken by default. They are written in fdf format, so that you may
reuse them as input directly. Input data blocks are copied to the fdf.log file only if you specify
the dump option for them.

5 PROGRAM OUTPUT

5.1 Standard output

Siesta writes a log of its workings to standard output (unit 6), which is usually redirected to
an “output file”.

A brief description follows. See the example cases in the siesta/Tests directory for illustration.

The program starts writing the version of the code which is used. Then, the input FDF file is
dumped into the output file as is (except for empty lines). The program does part of the reading
and digesting of the data at the beginning within the redata subroutine. It prints some of the
information it digests. It is important to note that it is only part of it, some other information
being accessed by the different subroutines when they need it during the run (in the spirit of

12



FDF input). A complete list of the input used by the code can be found at the end in the file
fdf.log, including defaults used by the code in the run.

After that, the program reads the pseudopotentials, factorizes them into Kleinman-Bylander
form, and generates (or reads) the atomic basis set to be used in the simulation. These stages
are documented in the output file.

The simulation begins after that, the output showing information of the MD (or CG) steps and
the SCF cycles within. Basic descriptions of the process and results are presented. The user has
the option to customize it, however, by defining different options that control the printing of
informations like coordinates, forces, k⃗ points, etc. The options are discussed in the appropriate
sections, but take into account the behavior of the legacy LongOutput option, as in the current
implementation might silently activate output to the main .out file at the expense of auxiliary
files.

LongOutput (logical): Siesta can write to standard output different data sets depending on
the values for output options described below. By default Siesta will not write most of
them. They can be large for large systems (coordinates, eigenvalues, forces, etc.) and, if
written to standard output, they accumulate for all the steps of the dynamics. Siesta
writes the information in other files (see Output Files) in addition to the standard output,
and these can be cumulative or not.

Setting LongOutput to .true. changes the default of some options, obtaining more in-
formation in the output (verbose). In particular, it redefines the defaults for the following:

• WriteKpoints

• WriteKbands

• WriteCoorStep

• WriteForces

• WriteEigenvalues

• WriteWaveFunctions

• WriteMullikenPop (it sets it to 1)

The specific changing of any of these options overrides the LongOutput setting for it.

Default value: .false.

5.2 Output to dedicated files

Siesta can produce a wealth of information in dedicated files, with specific formats, that can
be used for further analysis. See the appropriate sections, and the appendix on file formats.
Please take into account the behavior of LongOutput, as in the current implementation might
silently activate output to the main .out file at the expense of auxiliary files.

13



6 DETAILED DESCRIPTION OF PROGRAM OPTIONS

Here follows a description of the variables that you can define in your Siesta input file, with
their data types and default values. For historical reasons the names of the tags do not have an
uniform structure, and can be confusing at times.

Almost all of the tags are optional: Siesta will assign a default if a given tag is not found when
needed (see fdf.log).

6.1 General system descriptors

SystemName (string): A string of one or several words containing a descriptive name of the
system (max. 150 characters).

Default value: blank

SystemLabel (string): A single word (max. 20 characters without blanks) containing a
nickname of the system, used to name output files.

Default value: siesta

NumberOfSpecies (integer): Number of different atomic species in the simulation. Atoms of
the same species, but with a different pseudopotential or basis set are counted as different
species.

Default value: There is no default. You must supply this variable.

NumberOfAtoms (integer): Number of atoms in the simulation.

Default value: There is no default. You must supply this variable.

ChemicalSpeciesLabel (data block): It specifies the different chemical species that are
present, assigning them a number for further identification. Siesta recognizes the dif-
ferent atoms by the given atomic number.

%block Chemical_Species_label

1 6 C

2 14 Si

3 14 Si_surface

%endblock Chemical_Species_label

The first number in a line is the species number, it is followed by the atomic number, and
then by the desired label. This label will be used to identify corresponding files, namely,
pseudopotential file, user basis file, basis output file, and local pseudopotential output file.

This construction allows you to have atoms of the same species but with different basis or
pseudopotential, for example.

Negative atomic numbers are used for ghost atoms (see PAO.basis).

14



Atomic numbers over 200 are used to represent synthetic atoms (created for example as
a “mixture” of two real ones for a “virtual crystal” (VCA) calculation). In this special
case a new ’SyntheticAtoms’ block must be present to give Siesta information about the
“ground state” of the synthetic atom.

%block Chemical_Species_label

1 201 ON-0.50000

%endblock Chemical_Species_label

%block SyntheticAtoms

1 # Species index

2 2 3 4 # n numbers for valence states with l=0,1,2,3

2.0 3.5 0.0 0.0 # occupations of valence states with l=0,1,2,3

%endblock SyntheticAtoms

Pseudopotentials for synthetic atoms can be created using the mixps and fractional

programs in the Util/VCA directory.

Use: This block is mandatory.

Default: There is no default. You must supply this block.

AtomicMass (data block): It allows the user to introduce the atomic masses of the different
species used in the calculation, useful for the dynamics with isotopes, for example. If
a species index is not found within the block, the natural mass for the corresponding
atomic number is assumed. If the block is absent all masses are the natural ones. One
line per species with the species index (integer) and the desired mass (real). The order is
not important. If there is no integer and/or no real numbers within the line, the line is
disregarded.

%block AtomicMass

3 21.5

1 3.2

%endblock AtomicMass

Default: (Block absent or empty) Natural masses assumed. For ghost atoms (i.e. floating
orbitals), a default of 1.d30 a.u. is assigned.

6.2 Pseudopotentials

Siesta uses pseudopotentials to represent the electron-ion interaction (as do most plane-wave
codes and in contrast to so-called “all-electron” programs). In particular, the pseudopotentials
are of the “norm-conserving” kind, and can be generated by the Atom program, included
(with permission) in Pseudo/atom (see Pseudo/atom/README for more complete authorship and
copyright acknowledgements). Remember that all pseudopotentials should be thoroughly
tested before using them. We refer you to the standard literature on pseudopotentials and to

15



the ATOM manual siesta/Pseudo/atom/atom.tex for more information. A number of other
codes (such as Opium) can generate pseudopotentials that Siesta can use directly (typically in
the .psf format).

The pseudopotentials will be read by Siesta from different files, one for each defined species
(species defined either in block ChemicalSpeciesLabel). The name of the files should be:

Chemical label.vps (unformatted) or Chemical label.psf (ASCII)

where Chemical label corresponds to the label defined in the ChemicalSpeciesLabel block.

Siesta can also handle pseudopotential files in the XML format designed by Junquera, Garcia,
and Verstraete (to be published), which enables interoperability with the ABINIT code. The
directory Util/pseudo-xml contains a program to translate the pseudo XML files to the .psf

form.

6.3 Basis set and KB projectors

6.3.1 Overview of atomic-orbital bases implemented in Siesta

The main advantage of atomic orbitals is their efficiency (fewer orbitals needed per electron for
similar precision) and their main disadvantage is the lack of systematics for optimal convergence,
an issue that quantum chemists have been working on for many years. They have also clearly
shown that there is no limitation on precision intrinsic to LCAO. This section provides some
information about how basis sets can be generated for Siesta.

It is important to stress at this point that neither the Siesta method nor the program are
bound to the use of any particular kind of atomic orbitals. The user can feed into Siesta
the atomic basis set he/she choses by means of radial tables (see User.Basis below), the only
limitations being: (i) the functions have to be atomic-like (radial functions mutiplied by spherical
harmonics), and (ii) they have to be of finite support, i.e., each orbital becomes strictly zero
beyond some cutoff radius chosen by the user.

Most users, however, do not have their own basis sets. For these users we have devised some
schemes to generate basis sets within the program with a minimum input from the user. If
nothing is specified in the input file, Siesta generates a default basis set of a reasonable quality
that might constitute a good starting point. Of course, depending on the accuracy required in
the particular problem, the user has the degree of freedom to tune several parameters that can
be important for quality and efficiency. A description of these basis sets and some performance
tests can be found in the references quoted below.

“Numerical atomic orbitals for linear-scaling calculations”, J. Junquera, O. Paz, D. Sánchez-
Portal, and E. Artacho, Phys. Rev. B 64, 235111, (2001)

An important point here is that the basis set selection is a variational problem and, therefore,
minimizing the energy with respect to any parameters defining the basis is an “ab initio” way
to define them.

We have also devised a quite simple and systematic way of generating basis sets based on
specifying only one main parameter (the energy shift) besides the basis size. It does not offer
the best NAO results one can get for a given basis size but it has the important advantages

16



mentioned above. More about it in:

“Linear-scaling ab-initio calculations for large and complex systems”, E. Artacho, D. Sánchez-
Portal, P. Ordejón, A. Garćıa and J. M. Soler, Phys. Stat. Sol. (b) 215, 809 (1999).

In addition to Siesta we provide the program Gen-basis, which reads Siesta’s input and
generates basis files for later use. Gen-basis can be found in Util/Gen-basis. It should be
run from the Tutorials/Bases directory, using the gen-basis.sh script. It is limited to a
single species.

Of course, as it happens for the pseudopotential, it is the responsibility of the user to check that
the physical results obtained are converged with respect to the basis set used before starting
any production run.

In the following we give some clues on the basics of the basis sets that Siesta generates. The
starting point is always the solution of Kohn-Sham’s Hamiltonian for the isolated pseudo-atoms,
solved in a radial grid, with the same approximations as for the solid or molecule (the same
exchange-correlation functional and pseudopotential), plus some way of confinement (see below).
We describe in the following three main features of a basis set of atomic orbitals: size, range,
and radial shape.

Size: number of orbitals per atom

Following the nomenclature of Quantum Chemistry, we establish a hierarchy of basis sets, from
single-ζ to multiple-ζ with polarization and diffuse orbitals, covering from quick calculations of
low quality to high precision, as high as the finest obtained in Quantum Chemistry. A single-ζ
(also called minimal) basis set (SZ in the following) has one single radial function per angular
momentum channel, and only for those angular momenta with substantial electronic population
in the valence of the free atom. It offers quick calculations and some insight on qualitative
trends in the chemical bonding and other properties. It remains too rigid, however, for more
quantitative calculations requiring both radial and angular flexibilization.

Starting by the radial flexibilization of SZ, a better basis is obtained by adding a second function
per channel: double-ζ (DZ). In Quantum Chemistry, the split valence scheme is widely used:
starting from the expansion in Gaussians of one atomic orbital, the most contracted Gaussians
are used to define the first orbital of the double-ζ and the most extended ones for the second. For
strictly localized functions there was a first proposal of using the excited states of the confined
atoms, but it would work only for tight confinement (see PAO.BasisType nodes below). This
construction was proposed and tested in D. Sánchez-Portal et al., J. Phys.: Condens. Matter 8,
3859-3880 (1996).

We found that the basis set convergence is slow, requiring high levels of multiple-ζ to achieve
what other schemes do at the double-ζ level. This scheme is related with the basis sets used in
the OpenMX project [see T. Ozaki, Phys. Rev. B 67, 155108 (2003); T. Ozaki and H. Kino,
Phys. Rev. B 69, 195113 (2004)].

We then proposed an extension of the split valence idea of Quantum Chemistry to strictly
localized NAO which has become the standard and has been used quite successfully in many
systems (see PAO.BasisType split below). It is based on the idea of suplementing the first
ζ with, instead of a gaussian, a numerical orbital that reproduces the tail of the original PAO
outside a matching radius rm, and continues smoothly towards the origin as rl(a − br2), with

17



a and b ensuring continuity and differentiability at rm. Within exactly the same Hilbert space,
the second orbital can be chosen to be the difference between the smooth one and the original
PAO, which gives a basis orbital strictly confined within the matching radius rm (smaller than
the original PAO!) continuously differentiable throughout.

Extra parameters have thus appeared: one rm per orbital to be doubled. The user can again
introduce them by hand (see PAO.Basis below). Alternatively, all the rm’s can be defined
at once by specifying the value of the tail of the original PAO beyond rm, the so-called split
norm. Variational optimization of this split norm performed on different systems shows a very
general and stable performance for values around 15% (except for the ∼ 50% for hydrogen). It
generalizes to multiple-ζ trivially by adding an additional matching radius per new zeta.

Note: What is actually used is the norm of the tail plus the norm of the parabola-like inner
function.

Angular flexibility is obtained by adding shells of higher angular momentum. Ways to generate
these so-called polarization orbitals have been described in the literature for Gaussians. For
NAOs there are two ways for Siesta and Gen-basis to generate them: (i) Use atomic PAO’s
of higher angular momentum with suitable confinement, and (ii) solve the pseudoatom in the
presence of an electric field and obtain the l+ 1 orbitals from the perturbation of the l orbitals
by the field.

So-called diffuse orbitals, that might be important in the description of open systems such as
surfaces, can be simply added by specifying extra “n” shells. [See S. Garcia-Gil, A. Garcia, N.
Lorente, P. Ordejon, Phys. Rev. B 79, 075441 (2009)]

Finally, the method allows the inclusion of off-site (ghost) orbitals (not centered around any
specific atom), useful for example in the calculation of the counterpoise correction for basis-set
superposition errors. Bessel functions for any radius and any excitation level can also be added
anywhere to the basis set.

Range: cutoff radii of orbitals.

Strictly localized orbitals (zero beyond a cutoff radius) are used in order to obtain sparse Hamil-
tonian and overlap matrices for linear scaling. One cutoff radius per angular momentum channel
has to be given for each species.

A balanced and systematic starting point for defining all the different radii is achieved by giving
one single parameter, the energy shift, i.e., the energy increase experienced by the orbital when
confined. Allowing for system and physical-quantity variablity, as a rule of thumb ∆EPAO ≈ 100
meV gives typical precisions within the accuracy of current GGA functionals. The user can,
nevertheless, change the cutoff radii at will.

Shape

Within the pseudopotential framework it is important to keep the consistency between the
pseudopotential and the form of the pseudoatomic orbitals in the core region. The shape of the
orbitals at larger radii depends on the cutoff radius (see above) and on the way the localization
is enforced.

The first proposal (and quite a standard among Siesta users) uses an infinite square-well poten-
tial. It was originally proposed and has been widely and successfully used by Otto Sankey and
collaborators, for minimal bases within the ab initio tight-binding scheme, using the Fireball

18



program, but also for more flexible bases using the methodology of Siesta. This scheme has
the disadavantage, however, of generating orbitals with a discontinuous derivative at rc. This
discontinuity is more pronounced for smaller rc’s and tends to disappear for long enough values
of this cutoff. It does remain, however, appreciable for sensible values of rc for those orbitals that
would be very wide in the free atom. It is surprising how small an effect such a kink produces
in the total energy of condensed systems. It is, on the other hand, a problem for forces and
stresses, especially if they are calculated using a (coarse) finite three-dimensional grid.

Another problem of this scheme is related to its defining the basis starting from the free atoms.
Free atoms can present extremely extended orbitals, their extension being, besides problematic,
of no practical use for the calculation in condensed systems: the electrons far away from the
atom can be described by the basis functions of other atoms.

A traditional scheme to deal with this is one based on the radial scaling of the orbitals by suitable
scale factors. In addition to very basic bonding arguments, it is soundly based on restoring the
virial’s theorem for finite bases, in the case of Coulombic potentials (all-electron calculations).
The use of pseudopotentials limits its applicability, allowing only for extremely small deviations
from unity (∼ 1%) in the scale factors obtained variationally (with the exception of hydrogen
that can contract up to 25%). This possiblity is available to the user.

Another way of dealing with the above problem and that of the kink at the same time is adding
a soft confinement potential to the atomic Hamiltonian used to generate the basis orbitals:
it smoothens the kink and contracts the orbital as suited. Two additional parameters are
introduced for the purpose, which can be defined again variationally. The confining potential is
flat (zero) in the core region, starts off at some internal radius ri with all derivatives continuous
and diverges at rc ensuring the strict localization there. It is

V (r) = Vo
e
− rc−ri

r−ri

rc − r
(1)

and both ri and Vo can be given to Siesta together with rc in the input (see PAO.Basis below).

Finally, the shape of an orbital is also changed by the ionic character of the atom. Orbitals
in cations tend to shrink, and they swell in anions. Introducing a δQ in the basis-generating
free-atom calculations gives orbitals better adapted to ionic situations in the condensed systems.

More information about basis sets can be found in the proposed literature.

There are quite a number of options for the input of the basis-set and KB projector specifica-
tion, and they are all optional! By default, Siesta will use a DZP basis set with appropriate
choices for the determination of the range, etc. Of course, the more you experiment with
the different options, the better your basis set can get. To aid in this process we offer an
auxiliary program for optimization which can be used in particular to obtain variationally op-
timal basis sets (within a chosen basis size). SeeUtil/Optimizer for general information, and
Util/Optimizer/Examples/Basis Optim for an example. The directory Tutorials/Bases in
the main Siesta distribution contains some tutorial material for the generation of basis sets
and KB projectors.

Finally, some optimized basis sets for particular elements are available at the Siesta web page.
Again, it is the responsability of the users to test the transferability of the basis set to their
problem under consideration.

19



6.3.2 Type of basis sets

PAO.BasisType (string):

The kind of basis to be generated is chosen. All are based on finite-range pseudo-atomic
orbitals [PAO’s of Sankey and Niklewsky, PRB 40, 3979 (1989)]. The original PAO’s
were described only for minimal bases. Siesta generates extended bases (multiple-ζ,
polarization, and diffuse orbitals) applying different schemes of choice:

- Generalization of the PAO’s: uses the excited orbitals of the finite-range pseudo-
atomic problem, both for multiple-ζ and for polarization [see Sánchez-Portal, Artacho,
and Soler, JPCM 8, 3859 (1996)]. Adequate for short-range orbitals.

- Multiple-ζ in the spirit of split valence, decomposing the original PAO in several pieces
of different range, either defining more (and smaller) confining radii, or introducing
Gaussians from known bases (Huzinaga’s book).

All the remaining options give the same minimal basis. The different options and their
FDF descriptors are the following:

• split: Split-valence scheme for multiple-zeta. The split is based on different radii.

• splitgauss: Same as split but using gaussian functions e−(x/αi)
2
. The gaussian

widths αi are read instead of the scale factors (see below). There is no cutting
algorithm, so that a large enough rc should be defined for the gaussian to have
decayed sufficiently.

• nodes: Generalized PAO’s.

• nonodes: The original PAO’s are used, multiple-zeta is generated by changing the
scale-factors, instead of using the excited orbitals.

Note that, for the split and nodes cases the whole basis can be generated by Siesta with
no further information required. Siesta will use default values as defined in the following
(PAO.BasisSize, PAO.EnergyShift, and PAO.SplitNorm, see below).

Default value: split

6.3.3 Size of the basis set

PAO.BasisSize (string): It defines usual basis sizes. It has effect only if there is no block
PAO.Basis present.

• SZ or MINIMAL: minimal or single-ζ basis.

• DZ: Double zeta basis, in the scheme defined by PAO.BasisType.

• SZP: Single-zeta basis plus polarization orbitals.

• DZP or STANDARD: Like DZ plus polarization orbitals. Polarization orbitals are con-
structed from perturbation theory, and they are defined so they have the minimum
angular momentum l such that there are not occupied orbitals with the same l in the

20



valence shell of the ground-state atomic configuration. They polarize the correspond-
ing l − 1 shell.

Note: The ground-state atomic configuration used internally by Siesta is defined in
the source file Src/periodic table.f. For some elements (e.g., Pd), the configura-
tion might not be the standard one.

Default value: DZP

PAO.BasisSizes (data block): Block which allows to specify a different value of the variable
PAO.BasisSize for each species. For example,

%block PAO.BasisSizes

Si DZ

H DZP

O SZP

%endblock PAO.BasisSizes

6.3.4 Range of the orbitals

PAO.EnergyShift (real energy): A standard for orbital-confining cutoff radii. It is the exci-
tation energy of the PAO’s due to the confinement to a finite-range. It offers a general
procedure for defining the confining radii of the original (first-zeta) PAO’s for all the
species guaranteeing the compensation of the basis. It only has an effect when the block
PAO.Basis is not present or when the radii specified in that block are zero for the first
zeta.

Use: It has to be positive.

Default value: 0.02 Ry

6.3.5 Generation of multiple-zeta orbitals

PAO.SplitNorm (real): A standard to define sensible default radii for the split-valence type of
basis. It gives the amount of norm that the second-ζ split-off piece has to carry. The split
radius is defined accordingly. If multiple-ζ is used, the corresponding radii are obtained
by imposing smaller fractions of the SplitNorm (1/2, 1/4 ...) value as norm carried by the
higher zetas. It only has an effect when the block PAO.Basis is not present or when the
radii specified in that block are zero for zetas higher than one.

Default value: 0.15 (sensible values range between 0.05 and 0.5).

PAO.SplitNormH (real): This option is as per PAO.SplitNorm but allows a separate
default to be specified for hydrogen which typically needs larger values than those for
other elements.

PAO.NewSplitCode (boolean):

Enables a new, simpler way to match the multiple-zeta radii.

21



If an old-style (tail+parabola) calculation is being done, perform a scan of the
tail+parabola norm in the whole range of the 1st-zeta orbital, and store that in a ta-
ble. The construction of the 2nd-zeta orbital involves simply scanning the table to find
the appropriate place. Due to the idiosyncracies of the old algorithm, the new one is not
guaranteed to produce exactly the same results, as it might settle on a neighboring grid
point for the matching.

Default value: .false.

PAO.FixSplitTable (boolean):

After the scan of the allowable split-norm values, apply a damping function to the tail to
make sure that the table goes to zero at the radius of the first-zeta orbital.

Default value: .false.

PAO.SplitTailNorm (boolean):

Use the norm of the tail instead of the full tail+parabola norm. This is the behavior
described in the JPC paper. (But note that, for numerical reasons, the square root of the
tail norm is used in the algorithm.) This is the preferred mode of operation for automatic
operation, as in non-supervised basis-optimization runs.

Default value: .false.

As a summary of the above options:

• For complete backwards compatibility, do nothing.

• To exercise the new code, set PAO.NewSplitCode.

• To maintain the old split-norm heuristic, but making sure that the program finds a
solution (even if not optimal, in the sense of producing a second-ζ rc very close to the
first-ζ one), set PAO.FixSplitTable (this will automatically set PAO.NewSplitCode).

• If the old heuristic is of no interest (for example, if only a robust way of mapping split-
norms to radii is needed), set PAO.SplitTailNorm (this will set PAO.NewSplitCode
automatically).

6.3.6 Soft-confinement options

PAO.SoftDefault (boolean): If set to true then this option causes soft confinement to be the
default form of potential during orbital generation. The default potential and inner radius
are set by the commands given below.

Default value: .false.

PAO.SoftInnerRadius (real): For default soft confinement, the inner radius is set at a
fraction of the outer confinement radius determined by the energy shift. This option
controls the fraction of the confinement radius to be used.

Default value: 0.9

PAO.SoftPotential (real): For default soft confinement, this option controls the value of the
potential used for all orbitals.

22



Default value: 40.0 Ry

Note: Soft-confinement options (inner radius, prefactor) have been traditionally used to
optimize the basis set, even though formally they are just a technical necessity to soften
the decay of the orbitals at rc. To achieve this, it might be enough to use the above global
options.

6.3.7 Kleinman-Bylander projectors

PS.lmax (data block): Block with the maximum angular momentum of the Kleinman-Bylander
projectors, lmxkb. This information is optional. If the block is absent, or for a species
which is not mentioned inside it, Siesta will take lmxkb(is) = lmxo(is) + 1, where
lmxo(is) is the maximum angular momentum of the basis orbitals of species is.

%block Ps.lmax

Al_adatom 3

H 1

O 2

%endblock Ps.lmax

Default: (Block absent or empty). Maximum angular momentum of the basis orbitals plus
one.

PS.KBprojectors (data block): This block provides information about the number of
Kleinman-Bylander projectors per angular momentum, and for each species, that will
used in the calculation. This block is optional. If the block is absent, or for species
not mentioned in it, only one projector will be used for each angular momentum. The
projectors will be constructed using the eigenfunctions of the respective pseudopotentials.

This block allows to specify the number of projector for each l, and also the reference
energies of the wavefunctions used to build them. The specification of the reference energies
is optional. If these energies are not given, the program will use the eigenfunctions with
an increasing number of nodes (if there is not bound state with the corresponding number
of nodes, the “eigenstates” are taken to be just functions which are made zero at very long
distance of the nucleus). The units for the energy can be optionally specified, if not, the
program will assumed that are given in Rydbergs. The data provided in this block must
be consistent with those read from the block PS.lmax. For example,

%block PS.KBprojectors

Si 3

2 1

-0.9 eV

0 2

-0.5 -1.0d4 Hartree

1 2

Ga 1

1 3

23



-1.0 1.0d5 -6.0

%endblock PS.KBprojectors

The reading is done this way (those variables in brackets are optional, therefore they are
only read if present):

From is = 1 to nspecies

read: label(is), l_shells(is)

From lsh=1 to l_shells(is)

read: l, nkbl(l,is)

read: {erefKB(izeta,il,is)}, from ikb = 1 to nkbl(l,is), {units}

When a very high energy, higher that 1000 Ry, is specified, the default is taken instead.
On the other hand, very low (negative) energies, lower than -1000 Ry, are used to indicate
that the energy derivative of the last state must be used. For example, in the example
given above, two projectors will be used for the s pseudopotential of Si. One generated
using a reference energy of -0.5 Hartree, and the second one using the energy derivative of
this state. For the p pseudopotential of Ga, three projectors will be used. The second one
will be constructed from an automatically generated wavefunction with one node, and the
other projectors from states at -1.0 and -6.0 Rydberg.

The analysis looking for possible ghost states is only performed when a single projector is
used. Using several projectors some attention should be paid to the “KB cosine” (kbcos),
given in the output of the program. The KB cosine gives the value of the overlap between
the reference state and the projector generated from it. If these numbers are very small
( < 0.01, for example) for all the projectors of some angular momentum, one can have
problems related with the presence of ghost states.

Default: (Block absent or empty). Only one KB projector, constructed from the nodeless
eigenfunction, used for each angular momentum.

6.3.8 The PAO.Basis block

PAO.Basis (data block): Block with data to define explicitly the basis to be used. It allows the
definition by hand of all the parameters that are used to construct the atomic basis. There
is no need to enter information for all the species present in the calculation. The basis
for the species not mentioned in this block will be generated automatically using the pa-
rameters PAO.BasisSize, PAO.BasisType, PAO.EnergyShift, PAO.SplitNorm (or
PAO.SplitNormH), and the soft-confinement defaults, if used (See PAO.SoftDefault).

Some parameters can be set to zero, or left out completely. In these cases the values will be
generated from the magnitudes defined above, or from the appropriate default values. For
example, the radii will be obtained from PAO.EnergyShift or from PAO.SplitNorm if
they are zero; the scale factors will be put to 1 if they are zero or not given in the input.
An example block for a two-species calculation (H and O) is the following (opt means
optional):

24



%block PAO.Basis # Define Basis set

O 2 nodes 1.0 # Label, l_shells, type (opt), ionic_charge (opt)

n=2 0 2 E 50.0 2.5 # n (opt if not using semicore levels),l,Nzeta,Softconf(opt

3.50 3.50 # rc(izeta=1,Nzeta)(Bohr)

0.95 1.00 # scaleFactor(izeta=1,Nzeta) (opt)

1 1 P 2 # l, Nzeta, PolOrb (opt), NzetaPol (opt)

3.50 # rc(izeta=1,Nzeta)(Bohr)

H 1 # Label, l_shells, type (opt), ionic_charge (opt)

0 2 S 0.2 # l, Nzeta, Per-shell split norm parameter

5.00 0.00 # rc(izeta=1,Nzeta)(Bohr)

%endblock PAO.Basis

The reading is done this way (those variables in brackets are optional, therefore they are
only read if present) (See the routines in Src/basis specs.f for detailed information):

From js = 1 to nspecies

read: label(is), l_shells(is), { type(is) }, { ionic_charge(is) }

From lsh=1 to l_shells(is)

read:

{ n }, l(lsh), nzls(lsh,is), { PolOrb(l+1) }, { NzetaPol(l+1) },

{SplitNormfFlag(lsh,is)}, {SplitNormValue(lsh,is)}

{SoftConfFlag(lsh,is)}, {PrefactorSoft(lsh,is)}, {InnerRadSoft(lsh,is)}

read: rcls(izeta,lsh,is), from izeta = 1 to nzls(l,is)

read: { contrf(izeta,il,is) }, from izeta = 1 to nzls(l,is)

And here is the variable description:

- Label: Species label, this label determines the species index is according to the block
ChemicalSpecieslabel

- l shells(is): Number of shells of orbitals with different angular momentum for
species is

- type(is): Optional input. Kind of basis set generation procedure for species is.
Same options as PAO.BasisType

- ionic charge(is): Optional input. Net charge of species is. This is only used for
basis set generation purposes. Default value: 0.0 (neutral atom). Note that if the
pseudopotential was generated in an ionic configuration, and no charge is specified in
PAO.Basis, the ionic charge setting will be that of pseudopotential generation.

- n: Principal quantum number of the shell. This is an optional input for normal atoms,
however it must be specified when there are semicore states (i.e. when states that
usually are not considered to belong to the valence shell have been included in the
calculation)

- l: Angular momentum of basis orbitals of this shell

- nzls(lsh,is): Number of ’zetas’ for this shell.

25



- PolOrb(l+1): Optional input. If set equal to P, a shell of polarization functions (with
angular momentum l + 1) will be constructed from the first-zeta orbital of angular
momentum l. Default value: ’ ’ (blank = No polarization orbitals).

- NzetaPol(l+1): Optional input. Number of ’zetas’ for the polarization shell (gen-
erated automatically in a split-valence fashion). Only active if PolOrb = P. Default
value: 1

- SplitNormFlag(lsh,is): Optional input. If set equal to S, the following number
sets the split-norm parameter for that shell.

- SoftConfFlag(l,is): Optional input. If set equal to E, the new soft confinement
potential proposed in formula (1) of the paper by J. Junquera et al., Phys. Rev. B
64, 235111 (2001), is used instead of the Sankey hard-well potential.

- PrefactorSoft(l,is): Optional input. Prefactor of the soft confinement potential
(V0 in the formula). Units in Ry. Default value: 0 Ry.

- InnerRadSoft(l,is): Optional input. Inner radius where the soft confinemet poten-
tial starts off (ri in the formula). If negative, the inner radius will be computed as
the given fraction of the PAO cutoff radius. Units in bohrs. Default value: 0 bohrs.

- rcls(izeta,l,is): Cutoff radius (Bohr) of each ’zeta’ for this shell. For the second
zeta onwards, if this value is negative, the actual rc used will be the given fraction of
the first zeta’s rc.

- contrf(izeta,l,is): Optional input. Contraction factor of each ’zeta’ for this shell.
Default value: 1.0

Polarization orbitals are generated by solving the atomic problem in the presence of a
polarizing electric field. The orbitals are generated applying perturbation theory to the
first-zeta orbital of lower angular momentum. They have the same cutoff radius as the
orbitals from which they are constructed.

Note: The perturbative method has traditionally used the ’l’ component of the pseudopo-
tential. It can be argued that it should use the ’l+1’ component. By default, for backwards
compatibility, the traditional method is used, but the alternative one can be activated by
setting the logical PAO.OldStylePolOrbs variable to .false.

There is a different possibility for generating polarization orbitals: by introducing them
explicitly in thePAO.Basis block. It has to be remembered, however, that they sometimes
correspond to unbound states of the atom, their shape depending very much on the cutoff
radius, not converging by increasing it, similarly to the multiple-zeta orbitals generated
with the nodes option. Using PAO.EnergyShift makes no sense, and a cut off radius
different from zero must be explicitly given (the same cutoff radius as the orbitals they
polarize is usually a sensible choice).

A species with atomic number = -100 will be considered by Siesta as a constant-
pseudopotential atom, i.e., the basis functions generated will be spherical Bessel functions
with the specified rc. In this case, rc has to be given, as EnergyShift will not calculate
it.

Other negative atomic numbers will be interpreted by Siesta as ghosts of the correspond-
ing positive value: the orbitals are generated and put in position as determined by the

26



coordinates, but neither pseudopotential nor electrons are considered for that ghost atom.
Useful for BSSE correction.

Use: This block is optional, except when Bessel functions or semicore states are present.

Default: Basis characteristics defined by global definitions given above.

6.3.9 Filtering

FilterCutoff (physical energy): Kinetic energy cutoff of plane waves used to filter all the
atomic basis functions, the pseudo-core densities for partial core corrections, and the
neutral-atom potentials. The basis functions (which must be squared to obtain the va-
lence density) are really filtered with a cutoff reduced by an empirical factor 0.72 ≃ 0.5.
The FilterCutoff should be similar or lower than the MeshCutoff to avoid the eggbox
effect on the atomic forces. However, one should not try to converge MeshCutoff while
simultaneously changing FilterCutoff, since the latter in fact changes the used basis func-
tions. Rather, fix a sufficiently large FilterCutoff and converge only MeshCutoff. If
FilterCutoff is not explicitly set, its value is calculated from FilterTol.

FilterTol (physical energy): Residual kinetic-energy leaked by filtering each basis function.
While FilterCutoff sets a common reciprocal-space cutoff for all the basis functions,
FilterTol sets a specific cutoff for each basis function, much as the EnergyShift sets their
real-space cutoff. Therefore, it is reasonable to use similar values for both parameters. The
maximum cutoff required to meet the FilterTol, among all the basis functions, is used
(multiplied by the empirical factor 1/0.72 ≃ 2) to filter the pseudo-core densities and the
neutral-atom potentials. FilterTol is ignored if FilterCutoff is present in the input file.
If neither FilterCutoff nor FilterTol are present, no filtering is performed. See Soler
and Anglada, arXiv:0807.5030, for details of the filtering procedure.

Warning: If the value of FilterCutoff is made too small (or FilterTol too large) some
of the filtered basis orbitals may be meaningless, leading to incorrect results or even a
program crash.

To be implemented: If MeshCutoff is not present in the input file, it can be set using
the maximum filtering cutoff used for the given FilterTol (for the time being, you can
use AtomSetupOnly T to stop the program after basis generation, look at the maximum
filtering cutoff used, and set the mesh-cutoff manually in a later run.)

6.3.10 Saving and reading basis-set information

Siesta (and the standalone program Gen-basis) always generate the files Atomlabel.ion, where
Atomlabel is the atomic label specified in block ChemicalSpeciesLabel. Optionally, if NetCDF
support is compiled in, the programs generate NetCDF files Atomlabel.ion.nc. See an Appendix
for information on the optional NetCDF package.

These files can be used to read back information into Siesta.

User.Basis (logical):

27



If true, the basis, KB projector, and other information is read from files Atomlabel.ion,
where Atomlabel is the atomic species label specified in block ChemicalSpeciesLabel. These
files can be generated by a previous Siesta run or (one by one) by the standalone program
Gen-basis. No pseudopotential files are necessary.

User.Basis.NetCDF (logical):

If true, the basis, KB projector, and other information is read from NetCDF files Atomla-
bel.ion.nc, where Atomlabel is the atomic label specified in block ChemicalSpeciesLabel.
These files can be generated by a previous Siesta run or by the standalone program
Gen-basis. No pseudopotential files are necessary. NetCDF support is needed.

6.3.11 Tools to inspect the orbitals and KB projectors

The program ioncat in Util/Gen-basis can be used to extract orbital, KB projector, and
other information contained in the .ion files. The output can be easily plotted with a graphics
program. If the optionWriteIonPlotFiles is enabled, Siesta will generate and extra set of files
that can be plotted with the gnuplot scripts in Tutorials/Bases. The stand-alone program
gen-basis sets that option by default, and the script Tutorials/Bases/gen-basis.sh can be
used to automate the process. See also the NetCDF-based utilities in Util/PyAtom.

6.3.12 Basis optimization

There are quite a number of options for the input of the basis-set and KB projector specifica-
tion, and they are all optional! By default, Siesta will use a DZP basis set with appropriate
choices for the determination of the range, etc. Of course, the more you experiment with
the different options, the better your basis set can get. To aid in this process we offer an
auxiliary program for optimization which can be used in particular to obtain variationally op-
timal basis sets (within a chosen basis size). SeeUtil/Optimizer for general information, and
Util/Optimizer/Examples/Basis Optim for an example.

BasisPressure (real pressure):

Siesta will compute and print the value of the “effective basis enthalpy” constructed by
adding a term of the form pbasisVorbs to the total energy. Here pbasis is a fictitious basis
pressure and Vorbs is the volume of the system’s orbitals. This is a useful quantity for basis
optimization (See Anglada et al.). The total basis enthalpy is also written to the ASCII
file BASIS ENTHALPY.

Default value: 0.2 GPa

6.3.13 Low-level options regarding the radial grid

For historical reasons, the basis-set and KB projector code in Siesta uses a logarithmic radial
grid, which is taken from the pseudopotential file. Any “interesting” radii have to fall on a
grid point, which introduces a certain degree of coarseness that can limit the accuracy of the

28



results and the faithfulness of the mapping of input parameters to actual operating parame-
ters. For example, the same orbital will be produced by a finite range of PAO.EnergyShift
values, and any user-defined cutoffs will not be exactly reflected in the actual cutoffs. This
is particularly troublesome for automatic optimization procedures (such as those implemented
in Util/Optimizer), as the engine might be confused by the extra level of indirection. The
following options can be used to fine-tune the mapping. They are not enabled by default, as
they change the numerical results apreciably (in effect, they lead to different basis orbitals and
projectors).

Reparametrize.Pseudos (logical):

By changing the a and b parameters of the logarithmic grid, a new one with a more
homogeneous overall grid-point separation can be used for the generation of basis sets and
projectors. For example, by using a = 5x10−4 and b = 10, the grid point separations at
r = 0 and 10 bohrs are 0.005 and 0.01 bohrs, respectively. More points are needed to reach
r’s of the order of a hundred bohrs, but the extra computational effort is negligible. The
net effect of this option (notably when coupled to Restricted.Radial.Grid .false.) is
a closer mapping of any user-specified cutoff radii and of the radii implicitly resulting from
other input parameters to the actual values used by the program.

Default value: .false.

New.A.Parameter (real):

New setting for the pseudopotential grid’s a parameter

Default value: 5.0x10−4

New.B.Parameter (real):

New setting for the pseudopotential grid’s b parameter

Default value: 10.0

Rmax.Radial.Grid (real):

New setting for the maximum value of the radial coordinate for integration of the atomic
Schrodinger equation.

Default value: 50.0 if Reparametrize.Pseudos is set, zero otherwise (which means that
the maximum radius from the pseudopotential file is used).

Restricted.Radial.Grid (logical):

In normal operation of the basis-set and projector generation code the radial grid is re-
stricted to having an odd number of points, and the cutoffs are shifted accordingly. This
restriction can be lifted by setting this parameter to .false.

Default value: .true.

29



6.4 Structural information

There are many ways to give Siesta structural information.

• Directly from the fdf file in traditional format.

• Directly from the fdf file in the newer Z-Matrix format, using a Zmatrix block.

• From an external data file

• From a FIFO file, when working in “server” mode.

Note that, regardless of the way in which the structure is described, the tags NumberOf-
Species, NumberOfAtoms, and ChemicalSpeciesLabel are mandatory.

In the following sections we document the different structure input methods, and provide a guide
to their precedence.

6.4.1 Traditional structure input in the fdf file

Firstly, the size of the cell itself should be specified, using some combination of the options
LatticeConstant, LatticeParameters, and LatticeVectors, and SuperCell. If nothing is
specified, Siesta will construct a cubic cell in which the atoms will reside as a cluster.

Secondly, the positions of the atoms within the cells must be specified, using either the traditional
Siesta input format (a modified xyz format) which must be described within a AtomicCoor-
dinatesAndAtomicSpecies block.

LatticeConstant (real length): Lattice constant. This is just to define the scale of the lattice
vectors.

Default value: Minimum size to include the system (assumed to be a molecule) without
intercell interactions, plus 10%.

NOTE: A LatticeConstant value, even if redundant, might be needed for other options,
such as the units of the k-points used for band-structure calculations. This mis-feature
will be corrected in future versions.

LatticeParameters (data block): Crystallographic way of specifying the lattice vectors, by
giving six real numbers: the three vector modules, a, b, and c, and the three angles α
(angle between b⃗ and c⃗), β, and γ. The three modules are in units of LatticeConstant,
the three angles are in degrees.

Default value:

1.0 1.0 1.0 90. 90. 90.

(see the following)

30



LatticeVectors (data block): The cell vectors are read in units of the lattice constant defined
above. They are read as a matrix CELL(ixyz,ivector), each vector being one line.

Default value:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

If the LatticeConstant default is used, the default of LatticeVectors is still diagonal
but not necessarily cubic.

SuperCell (data block): Integer 3x3 matrix defining a supercell in terms of the unit cell:

%block SuperCell

M(1,1) M(2,1) M(3,1)

M(1,2) M(2,2) M(3,2)

M(1,3) M(2,3) M(3,3)

%endblock SuperCell

and the supercell is defined as SuperCell(ix, i) =
∑

j CELL(ix, j) ∗M(j, i). Notice that
the matrix indexes are inverted: each input line specifies one supercell vector.

Warning: SuperCell is disregarded if the geometry is read from the XV file, which can
happen unadvertedly.

Use: The atomic positions must be given only for the unit cell, and they are ’cloned’
automatically in the rest of the supercell. The NumberOfAtoms given must also be
that in a single unit cell. However, all values in the output are given for the entire
supercell. In fact, CELL is inmediately redefined as the whole supercell and the program
no longer knows the existence of an underlying unit cell. All other input (apart from
NumberOfAtoms and atomic positions), including kgridMonkhorstPack must refer to
the supercell (this is a change over previous versions). Therefore, to avoid confusions, we
recommend to use SuperCell only to generate atomic positions, and then to copy them
from the output to a new input file with all the atoms specified explicitly and with the
supercell given as a normal unit cell.

Default value: No supercell (supercell equal to unit cell).

AtomicCoordinatesFormat (string): Character string to specify the format of the atomic
positions in input. These can be expressed in four forms:

• Bohr or NotScaledCartesianBohr (atomic positions are given directly in Bohr, in
Cartesian coordinates)

• Ang or NotScaledCartesianAng (atomic positions are given directly in Ångström, in
Cartesian coordinates)

• ScaledCartesian (atomic positions are given in Cartesian coordinates, in units of
the lattice constant)

31



• Fractional or ScaledByLatticeVectors (atomic positions are given referred to the
lattice vectors)

Default value: NotScaledCartesianBohr

AtomCoorFormatOut (string): Character string to specify the format of the atomic positions
in output. Same possibilities as for input (AtomicCoordinatesFormat).

Default value: value of AtomicCoordinatesFormat

AtomicCoordinatesOrigin (data block): Vector specifying a rigid shift to apply to the atomic
coordinates, given in the same format and units as these. Notice that the atomic positions
(shifted or not) need not be within the cell formed by LatticeVectors, since periodic
boundary conditions are always assumed.

Default value:

0.000 0.000 0.000

AtomicCoordinatesAndAtomicSpecies (data block): Block specifying the position and
species of each atom. One line per atom, the reading is done this way:

From ia = 1 to natoms

read: xa(ix,ia), isa(ia)

where xa(ix,ia) is the ix coordinate of atom iai in the format (units) specified by
AtomCoordinatesFormat, and isa(ia) is the species index of atom ia.

Default: There is no default. The positions must be introduced either using this block or
the Z matrix (see Zmatrix).

6.4.2 Z-matrix format and constraints

The advantage of the traditional format is that it is much easier to set up a system. However,
when working on systems with constraints, there are only a limited number of (very simple)
constraints that may be expressed within this format, and recompilation is needed for each new
constraint.

For any more involved set of constraints, a full Zmatrix formulation should be used - this offers
much more control, and may be specified fully at run time (thus not requiring recompilation) -
but it is more work to generate the input files for this form.

Zmatrix (data block): This block provides a means for inputting the system geometry using
a Z-matrix format, as well as controlling the optimization variables. This is particularly
useful when working with molecular systems or restricted optimizations (such as locating
transition states or rigid unit movements). The format also allows for hybrid use of Z-
matrices and Cartesian or fractional blocks, as is convenient for the study of a molecule
on a surface. As is always the case for a Z-matrix, the responsibility falls to the user to

32



chose a sensible relationship between the variables to avoid triads of atoms that become
linear.

Below is an example of a Z-matrix input for a water molecule:

%block Zmatrix

molecule fractional

1 0 0 0 0.0 0.0 0.0 0 0 0

2 1 0 0 HO1 90.0 37.743919 1 0 0

2 1 2 0 HO2 HOH 90.0 1 1 0

variables

HO1 0.956997

HO2 0.956997

HOH 104.4

%endblock Zmatrix

The sections that can be used within the Zmatrix block are as follows:

Firstly, all atomic positions must be specified within either a “molecule” block or a
“cartesian” block. Any atoms subject to constraints more complicated than “do not
change this coordinate of this atom” must be specified within a “molecule” block.

molecule:

There must be one of these blocks for each independent set of constrained atoms within
the simulation.

This specifies the atoms that make up each molecule and their geometry. In addition, an
option of “fractional” or “scaled” may be passed, which indicates that distances are
specified in scaled or fractional units. In the absence of such an option, the distance units
are taken to be the value of “ZM.UnitsLength”.

A line is needed for each atom in the molecule; the format of each line should be:

Nspecies i j k r a t ifr ifa ift

Here the values Nspecies, i, j, k, ifr, ifa, and ift are integers and r, a, and t are
double precision reals.

For most atoms, Nspecies is the species number of the atom, r is distance to atom number
i, a is the angle made by the present atom with atoms j and i, while t is the torsional
angle made by the present atom with atoms k, j, and i. The values ifr, ifa and ift are
integer flags that indicate whether r, a, and t, respectively, should be varied; 0 for fixed,
1 for varying.

The first three atoms in a molecule are a special case. Because there are insufficient atoms
defined to specify a distance/angle/torsion, the values are set differently. For atom 1, r,
a, and t, are the Cartesian coordinates of the atom. For the second atom, r, a, and t are
the coordinates in spherical form of the second atom relative to the first. Finally, for the
third atom, the numbers take their normal form, but the torsional angle is defined relative
to a notional atom 1 unit in the z-direction above the atom j.

33



Secondly. blocks of atoms all of which are subject to the simplest of constraints may be
specified in one of the following three ways, according to the units used to specify their
coordinates:

cartesian: This section specifies a block of atoms whose coordinates are to be specified in
Cartesian coordinates. Again, an option of “fractional” or “scaled” may be added,
to specify the units used; and again, in their absence, the value of “ZM.UnitsLength” is
taken.

The format of each atom in the block will look like:

Nspecies x y z ix iy iz

Here Nspecies, ix, iy, and iz are integers and x, y, z are reals. Nspecies is the species
number of the atom being specified, while x, y, and z are the Cartesian coordinates of
the atom in whichever units are being used. The values ix, iy and iz are integer flags
that indicate whether the x, y, and z coordinates, respectively, should be varied or not.
A value of 0 implies that the coordinate is fixed, while 1 implies that it should be varied.
NOTE: When performing “variable cell” optimization while using a Zmatrix format for
input, the algorithm will not work if some of the coordinates of an atom in a cartesian

block are variables and others are not (i.e., ix iy iz above must all be 0 or 1). This will
be fixed in future versions of the program.

A Zmatrix block may also contain the following, additional, sections, which are designed
to make it easier to read.

constants: Instead of specifying a numerical value, it is possible to specify a symbol within
the above geometry definitions. This section allows the user to define the value of the
symbol as a constant. The format is just a symbol followed by the value:

HOH 104.4

variables: Instead of specifying a numerical value, it is possible to specify a symbol within
the above geometry definitions. This section allows the user to define the value of the
symbol as a variable. The format is just a symbol followed by the value:

HO1 0.956997

Finally, constraints must be specified in a constraints block.

constraint This sub-section allows the user to create constraints between symbols used in a
Z-matrix:

constraint

var1 var2 A B

Here var1 and var2 are text symbols for two quantities in the Z-matrix definition, and A
and B are real numbers. The variables are related by var1 = A ∗ var2 +B.

An example of a Z-matrix input for a benzene molecule over a metal surface is:

34



%block Zmatrix

molecule

2 0 0 0 xm1 ym1 zm1 0 0 0

2 1 0 0 CC 90.0 60.0 0 0 0

2 2 1 0 CC CCC 90.0 0 0 0

2 3 2 1 CC CCC 0.0 0 0 0

2 4 3 2 CC CCC 0.0 0 0 0

2 5 4 3 CC CCC 0.0 0 0 0

1 1 2 3 CH CCH 180.0 0 0 0

1 2 1 7 CH CCH 0.0 0 0 0

1 3 2 8 CH CCH 0.0 0 0 0

1 4 3 9 CH CCH 0.0 0 0 0

1 5 4 10 CH CCH 0.0 0 0 0

1 6 5 11 CH CCH 0.0 0 0 0

fractional

3 0.000000 0.000000 0.000000 0 0 0

3 0.333333 0.000000 0.000000 0 0 0

3 0.666666 0.000000 0.000000 0 0 0

3 0.000000 0.500000 0.000000 0 0 0

3 0.333333 0.500000 0.000000 0 0 0

3 0.666666 0.500000 0.000000 0 0 0

3 0.166667 0.250000 0.050000 0 0 0

3 0.500000 0.250000 0.050000 0 0 0

3 0.833333 0.250000 0.050000 0 0 0

3 0.166667 0.750000 0.050000 0 0 0

3 0.500000 0.750000 0.050000 0 0 0

3 0.833333 0.750000 0.050000 0 0 0

3 0.000000 0.000000 0.100000 0 0 0

3 0.333333 0.000000 0.100000 0 0 0

3 0.666666 0.000000 0.100000 0 0 0

3 0.000000 0.500000 0.100000 0 0 0

3 0.333333 0.500000 0.100000 0 0 0

3 0.666666 0.500000 0.100000 0 0 0

3 0.166667 0.250000 0.150000 0 0 0

3 0.500000 0.250000 0.150000 0 0 0

3 0.833333 0.250000 0.150000 0 0 0

3 0.166667 0.750000 0.150000 0 0 0

3 0.500000 0.750000 0.150000 0 0 0

3 0.833333 0.750000 0.150000 0 0 0

constants

ym1 3.68

variables

zm1 6.9032294

CC 1.417

CH 1.112

CCH 120.0

35



CCC 120.0

constraints

xm1 CC -1.0 3.903229

%endblock Zmatrix

Here the species 1, 2 and 3 represent H, C, and the metal of the surface, respectively.

(Note: the above example shows the usefulness of symbolic names for the relevant coor-
dinates, in particular for those which are allowed to vary. The current output options for
Zmatrix information work best when this approach is taken. By using a “fixed” symbolic
Zmatrix block and specifying the actual coordinates in a “variables” section, one can mon-
itor the progress of the optimization and easily reconstruct the coordinates of intermediate
steps in the original format.)

Use: Specifies the geometry of the system according to a Z-matrix Default value: Geometry
is not specified using a Z-matrix

ZM.UnitsLength (length): Parameter that specifies the units of length used during Z-matrix
input.

Use: This option allows the user to chose between inputing distances in Bohr or Angstroms
within the Z-matrix data block.

Default value: Bohr

ZM.UnitsAngle (angle): Parameter that specifies the units of angles used during Z-matrix
input.

Use: This option allows the user to chose between inputing angles in radians or degrees
within the Z-matrix data block.

Default value: rad

6.4.3 Output of structural information

Siesta is able to generate several kinds of files containing structural information (maybe too
many).

• STRUCT OUT file: Siesta always produces a .STRUCT OUT file with cell vectors in Å and
atomic positions in fractional coordinates. This file, renamed to SystemLabel.STRUCT IN
can be used for crystal-structure input. Note that the geometry reported is the last one
for which forces and stresses were computed. See MD.UseStructFile.

• STRUCT NEXT ITER file: This file is always written, in the same format as
.STRUCT OUT file. The only difference is that it contains the structural information af-
ter it has been updated by the relaxation or the molecular-dynamics algorithms, and thus
it could be used as input (renamed as SystemLabel.STRUCT IN) for a continuation run,
in the same way as the XV file.

See MD.UseStructFile.

36



• XV file: The coordinates are always written in the Systemlabel.XV file, and overriden at
every step.

• OUT.UCELL.ZMATRIX file: @OUT.UCELL.ZMATRIX

This file is produced if the Zmatrix format is being used for input. (Please note that
SystemLabel is not used as a prefix.) It contains the structural information in fdf form,
with blocks for unit-cell vectors and for Zmatrix coordinates. The Zmatrix block is in a
“canonical” form with the following characteristics:

1. No symbolic variables or constants are used.

2. The position coordinates of the first atom in each molecule

are absolute Cartesian coordinates.

3. Any coordinates in ‘‘cartesian’’ blocks are also absolute Cartesians.

4. There is no provision for output of constraints.

5. The units used are those initially specified by the user, and are

noted also in fdf form.

Note that the geometry reported is the last one for which forces and stresses were com-
puted.

• NEXT ITER.UCELL.ZMATRIX file: @NEXT ITER.UCELL.ZMATRIX

A file with the same format as OUT.UCELL.ZMATRIX but with a possibly updated geometry.

• The coordinates can be also accumulated in the Systemlabel.MD or Systemlabel.MDX files
depending on WriteMDhistory.

• Additionally, several optional formats are supported:

WriteCoorXmol (logical): If .true. it originates the writing of an extra file named
SystemLabel.xyz containing the final atomic coordinates in a format directly readable
by XMol.1 Coordinates come out in Ångström independently of what specified in
AtomicCoordinatesFormat and in AtomCoorFormatOut. There is a present
Java implementation of XMol called JMol.

Default value: .false.

WriteCoorCerius (logical): If .true. it originates the writing of an extra file
named SystemLabel.xtl containing the final atomic coordinates in a format di-
rectly readable by Cerius.2 Coordinates come out in Fractional format (the same
as ScaledByLatticeVectors) independently of what specified in AtomicCoordi-
natesFormat and in AtomCoorFormatOut. If negative coordinates are to be
avoided, it has to be done from the start by shifting all the coordinates rigidly to
have them positive, by using AtomicCoordinatesOrigin. See the Sies2arc utility
in the Util/ directory for generating .arc files for CERIUS animation.

Default value: .false.

1XMol is under c⃝ copyright of Research Equipment Inc., dba Minnesota Supercomputer Center Inc.
2Cerius is under c⃝ copyright of Molecular Simulations Inc.

37



WriteMDXmol (logical): If .true. it causes the writing of an extra file named Sys-
temLabel.ANI containing all the atomic coordinates of the simulation in a format
directly readable by XMol for animation. Coordinates come out in Ångström inde-
pendently of what is specified in AtomicCoordinatesFormat and in AtomCoor-
FormatOut. This file is accumulative even for different runs.

There is an alternative for animation by generating a .arc file for CERIUS. It is
through the Sies2arc postprocessing utility in the Util/ directory, and it requires
the coordinates to be accumulated in the output file, i.e., WriteCoorStep = .true.

Default value: .false.

Note change with respect to previous versions. This option is no longer coupled to
WriteCoorStep.

6.4.4 Input of structural information from external files

The structural information can be also read from external files. Note that the NumberOfAtoms,
NumberOfSpecies, and ChemicalSpeciesLabel options are still mandatory in the fdf file.

• The XV file. The logical variable MD.UseSaveXV instructs Siesta to read the atomic
positions and velocities stored in file SystemLabel.XV by a previous run.

If the required file does not exist, a warning is printed but the program does not stop.
Overrides UseSaveData, but can be implicitly set by it.

Default value: .false.

• A .STRUCT IN file. The logical fdf variable UseStructFile (for historical reasons,
MD.UseStructFile is also accepted, but deprecated) controls whether the structural
information is read from an external file of name SystemLabel.STRUCT IN. If .true., all
other structural information in the fdf file will be ignored.

The format of the file is implied by the following code:

read(*,*) ((cell(ixyz,ivec),ixyz=1,3),ivec=1,3) ! Cell vectors, in Angstroms

read(*,*) na

do ia = 1,na

read(iu,*) isa(ia), dummy, xfrac(1:3,ia) ! Species number

! Dummy numerical column

! Fractional coordinates

enddo

Warning: Note that the resulting geometry could be clobbered if an XV file is read after
this file. It is up to the user to remove any XV files..

Default value: .false.

• A Zmatrix input file MD.UseSaveZM (logical): instructs the program to read the
Zmatrix information stored in file SystemLabel.ZM by a previous run.

38



Use: If the required file does not exist, a warning is printed but the program does not
stop. Overrides UseSaveData, but can be implicitly set by it.

Warning: Note that the resulting geometry could be clobbered if an XV file is read after
this file. It is up to the user to remove any XV files..

Default value: .false.

6.4.5 Input from a FIFO file

See the “Forces” option in MD.TypeOfRun. Note that the NumberOfAtoms, NumberOf-
Species, and ChemicalSpeciesLabel options are still mandatory in the fdf file.

6.4.6 Precedence issues in structural input

• If the “server” option is active, it takes precedence over everything (it will overwrite all
other input with the information it gets from the FIFO file).

• If MD.UseSaveXV is active, it takes precedence over the options below.

• If UseStructFile (or MD.UseStructFile) is active, it takes precedence over the options
below.

• For atomic coordinates, the traditional and Zmatrix formats in the fdf file are mutually
exclusive. If MD.UseSaveZM is active, the contents of the ZM file, if found, take prece-
dence over the Zmatrix information in the fdf file.

6.4.7 Interatomic distances

WarningMinimumAtomicDistance (physical): Fixes a threshold interatomic distance below
which a warning message is printed.

Default value: 1.0 Bohr

MaxBondDistance (physical): Siesta prints the interatomic distances, up to a range of
MaxBondDistance, to file SystemLabel.BONDS upon first reading the structural informa-
tion, and to file SystemLabel.BONDS FINAL after the last geometry iteration. The neigh-
bors are identified by atom number and symbol, but the positions reported are those of
the equivalent atom in the unit cell. This is an experimental feature.

Default value: 6.0 Bohr

6.5 k-point sampling

These are options for the k-point grid used in the SCF cycle. For other specialized grids, see
the Macroscopic Polarization and Density of States sections.

39



kgrid cutoff (real length): Parameter which determines the fineness of the k-grid used for
Brillouin zone sampling. It is half the length of the smallest lattice vector of the supercell
required to obtain the same sampling precision with a single k point. Ref: Moreno and
Soler, PRB 45, 13891 (1992).

Use: If it is zero, only the gamma point is used. The resulting k-grid is chosen in an optimal
way, according to the method of Moreno and Soler (using an effective supercell which is
as spherical as possible, thus minimizing the number of k-points for a given precision).
The grid is displaced for even numbers of effective mesh divisions. This parameter is
not used if kgrid Monkhorst Pack is specified. If the unit cell changes during the
calculation (for example, in a cell-optimization run, the k-point grid will change accordingly
(see ChangeKgridInMD for the case of variable-cell molecular-dynamics runs, such as
Parrinello-Rahman). This is analogous to the changes in the real-space grid, whose fineness
is specified by an energy cutoff. If sudden changes in the number of k-points are not desired,
then the Monkhorst-Pack data block should be used instead. In this case there will be an
implicit change in the quality of the sampling as the cell changes. Both methods should
be equivalent for a well-converged sampling.

Default value: 0.0 Bohr

kgrid Monkhorst Pack (data block): Real-space supercell, whose reciprocal unit cell is that
of the k-sampling grid, and grid displacement for each grid coordinate. Specified as an
integer matrix and a real vector:

%block kgrid_Monkhorst_Pack

Mk(1,1) Mk(2,1) Mk(3,1) dk(1)

Mk(1,2) Mk(2,2) Mk(3,2) dk(2)

Mk(1,3) Mk(2,3) Mk(3,3) dk(3)

%endblock kgrid_Monkhorst_Pack

where Mk(j,i) are integers and dk(i) are usually either 0.0 or 0.5 (the program will warn
the user if the displacements chosen are not optimal). The k-grid supercell is defined from
Mk as in block SuperCell above, i.e.: KgridSuperCell(ix, i) =

∑
j CELL(ix, j)∗Mk(j, i).

Note again that the matrix indexes are inverted: each input line gives the decomposition
of a supercell vector in terms of the unit cell vectors.

Use: Used only if SolutionMethod = diagon. The k-grid supercell is compatible and
unrelated (except for the default value, see below) with the SuperCell specifier. Both
supercells are given in terms of the CELL specified by the LatticeVectors block. If Mk
is the identity matrix and dk is zero, only the Γ point of the unit cell is used. Overrides
kgrid cutoff

Default value: Γ point of the (super)cell. (Default used only when kgrid cutoff is not
defined).

ChangeKgridInMD (boolean):

If .true., the k-point grid is recomputed at every iteration during MD runs that po-
tentially change the unit cell: Parrinello-Rahman, Nose-Parrinello-Rahman, and Anneal.

40



Regardless of the setting of this flag, the k-point grid is always updated at every iteration
of a variable-cell optimization and after each step in a “siesta-as-server” run.

Default value: .false. for historical reasons. The rationale was to avoid sudden jumps in
some properties when the sampling changes, but if the calculation is well-converged there
should be no problems if the update is enabled.

6.5.1 Output of k-point information

The coordinates of the k⃗ points used in the sampling are always stored in the file SystemLa-
bel.KP.

WriteKpoints (logical): If .true. it writes the coordinates of the k⃗ vectors used in the grid
for k-sampling, into the main output file.

Default value: .false. (see LongOutput)

6.6 Exchange-correlation functionals

XC.functional (string): Exchange-correlation functional type. May be LDA (local density ap-
proximation, equivalent to LSD) or GGA (Generalized Gradient Approximation).

Use: Spin polarization is defined by SpinPolarized label for both LDA and GGA. There is no
difference between LDA and LSD.

Default value: LDA

XC.authors (string): Particular parametrization of the exchange-correlation functional. Op-
tions are:

• CA (Ceperley-Alder) equivalent to PZ (Perdew-Zunger). Local density approximation.
Ref: Perdew and Zunger, PRB 23, 5075 (1981)

• PW92 (Perdew-Wang-92). Local density approximation. Ref: Perdew and Wang,
PRB, 45, 13244 (1992)

• PBE (Perdew-Burke-Ernzerhof). Generalized gradients approximation. Ref: Perdew,
Burke and Ernzerhof, PRL 77, 3865 (1996)

• revPBE (Revised Perdew-Burke-Ernzerhof). Generalized gradients approximation.
Ref: Y. Zhang and W. Yang, PRL 80, 890 (1998)

• RPBE (Revised Perdew-Burke-Ernzerhof). Generalized gradients approximation. Ref:
Hammer, Hansen and Norskov PRB 59, 7413 (1999)

• WC (Wu-Cohen modification of PBE functional). Generalized gradients approxima-
tion. Ref: Z. Wu and R.E. Cohen, PRB 73, 235116 (2006)

• PBEsol (Perdew-Burke-Ernzerhof for solids). Generalized gradients approximation.
Ref: Perdew et al, PRL 100, 136406 (2008)

41



• LYP Generalized gradients approximation that implements Becke gradient exchange
functional (A. D. Becke, Phys. Rev. A 38, 3098 (1988)) and Lee, Yang, Parr corre-
lation functional (C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988)), as
modified by Miehlich, Savin, Stoll and Preuss, Chem. Phys. Lett. 157, 200 (1989).
See also Johnson, Gill and Pople, J. Chem. Phys. 98, 5612 (1993). (Some errors
were detected in this last paper, so not all of their expressions correspond exactly to
those implemented in Siesta).

Use: XC.functional and XC.authors must be compatible.

Default value: PZ

XC.hybrid (data block): This data block allows the user to create a hybrid functional by mixing
the desired amounts of exchange and correlation from each of the functionals described
under XC.authors. The format of the block is that the first line must contain the number of
functionals to be mixed. On the subsequent lines the values of XC.functl and XC.authors
must be given and then the weights for the exchange and correlation, in that order. If only
one number is given then the same weight is applied to both exchange and correlation.

The following is an example in which a 75:25 mixture of Ceperley-Alder and PBE corre-
lation is made, with an equal split of the exchange energy:

%block XC.hybrid

2

LDA CA 0.5 0.75

GGA PBE 0.5 0.25

%endblock XC.hybrid

Default value: not hybrid

6.7 Spin polarization

SpinPolarized (logical): Logical variable to choose between spin unpolarized (.false.) or
spin polarized (.true.) calculation.

Default value: .false.

NonCollinearSpin (logical): If .true., non-collinear spin is described using spinor wave-
functions and (2 × 2) spin density matrices at every grid point. Ref: T. Oda et al,
PRL, 80, 3622 (1998). Not compatible with GGA because non-collinear density func-
tional theory has been developed only for a local functional. Not compatible with the
Diag.ParallelOverK option Default value: .false.

FixSpin (logical): If .true., the calculation is done with a fixed value of the spin of the
system, defined by variable TotalSpin. This option can only be used for collinear spin
polarized calculations.

Default value: .false.

42



TotalSpin (real): Value of the imposed total spin polarization of the system (in units of the
electron spin, 1/2). It is only used if FixSpin = .true.

Default value: 0.0

SingleExcitation (logical): If true, Siesta calculates a very rough approximation to the lowest
excited state by swapping the populations of the HOMO and the LUMO. If there is no
spin polarisation, it is half swap only. It is done for the first spin component (up) and first
k vector.

Default value: .false.

6.8 The self-consistent-field loop

Harris functional (logical): Logical variable to choose between self-consistent Kohn-Sham
functional or non self-consistent Harris functional to calculate energies and forces.

• .false. : Fully self-consistent Kohn-Sham functional.

• .true. : Non self consistent Harris functional. Cheap but pretty crude for some
systems. The forces are computed within the Harris functional in the first SCF step.
Only implemented for LDA in the Perdew-Zunger parametrization.

When this option is choosen, the values of DM.UseSaveDM, MaxSCFIterations, SCF-
MustConverge and DM.MixSCF1 are automatically set up to False, 1, False and False
respectively, no matter whatever other specification are in the INPUT file.

Default value: .false.

MaxSCFIterations (integer): Maximum number of SCF iterations per time step.

Default value: 50

SCFMustConverge (logical): Defines the behaviour if convergence is not reached in the max-
imum number of SCF iterations. The default is to update the forces, perform an MD or
geometry optimisation step and carry on. When set to true the calculation will stop on
the first SCF convergence failure.

Default value: .false.

6.8.1 Mixing options

DM.MixingWeight (real): Proportion α of output Density Matrix to be used for the input
Density Matrix of next SCF cycle (linear mixing): ρn+1

in = αρnout + (1− α)ρnin.

Default value: 0.25

DM.NumberPulay (integer): It controls the Pulay convergence accelerator. Pulay mixing
generally accelerates convergence quite significantly, and can reach convergence in cases
where linear mixing cannot. The guess for the n + 1 iteration is constructed using the

43



input and output matrices of the DM.NumberPulay former SCF cycles, in the following
way: ρn+1

in = αρ̄nout + (1 − α)ρ̄nin, where ρ̄nout and ρ̄nin are constructed from the previous
N =DM.NumberPulay cycles:

ρ̄nout =
N∑
i=1

βiρ
(n−N+i)
out ; ρ̄nin =

N∑
i=1

βiρ
(n−N+i)
in . (2)

The values of βi are obtained by minimizing the distance between ρ̄nout and ρ̄nin. The value
of α is given by variable DM.MixingWeight.

If DM.NumberPulay is 0 or 1, simple linear mixing is performed.

Default value: 0

DM.Pulay.Avoid.First.After.Kick (logical): Controls whether the first density-matrix
residual of the SCF cycle and the first residual after a kick are included in the Pulay
history. It can be argued that in these cases the “output” DM might be significantly
different from the “input” DM. To preserve backwards compatibility, these residuals are
kept in the Pulay history unless this variable is activated.

Default value: .false.

DM.PulayOnFile (logical):

NOTE: This feature is temporarily disabled pending a proper implementation that works
well in parallel.

Store intermediate information of Pulay mixing in files (.true.) or in memory (.false.).
Memory storage can increase considerably the memory requirements for large systems. If
files are used, the filenames will be SystemLabel.P1 and SystemLabel.P2, where System-
Label is the name associated to parameter SystemLabel.

Default value: .false.

DM.NumberBroyden (integer): It controls the Broyden-Vanderbilt-Louie-Johnson con-
vergence accelerator, which is based on the use of past information (up to
DM.NumberBroyden steps) to construct the input density matrix for the next iter-
ation.

See D.D. Johnson, Phys. Rev. B38, 12807 (1988), and references therein; Kresse and
Furthmuller, Comp. Mat. Sci 6, 15 (1996).

If DM.NumberBroyden is 0, the program performs linear mixings, or, if requested,
Pulay mixings.

Broyden mixing takes precedence over Pulay mixing if both are specified in the input file.

Note: The Broyden mixing algorithm is still in development, notably with regard to the
effect of its various modes of operation, and the assigment of weights. In its default mode,
its effectiveness is very similar to Pulay mixing. As memory usage is not yet optimized,
casual users might want to stick with Pulay mixing for now.

Default value: 0

44



DM.Broyden.Cycle.On.Maxit (logical): Upon reaching the maximum number of his-
torical data sets which are kept for Broyden mixing (see description of variable
DM.NumberBroyden), throw away the oldest and shift the rest to make room for a
new data set. This procedure tends, heuristically, to perform better than the alternative,
which is to re-start the Broyden mixing algorithm from a first step of linear mixing.

Default value: .true.

DM.Broyden.Variable.Weight (logical): If .true., the different historical data sets used
in the Broyden mixing (see description of variable DM.NumberBroyden) are assigned
a weight depending on the norm of their residual ρnout − ρnin.

Default value: .true.

DM.NumberKick (integer): Option to skip the Pulay (or Broyden) mixing earch cer-
tain number of iterations, and use a linear mixing instead. Linear mixing is done
every DM.NumberKick iterations, using a mixing coefficient α given by variable
DM.KickMixingWeight (instead of the usual mixing DM.MixingWeight). This al-
lows in some difficult cases to bring the SCF out of loops in which the selfconsistency is
stuck. If DM.MixingWeight=0, no linear mix is used.

Default value: 0

DM.KickMixingWeight (real): Proportion α of output Density Matrix to be used for the
input Density Matrix of next SCF cycle (linear mixing): ρn+1

in = αρnout + (1 − α)ρnin, for
linear mixing kicks within the Pulay or Broyden mixing schemes. This mixing is done
every DM.NumberKick cycles.

Default value: 0.50

DM.MixSCF1 (logical): Logical variable to indicate whether mixing is done in the first
SCF cycle or not. Usually, mixing should not be done in the first cycle, to avoid non-
idempotency in density matrix from Harris or previous steps. It can be useful, though, for
restarts of selfconsistency runs.

Default value: .false.

6.8.2 Initialization of the density-matrix

The Density matrix can be:

1. Synthesized directly from atomic occupations.

(See the options below for spin considerations)

2. Read from a .DM file (if the appropriate options are set)

3. Extrapolated from (two) previous geometry steps

3.a The DM of the previous geometry iteration

In cases 2 and 3, a check is done to guarantee that the structure

of the read or extrapolated DM conforms to the current sparsity.

If it does not, the information is re-arranged.

45



Special cases:

Harris functional: The matrix is always initialized

Force calculation: The DM should be written to disk

at the time of the "no displacement"

calculation and read from file at

every subsequent step.

Variable-cell calculation:

If the auxiliary cell changes, the DM is forced to be

initialized (conceivably one could rescue some important

information from an old DM, but it is too much trouble

for now). NOTE that this is a change in policy with respect

to previous versions of the program, in which a (blind?)

re-use was allowed, except if ’ReInitialiseDM’ was ’true’.

Now ’ReInitialiseDM’ is ’true’ by default. Setting it to

’false’ is not recommended.

In all other cases (including "server operation"), the

default is to allow DM re-use (with possible extrapolation)

from previous geometry steps.

There is no re-use of the DM for "Forces", and "Phonon"

dynamics types (i.e., the DM is re-initialized)

For "CG" calculations, the default is not to extrapolate the

DM (unless requested by setting ’DM.AllowExtrapolation’ to

"true"). The previous step’s DM is reused.

The fdf variables ’DM.AllowReuse’ and ’DM.AllowExtrapolation’

can be used to turn off DM re-use and extrapolation.

DM.UseSaveDM (logical): Instructs to read the density matrix stored in file
SystemLabel.DM by a previous run.

Use: If the required file does not exist, a warning is printed but the program does not
stop. Overrides UseSaveData.

Default value: .false.

DM.FormattedFiles (logical): Instructs to use formatted files for reading and writing the
density matrix. In this case, the files are labelled SystemLabel.DMF.

Use: This makes for much larger files, and slower i/o. However, the files are transferable
between different computers, which is not the case normally.

Default value: .false.

DM.FormattedInput (logical): Instructs to use formatted files for reading the density ma-
trix.

46



Use: Overrides the value of DM.FormattedFiles.

Default value: .false.

DM.FormattedOutput (logical): Instructs to use formatted files for writing the density
matrix.

Use: Overrides the value of DM.FormattedFiles.

Default value: .false.

DM.InitSpinAF (logical): It defines the initial spin density for a spin polarized calculation.
The spin density is initially constructed with the maximum possible spin polarization for
each atom in its atomic configuration. This variable defines the relative orientation of the
atomic spins:

• .false. gives ferromagnetic order (all spins up).

• .true. gives antiferromagnetic order. Up and down are assigned according to order
in the blockAtomicCoordinatesAndAtomicSpecies: up for the odd atoms, down
for even.

Default value: .false.

DM.InitSpin (data block): It defines the initial spin density for a spin polarized calculation
atom by atom. In the block there is one line per atom to be spin-polarized, containing the
atom index (integer, ordinal in the block AtomicCoordinatesAndAtomicSpecies) and
the desired initial spin-polarization (real, positive for spin up, negative for spin down). A
value larger than possible will be reduced to the maximum possible polarization, keeping
its sign. Maximum polarization can also be given by introducing the symbol + or - instead
of the polarization value. There is no need to include a line for every atom, only for those
to be polarized. The atoms not contemplated in the block will be given non-polarized
initialization. For non-collinear spin, the spin direction may be specified for each atom by
the polar angles theta and phi, given as the last two arguments in degrees. If not specified,
theta=0 is assumed. NonCollinearSpin must be .true. to use the spin direction.

Example:

%block DM.InitSpin

5 -1. 90. 0. # Atom index, spin, theta, phi (deg)

3 + 45. -90.

7 -

%endblock DM.InitSpin

Default value: If present but empty, all atoms are not polarized. If absent,
DM.InitSpinAF defines the polarization.

DM.AllowReuse (logical): Controls whether density matrix information from previous geom-
etry iterations is re-used to start the new geometry’s SCF cycle.

Default value: .true.

47



DM.AllowExtrapolation (logical): Controls whether density matrix information from two
previous geometry iterations is (linearly) extrapolated to start the new geometry’s SCF
cycle.

Default value: .true.

Further information regarding the density-matrix re-use can be found in the header of
routine Src/new dm.F.

6.8.3 Initialization of the SCF cycle with charge densities

SCF.Read.Charge.NetCDF (logical): Instructs Siesta to read the charge density stored
in the netCDF file Rho.IN.grid.nc. This feature allows the easier re-use of electronic-
structure information from a previous run. It is not necessary that the basis sets are
“similar” (a requirement if density-matrices are to be read in).

Use: This is an experimental feature. Until robust checks are implemented, care must be
taken to make sure that the FFT grids in the .grid.nc file and in Siesta are the same.

Default value: .false.

SCF.Read.Deformation.Charge.NetCDF (logical): Instructs Siesta to read the deforma-
tion charge density stored in the netCDF file DeltaRho.IN.grid.nc. This feature allows
the easier re-use of electronic-structure information from a previous run. It is not nec-
essary that the basis sets are “similar” (a requirement if density-matrices are to be read
in). The deformation charge is particularly useful to give a good starting point for slightly
different geometries.

Use: This is an experimental feature. Until robust checks are implemented, care must be
taken to make sure that the FFT grids in the .grid.nc file and in Siesta are the same.

Default value: .false.

6.8.4 Output of density matrix

WriteDM (logical): It determines whether the density matrix is output as a binary System-
label.DM file or not.

Default value: .true.

WriteDM.NetCDF (logical): It determines whether the density matrix (after the mixing
step) is output as a DM.nc netCDF file or not.

The file is overwritten at every SCF step. Use the WriteDM.History.NetCDF option
if a complete history is desired.

The DM.nc and standard DM file formats can be converted at will with the programs in
Util/DensityMatrix directory. Note that the DM values in the DM.nc file are in single
precision.

Default value: .true. if netCDF support is enabled (see Appendix).

48



WriteDMHS.NetCDF (logical): If true, the input density matrix, Hamiltonian, and output
density matrix, are stored in a netCDF file named DMHS.nc. The file also contains the
overlap matrix S.

The file is overwritten at every SCF step. Use the WriteDMHS.History.NetCDF
option if a complete history is desired.

Default value: .true. if netCDF support is enabled (see Appendix).

WriteDM.History.NetCDF (logical): If true, a series of netCDF files with names of the form
DM-NNNN.nc is created to hold the complete history of the density matrix (after mixing).
(See also WriteDM.NetCDF). Each file corresponds to a geometry step.

Default value: .false.

WriteDMHS.History.NetCDF (logical): If true, a series of netCDF files with names of the
form DMHS-NNNN.nc is created to hold the complete history of the input and output density
matrix, and the Hamiltonian. (See also WriteDMHS.NetCDF). Each file corresponds
to a geometry step. The overlap matrix is stored only once per SCF cycle.

Default value: .false.

6.8.5 Convergence criteria

DM.Tolerance (real): Tolerance of Density Matrix. When the maximum difference between
the output and the input on each element of the DM in a SCF cycle is smaller than
DM.Tolerance, the selfconsistency has been achieved.

Default value: 10−4

DM.Require.Energy.Convergence (logical): Logical variable to request an additional re-
quirement for self-consistency: it is considered achieved when the change in the total
energy between cycles of the SCF procedure is below DM.EnergyTolerance and the
density matrix change criterion is also satisfied.

Default value: .false.

DM.Energy.Tolerance (real energy): If DM.Require.Energy.Convergence is .true.,
then self-consistency is achieved when the change in the total energy between cycles of
the SCF procedure is below this value and the density matrix change criterion is also
satisfied.

Default value: 10−4 eV

DM.Require.Harris.Convergence (logical): Logical variable to use the Harris energy as
monitor of self-consistency: this is considered achieved when the change in the Harris
energy between cycles of the SCF procedure is below DM.Harris.Tolerance. No density
matrix change criterion is used. This is useful if only energies are needed, as the Harris
energy tends to converge faster than the Kohn-Sham energy. The user is responsible
for using the correct energies in further processing, e.g., the Harris energy if the Harris
criterion is used.

49



To help in basis-optimization tasks, a new file BASIS HARRIS ENTHALPY is provided,
holding the same information as BASIS ENTHALPY but using the Harris energy instead
of the Kohn-Sham energy.

Default value: .false.

DM.Harris.Tolerance (real energy): If DM.Require.Harris.Convergence is .true., then
self-consistency is achieved when the change in the Harris energy between cycles of the
SCF procedure is below this value. This is useful if only energies are needed, as the Harris
energy tends to converge faster than the Kohn-Sham energy.

Default value: 10−4 eV

6.9 The real-space grid and the eggbox-effect

Siesta uses a finite 3D grid for the calculation of some integrals and the representation of
charge densities and potentials. Its fineness is determined by its plane-wave cutoff, as given by
the MeshCutoff option. It means that all periodic plane waves with kinetic energy lower than
this cutoff can be represented in the grid without aliasing. In turn, this implies that if a function
(e.g. the density or the effective potential) is an expansion of only these plane waves, it can be
Fourier transformed back and forth without any approximation.

The existence of the grid causes the breaking of translational symmetry (the egg-box effect,
due to the fact that the density and potential do have plane wave components above the mesh
cutoff). This symmetry breaking is clear when moving one single atom in an otherwise empty
simulation cell. The total energy and the forces oscillate with the grid periodicity when the
atom is moved, as if the atom were moving on an eggbox. In the limit of infinitely fine grid
(infinite mesh cutoff) this effect disappears.

For reasonable values of the mesh cutoff, the effect of the eggbox on the total energy or on the
relaxed structure is normally unimportant. However, it can affect substantially the process of
relaxation, by increasing the number of steps considerably, and can also spoil the calculation of
vibrations, usually much more demanding than relaxations.

The Util/Scripting/eggbox checker.py script can be used to diagnose the eggbox effect to be
expected for a particular pseudopotential/basis-set combination.

Apart from increasing the mesh cutoff (see theMeshCutoff option), the following options might
help in lessening a given eggbox problem. But note also that a filtering of the orbitals and the
relevant parts of the pseudopotential and the pseudocore charge might be enough to solve the
issue (see Sect. 6.3.9).

MeshCutoff (real energy): Defines the plane wave cutoff for the grid.

Default value: 100 Ry

MeshSubDivisions (integer): Defines the number of sub-mesh points in each direction used
to save index storage on the mesh. It affects the memory requirements and in some cases
the CPU time, but should not affect the results.

50



Default value: 2

NOTE: The default value might be a bit conservative. Users might experiment with higher
values (4, 6) to lower the memory and cputime usage.

GridCellSampling (data block):

It specifies points within the grid cell for a symmetrization sampling.

For a given grid the grid-cutoff convergence can be improved (and the eggbox lessened)
by recovering the lost symmetry: by symmetrizing the sensitive quantities. The full sym-
metrization implies an integration (averaging) over the grid cell. Instead, a finite sampling
can be performed.

It is a sampling of rigid displacements of the system with respect to the grid. The original
grid-system setup (one point of the grid at the origin) is always calculated. It is the (0,0,0)
displacement. The block GridCellSampling gives the additional displacements wanted
for the sampling. They are given relative to the grid-cell vectors, i.e., (1,1,1) would displace
to the next grid point across the body diagonal, giving an equivalent grid-system situation
(a useless displacement for a sampling).

Examples: Assume a cubic cell, and therefore a (smaller) cubic grid cell. If there is no
block or the block is empty, then the original (0,0,0) will be used only. The block:

%block GridCellSampling

0.5 0.5 0.5

%endblock GridCellSampling

would use the body center as a second point in the sampling. Or:

%block GridCellSampling

0.5 0.5 0.0

0.5 0.0 0.5

0.0 0.5 0.5

%endblock GridCellSampling

gives an fcc kind of sampling, and

%block GridCellSampling

0.5 0.0 0.0

0.0 0.5 0.0

0.0 0.0 0.5

0.0 0.5 0.5

0.5 0.0 0.5

0.5 0.5 0.0

0.5 0.5 0.5

%endblock GridCellSampling

51



gives again a cubic sampling with half the original side length. It is not trivial to choose
a right set of displacements so as to maximize the new ’effective’ cutoff. It depends on
the kind of cell. It may be automatized in the future, but it is now left to the user, who
introduces the displacements manually through this block.

The quantities which are symmetrized are: (i) energy terms that depend on the grid, (ii)
forces, (iii) stress tensor, and (iv) electric dipole.

The symmetrization is performed at the end of every SCF cycle. The whole cycle is done
for the (0,0,0) displacement, and, when the density matrix is converged, the same (now
fixed) density matrix is used to obtain the desired quantities at the other displacements
(the density matrix itself is not symmetrized as it gives a much smaller egg-box effect).
The CPU time needed for each displacement in the GridCellSampling block is of the
order of one extra SCF iteration.

Default value: Empty.

EggboxRemove (data block):

For recovering translational invariance in an approximate way.

It works by substracting from Kohn-Sham’s total energy (and forces) an approximation
to the eggbox energy, sum of atomic contributions. Each atom has a predefined eggbox
energy depending on where it sits on the cell. This atomic contribution is species dependent
and is obviously invariant under grid-cell translations. Each species contribution is thus
expanded in the appropriate Fourier series. It is important to have a smooth eggbox, for
it to be represented by a few Fourier components. A jagged egg-box (unless very small,
which is then unimportant) is often an indication of a problem with the pseudo.

In the block there is one line per Fourier component. The first integer is for the atomic
species it is associated with. The other three represent the reciprocal lattice vector of the
grid cell (in units of the basis vectors of the reciprocal cell). The real number is the Fourier
coefficient in units of the energy scale given in EggboxScale (see below), normally 1 eV.

The number and choice of Fourier components is free, as well as their order in the block.
One can choose to correct only some species and not others if, for instance, there is a
substantial difference in hardness of the cores. The 0 0 0 components will add a species-
dependent constant energy per atom. It is thus irrelevant except if comparing total energies
of different calculations, in which case they have to be considered with care (for instance by
putting them all to zero, i.e. by not introducing them in the list). The other components
average to zero representing no bias in the total energy comparisons.

If the total energies of the free atoms are put as 0 0 0 coefficients (with spin polarisation
if adequate etc.) the corrected total energy will be the cohesive energy of the system (per
unit cell).

Example: For a two species system, this example would give a quite sufficent set in many
instances (the actual values of the Fourier coefficients are not realistic).

%block EggBoxRemove

1 0 0 0 -143.86904

1 0 0 1 0.00031

52



1 0 1 0 0.00016

1 0 1 1 -0.00015

1 1 0 0 0.00035

1 1 0 1 -0.00017

2 0 0 0 -270.81903

2 0 0 1 0.00015

2 0 1 0 0.00024

2 1 0 0 0.00035

2 1 0 1 -0.00077

2 1 1 0 -0.00075

2 1 1 1 -0.00002

%endblock EggBoxRemove

It represents an alternative to grid-cell sampling (above). It is only approximate, but once
the Fourier components for each species are given, it does not represent any computational
effort (neither memory nor time), while the grid-cell sampling requires CPU time (roughly
one extra SCF step per point every MD step).

It will be particularly helpful in atoms with substantial partial core or semicore electrons.

Use: This technique as it stands should only be used for fixed cell calculations.

For the time being, it is up to the user to obtain the Fourier components to be intro-
duced. They can be obtained by moving one isolated atom through the cell to be used
in the calculation (for a give cell size, shape and mesh), once for each species. The
Util/Scripting/eggbox checker.py script can be used as a starting point for this.

Default value: Empty.

EggboxScale (real energy):

Defines the scale in which the Fourier components of the egg-box energy are given in the
EggboxRemove block.

Default value: 1 eV.

6.10 Matrix elements of the Hamiltonian and overlap

NeglNonOverlapInt (logical): Logical variable to neglect or compute interactions between
orbitals which do not overlap. These come from the KB projectors. Neglecting them
makes the Hamiltonian more sparse, and the Order-N calculation faster. USE WITH
CARE!!!

Default value: .false.

SaveHS (logical): Instructs to write the Hamiltonian and overlap matrices, as well as other
data required to generate bands and density of states, in file SystemLabel.HSX. The HSX
format is more compact than the traditional HS, and the Hamiltonian, overlap matrix, and
relative-positions array (which is always output, even for gamma-point only calculations)
are in single precision.

53



The program hsx2hs in Util/HSX can be used to generate an old-style HS file if needed.

Siesta produces also an HSX file if the COOP.Write option is active.

Use: File SystemLabel.HS is only written, not read, by siesta.

Default value: .false.

See also the WriteDMHS.NetCDF and WriteDMHS.History.NetCDF options.

6.10.1 The auxiliary supercell

When using k-points, this auxiliary supercell is needed to compute properly the matrix elements
involving orbitals in different unit cells. It is computed automatically by the program at every
geometry step.

FixAuxiliaryCell (logical):

Logical variable to control whether the auxiliary cell is changed during a variable cell
optimization.

NaiveAuxiliaryCell (logical):

If true, the program does not check whether the auxiliary cell constructed with a naive
algorithm is appropriate. This variable is only useful if one wishes to reproduce calculations
done with previous versions of the program in which the auxiliary cell was not large enough,
as indicated by warnings such as:
xijorb: WARNING: orbital pair 1 341 is multiply connected

Only small numerical differences in the results are to be expected.

Note that the warning is harmless for gamma-only calculations, except if one pretends to
use information about the relative coordinates of interacting orbitals (see the COOP.write
option).

Default value: .false.

6.11 Calculation of the electronic structure

Siesta can use two methods to determine the electronic structure of the system. One is standard
diagonalization, which works for all systems. The other is based on the direct minimization of
a special functional over a set of localized functions. The latter scales in principle linearly with
the size of the system, but is quite fragile and only works for systems with clearly separated
occupied and empty states. The default is to use diagonalization.

SolutionMethod (string): Character string to chose between diagonalization (diagon) or
Order-N (OrderN) solution of the LDA Hamiltonian.

Default value: diagon

54



6.11.1 Diagonalization options

NumberOfEigenStates (integer): This parameter allows the user to reduce the number of
eigenstates that are calculated from the maximum possible. The benefit is that, for a
gamma point calculation, the cost of the diagonalisation is reduced by finding fewer eigen-
vectors. For example, during a geometry optimisation, only the occupied states are re-
quired rather than the full set of virtual orbitals. Note, that if the electronic temperature
is greater than zero then the number of partially occupied states increases, depending on
the band gap. The value specified must greater than the number of occupied states and
less than the number of basis functions.

Default value: all orbitals

Use.New.Diagk (logical): Selects whether a more efficient diagonalization routine (with inter-
mediate storage of eigenvectors in netCDF format) is used for the case of k-point sampling.

In order to use the new routine, netCDF support should be compiled in. Specifying a
number of eigenvectors to store is possible through the symbol NumberOfEigenstates (see
above). Note that for now, for safety, all eigenvectors for a given k-point and spin are
computed by the diagonalization routine, but only that number specified by the user are
stored. If they are insufficient, the program stops. A rule of thumb to select the number
of eigenvectors to store is to count the number of electrons and divide by two, and then
apply a ”safety factor” of around 1.1-1.2 to take into account fractional occupations and
band overlaps.

A new file OCCS is produced with information about the number of states occupied.

This is an experimental feature.

Default value: .false.

Diag.DivideAndConquer (logical): Logical to select whether the normal or Divide and Con-
quer algorithms are used within the Lapack diagonalisation routines.

(Note: Some system library implementations of the D&C algorithm are buggy. It is
advisable to use Siesta’s own (fixed) version – configure will try to do that.)

Default value: true

Diag.AllInOne (logical): Logical to select whether a single call to lapack/scalapack is made
to perform the diagonalisation or whether the individual steps are controlled by Siesta.
Normally this option should not need to be used.

Default value: false

Diag.NoExpert (logical): Logical to select whether the simple or expert versions of the lapack/
scalapack routines are used. Usually the expert routines are faster, but may require slightly
more memory.

Default value: false

55



Diag.PreRotate (logical): Logical to select whether the eigensystem is transformed according
to previously saved eigenvectors to create a near diagonal matrix and then back trans-
formed afterwards. This is included for future options, but currently should not make any
difference except to increase the computational work!

Default value: false

Diag.Use2D (logical): Logical to select whether a 1-D or 2-D data decomposition should be
used when calling scalapack. The use of 2-D leads to superior scaling to large numbers
of processors and is therefore the default. This option only influences the parallel perfor-
mance.

Default value: true

6.11.2 Output of eigenvalues and wavefunctions

This section focuses on the output of eigenvalues and wavefunctions produced during the (last)
iteration of the self-consistent cycle, and associated to the appropriate k-point sampling.

For band-structure calculations (which typically use a different set of k-points) and specific
requests for wavefunctions, see Secs. 6.12 and 6.13, respectively.

The complete set of wavefunctions obtained during the last iteration of the SCF loop will be
written to a NetCDF file WFS.nc if the Diag.UseNewDiagk option is in effect.

The complete set of wavefunctions obtained during the last iteration of the SCF loop will be
written to SystemLabel.WFSX if the COOP.write option is in effect (but they might be over-
written by the options in Sec 6.13).

WriteEigenvalues (logical): If .true. it writes the Hamiltonian eigenvalues for the sampling
k⃗ points, in the main output file. If .false., it writes them in the file Systemlabel.EIG,
which can be used by the Eig2dos postprocessing utility (in the Util/ directory) for
obtaining the density of states.

Use: Only if SolutionMethod is diagon.

Default value: .false. (see LongOutput)

6.11.3 Occupation of electronic states and Fermi level

OccupationFunction (string): String variable to select the function that determines the
occupation of the electronic states. Two options are available:

• FD: The usual Fermi-Dirac occupation function is used.

• MP: The occupation function proposed by Methfessel and Paxton (Phys. Rev. B, 40,
3616 (1989)), is used.

The smearing of the electronic occupations is done, in both cases, using an energy width
defined by the ElectronicTemperature variable. Note that, while in the case of Fermi-
Dirac, the occupations correspond to the physical ones if the electronic temperature is set

56



to the physical temperature of the system, this is not the case in the Methfessel-Paxton
function. In this case, the tempeature is just a mathematical artifact to obtain a more
accurate integration of the physical quantities at a lower cost. In particular, the Methfessel-
Paxton scheme has the advantage that, even for quite large smearing temperatures, the
obtained energy is very close to the physical energy at T=0. Also, it allows a much faster
convergence with respect to k-points, specially for metals. Finally, the convergence to
selfconsistency is very much improved (allowing the use of larger mixing coefficients).

For the Methfessel-Paxton case, one can use relatively large values for the Electron-
icTemperature parameter. How large depends on the specific system. A guide can be
found in the article by J. Kresse and J. Furthmüller, Comp. Mat. Sci. 6, 15 (1996).

If Methfessel-Paxton smearing is used, the order of the corresponding Hermite polynomial
expansion must also be chosen (see description of variable OccupationMPOrder).

We finally note that, in both cases (FD and MP), once a finite temperature has been chosen,
the relevant energy is not the Kohn-Sham energy, but the Free energy. In particular, the
atomic forces are derivatives of the Free energy, not the KS energy. See R. Wentzcovitch
et al., Phys. Rev. B 45, 11372 (1992); S. de Gironcoli, Phys. Rev. B 51, 6773 (1995); J.
Kresse and J. Furthmüller, Comp. Mat. Sci. 6, 15 (1996), for details.

Use: Used only if SolutionMethod = diagon

Default value: FD

OccupationMPOrder (integer): Order of the Hermite-Gauss polynomial expansion for the
electronic occupation functions in the Methfessel-Paxton scheme (see Phys. Rev. B 40,
3616 (1989)). Specially for metals, higher order expansions provide better convergence to
the ground state result, even with larger smearing temperatures, and provide also better
convergence with k-points.

Use: Used only if SolutionMethod = diagon and OccupationFunction = MP

Default value: 1

ElectronicTemperature (real temperature or energy): Temperature for Fermi-Dirac or
Methfessel-Paxton distribution. Useful specially for metals, and to accelerate selfcon-
sistency in some cases.

Use: Used only if SolutionMethod = diagon

Default value: 300.0 K pp

6.11.4 Order(N) calculations

The Ordern(N) subsystem is quite fragile and only works for systems with clearly separated
occupied and empty states. Note also that the option to compute the chemical potential auto-
matically does not yet work in parallel.

ON.functional (string): Choice of order-N minimization functionals:

• Kim: Functional of Kim, Mauri and Galli, PRB 52, 1640 (1995).

57



• Ordejon-Mauri: Functional of Ordejón et al, or Mauri et al, see PRB 51, 1456 (1995).
The number of localized wave functions (LWFs) used must coincide withNel/2 (unless
spin polarized). For the initial assignment of LWF centers to atoms, atoms with even
number of electrons, n, get n/2 LWFs. Odd atoms get (n+1)/2 and (n-1)/2 in an
alternating sequence, ir order of appearance (controlled by the input in the atomic
coordinates block).

• files: Reads localized-function information from a file and chooses automatically
the functional to be used.

Use: Used only if SolutionMethod = ordern

Default value: Kim

ON.MaxNumIter (integer): Maximum number of iterations in the conjugate minimization of
the electronic energy, in each SCF cycle.

Use: Used only if SolutionMethod = OrderN

Default value: 1000

ON.etol (real): Relative-energy tolerance in the conjugate minimization of the electronic en-
ergy. The minimization finishes if 2(En − En−1)/(En + En−1) ≤ ON.etol.

Use: Used only if SolutionMethod = OrderN

Default value: 10−8

ON.eta (real energy): Fermi level parameter of Kim et al.. This should be in the energy gap,
and tuned to obtain the correct number of electrons. If the calculation is spin polarised,
then separate Fermi levels for each spin can be specified.

Use: Used only if SolutionMethod = OrderN

Default value: 0.0 eV

ON.eta alpha (real energy): Fermi level parameter of Kim et al. for alpha spin electrons. This
should be in the energy gap, and tuned to obtain the correct number of electrons. Note
that if the Fermi level is not specified individually for each spin then the same global eta
will be used.

Use: Used only if SolutionMethod = OrderN

Default value: 0.0 eV

ON.eta beta (real energy): Fermi level parameter of Kim et al. for beta spin electrons. This
should be in the energy gap, and tuned to obtain the correct number of electrons. Note
that if the Fermi level is not specified individually for each spin then the same global eta
will be used.

Use: Used only if SolutionMethod = OrderN

Default value: 0.0 eV

58



ON.RcLWF (real legth): Localization redius for the Localized Wave Functions (LWF’s).

Use: Used only if SolutionMethod = OrderN

Default value: 9.5 Bohr

ON.ChemicalPotential (logical): Specifies whether to calculate an order-N estimate of the
Chemical Potential, by the projection method (Goedecker and Teter, PRB 51, 9455 (1995);
Stephan, Drabold and Martin, PRB 58, 13472 (1998)). This is done by expanding the
Fermi function (or density matrix) at a given temperature, by means of Chebyshev poly-
nomials, and imposing a real space truncation on the density matrix. To obtain a realistic
estimate, the temperature should be small enough (typically, smaller than the energy gap),
the localization range large enough (of the order of the one you would use for the Local-
ized Wannier Functions), and the order of the polynomial expansion sufficiently large (how
large depends on the temperature; typically, 50-100).

Use: Used only if SolutionMethod = OrderN.

Default value: .false.

Note: This option does not work in parallel. An alternative is to obtain the approximate
value of the chemical potential using an initial diagonalization.

ON.ChemicalPotentialUse (logical): Specifies whether to use the calculated estimate of the
Chemical Potential, instead of the parameter ON.eta for the order-N energy functional
minimization. This is useful if you do not know the position of the Fermi level, typically
in the beginning of an order-N run.

Use: Used only if SolutionMethod = OrderN. Overrides the value of ON.eta. Overrides
the value of ON.ChemicalPotential, setting it to .true..

Default value: .false.

ON.ChemicalPotentialRc (real length): Defines the cutoff radius for the density matrix or
Fermi operator in the calculation of the estimate of the Chemical Potential.

Use: Used only if SolutionMethod = OrderN and ON.ChemicalPotential or
ON.ChemicalPotentialUse = .true.

Default value: 9.5 Bohr.

ON.ChemicalPotentialTemperature (real temperature or energy): Defines the tempera-
ture to be used in the Fermi function expansion in the calculation of the estimate of the
Chemical Potential. To have an accurate results, this temperature should be smaller than
the gap of the system.

Use: Used only if SolutionMethod = OrderN, and ON.ChemicalPotential or
ON.ChemicalPotentialUse = .true.

Default value: 0.05 Ry.

ON.ChemicalPotentialOrder (integer): Order of the Chebishev expansion to calculate the
estimate of the Chemical Potential.

59



Use: Used only if SolutionMethod = OrderN, and ON.ChemicalPotential or
ON.ChemicalPotentialUse = .true.

Default value: 100

ON.LowerMemory (logical): If .true., then a slightly reduced memory algorithm is used in
the 3-point line search during the order N minimisation. Only affects parallel runs.

Use: Used only if SolutionMethod = OrderN

Default value: .false.

Output of localized wavefunctions

At the end of each conjugate gradient minimization of the energy functional, the LWF’s are
stored on disk. These can be used as an input for the same system in a restart, or in case
something goes wrong. The LWF’s are stored in sparse form in file SystemLabel.LWF

It is important to keep very good care of this file, since the first minimizations can take MANY
steps. Loosing them will mean performing the whole minimization again. It is also a good
practice to save it periodically during the simulation, in case a mid-run restart is necessary.

ON.UseSaveLWF (logical): Instructs to read the localized wave functions stored in file
SystemLabel.LWF by a previous run.

Use: Used only if SolutionMethod is OrderN. If the required file does not exist, a warning
is printed but the program does not stop. Overrides UseSaveData.

Default value: .false.

6.12 Band-structure analysis

This calculation of the band structure is performed optionally after the geometry loop finishes,
and the output information written to the SystemLabel.bands file (see below for the format).

BandLinesScale (string): Specifies the scale of the k vectors given in BandLines and Band-
Points below. The options are:

• pi/a (k-vector coordinates are given in Cartesian coordinates, in units of π/a, where
a is the lattice constant)

• ReciprocalLatticeVectors (k vectors are given in reciprocal-lattice-vector coordi-
nates)

Default value: pi/a

Note: You might need to define explicitly a LatticeConstant tag in your fdf file.

BandLines (data block): Specifies the lines along which band energies are calculated (usually
along high-symmetry directions). An example for an FCC lattice is:

60



%block BandLines

1 1.000 1.000 1.000 L # Begin at L

20 0.000 0.000 0.000 \Gamma # 20 points from L to gamma

25 2.000 0.000 0.000 X # 25 points from gamma to X

30 2.000 2.000 2.000 \Gamma # 30 points from X to gamma

%endblock BandLines

where the last column is an optional LaTeX label for use in the band plot. If only given
points (not lines) are required, simply specify 1 in the first column of each line. The first
column of the first line must be always 1.

Use: Used only if SolutionMethod = diagon. The band k points are unrelated and
compatible with any k-grid used to calculate the total energy and charge density. This
block is overriden by BandPoints if both are present.

Default value: No band energies calculated.

BandPoints (data block): Band energies are calculated for the list of arbitrary k points given
in the block. Units defined by BandLinesScale as for BandLines. The generated
Systemlabel.bands file will contain the k point coordinates (in a.u.) and the corresponding
band energies (in eV). Example:

%block BandPoints

0.000 0.000 0.000 # This is a comment. eg this is gamma

1.000 0.000 0.000

0.500 0.500 0.500

%endblock BandPoints

Use: Used only if SolutionMethod = diagon. The band k points are unrelated and
compatible with any k-grid used to calculate the total energy and charge density. If both
are present, this block supersedes BandLines.

Default value: No band energies calculated.

WriteKbands (logical): If .true. it writes the coordinates of the k⃗ vectors defined for band
plotting, to the main output file.

Use: Only if SolutionMethod is diagon.

Default value: .false. (see LongOutput)

WriteBands (logical): If .true. it writes the Hamiltonian eigenvalues corresponding to the
k⃗ vectors defined for band plotting, in the main output file.

Use: Only if SolutionMethod is diagon.

Default value: .false. (see LongOutput)

61



6.12.1 Format of the .bands file

FermiEnergy (all energies in eV) \\

kmin, kmax (along the k-lines path, i.e. range of k in the band plot) \\

Emin, Emax (range of all eigenvalues) \\

NumberOfBands, NumberOfSpins (1 or 2), NumberOfkPoints \\

k1, ((ek(iband,ispin,1),iband=1,NumberOfBands),ispin=1,NumberOfSpins) \\

k2, ek \\

. \\

. \\

. \\

klast, ek \\

NumberOfkLines \\

kAtBegOfLine1, kPointLabel \\

kAtEndOfLine1, kPointLabel \\

. \\

. \\

. \\

kAtEndOfLastLine, kPointLabel \\

The Gnubands postprocessing utility program (found in the Util/ directory) reads the System-
label.bands for plotting. See the BandLines data descriptor above for more information.

6.13 Output of wavefunctions

The user can optionally request that specific wavefunctions are written to file. These wave-
functions are re-computed after the geometry loop (if any) finishes, using the last (presumably
converged) density matrix produced during the last self-consistent field loop (after a final mix-
ing). They are written to the SystemLabel.WFSX file (see below for the format).

Note that the complete set of wavefunctions obtained during the last iteration of the SCF loop
will be written to SystemLabel.WFSX if the COOP.write option is in effect (but they might
be overwritten by the options below).

Note that the complete set of wavefunctions obtained during the last iteration of the SCF loop
will be written to a NetCDF file WFS.nc if the Diag.UseNewDiagk option is in effect.

WaveFuncKPointsScale (string): Specifies the scale of the k vectors given in WaveFuncK-
Points below. The options are:

• pi/a (k-vector coordinates are given in Cartesian coordinates, in units of π/a, where
a is the lattice constant)

• ReciprocalLatticeVectors (k vectors are given in reciprocal-lattice-vector coordi-
nates)

Default value: pi/a

62



WaveFuncKPoints (data block): Specifies the k-points at which the electronic wavefunction
coefficients are written. An example for an FCC lattice is:

%block WaveFuncKPoints

0.000 0.000 0.000 from 1 to 10 # Gamma wavefuncs 1 to 10

2.000 0.000 0.000 1 3 5 # X wavefuncs 1,3 and 5

1.500 1.500 1.500 # K wavefuncs, all

%endblock WaveFuncKPoints

The number of wavefunction is defined by its energy, so that the first one has lowest energy.
The output of the wavefunctions in described in Section ??

Use: Used only if SolutionMethod = diagon. These k points are unrelated and compat-
ible with any k-grid used to calculate the total energy, charge density and band structure.

Default value: No wavefunctions are written.

WriteWaveFunctions (logical): If .true. it writes to the output file a list of the wavefunc-
tions actually written to the Systemlabel.WFSX file, which is always produced.

Use: Only if SolutionMethod is diagon.

Default value: .false. (see LongOutput)

The unformatted file SystemLabel.WFSX contains the information of the k-points for which
wavefunctions coefficients are written, and the energies and coefficients of each wavefunction
which was specified in the input file (see WaveFuncKPoints descriptor above). It also contains
information on the atomic species and the orbitals for postprocessing purposes.

NOTE: The WFSX file is in a more compact form than the old WFS, and the wavefunctions
are output in single precision. The Util/WFS/wfsx2wfs program can be used to convert to the
old format.

The readwf and readwfsx postprocessing utilities programs (found in the Util/WFS directory)
read the WFS or WFSX files, respectively, and generate a readable file.

6.14 Densities of states

6.14.1 Total density of states

There are several options to obtain the total density of states:

• The Hamiltonian eigenvalues for the SCF sampling k⃗ points can be dumped into System-
Label.EIG in a format analogous to SystemLabel.bands, but without the kmin, kmax,
emin, emax information, and without the abscissa. The Eig2dos postprocessing utility
can be then used to obtain the density of states. See the WriteEigenvalues descriptor.

• As a side-product of a partial-density-of-states calculation (see below)

• As one of the files produced by the Util/COOP/mprop during the off-line analysis of the
electronic structure. This method allows the flexibility of specifying energy ranges and
resolutions at will, without re-running Siesta See Sec. 6.15.2.

63



6.14.2 Partial (projected) density of states

There are two options to obtain the partial density of states

• Using the options below

• Using the Util/COOP/mprop program the off-line analysis of the electronic structure in
PDOS mode. This method allows the flexibility of specifying energy ranges, orbitals, and
resolutions at will, without re-running Siesta. See Sec. 6.15.2.

ProjectedDensityOfStates (block):

Instructs to write the Total Density Of States (Total DOS) and the Projected Density Of
States (PDOS) on the basis orbitals, between two given energies, in files SystemLabel.DOS
and SystemLabel.PDOS, respectively. The block must be a single line with the energies
of the range for PDOS projection, (relative to the program’s zero, i.e. the same as the
eigenvalues printed by the program), the peak width (an energy) for broadening the eigen-
values, the number of points in the energy window, and the energy units. An example
is:

%block ProjectedDensityOfStates

-20.00 10.00 0.200 500 eV

%endblock ProjectedDensityOfStates

By default the projected density of states is generated for the same grid of points in
reciprocal space as used for the SCF calculation. However, a separate set of K-points,
usually on a finer grid, can be generated using one of the options PDOS.kgrid cutoff or
PDOS.kgrid Monkhorst Pack. The format of these options is exactly the same as for
kgrid cutoff and kgrid Monkhorst Pack, respectively. Note that if a gamma point
calculation is being used in the SCF part, especially as part of a geometry optimisation,
and this is then to be run with a grid of K-points for the PDOS calculation it is more
efficient to run the SCF phase first and then restart to perform the PDOS evaluation using
the density matrix saved from the SCF phase.

Use: The two energies of the range must be ordered, with lowest first.

Output: The Total DOS is dumped into a file called SystemLabel.DOS. The format of
this file is:

Energy value, Total DOS (spin up), Total DOS (spin down)

The Projected Density Of States for all the orbitals in the unit cell is dumped sequentially
into a file called SystemLabel.PDOS. This file is structured using spacing and xml tags.
A machine-readable (but not very human readable) xml file pdos.xml is also produced.
Both can be processed by the program in Util/pdosxml. The .PDOS file can be processed
by utilites in Util/Contrib/APostnikov.

In all cases, the units for the DOS are (number of states/eV), and the Total DOS, g (ϵ),
is normalized as follows:

64



∫ +∞

−∞
g (ϵ) dϵ = number of basis orbitals in unit cell

(3)

Default value: PDOS not calculated nor written.

6.14.3 Local density of states

The LDOS is formally the DOS weighted by the amplitude of the corresponding wavefunctions
at different points in space, and is then a function of energy and position. Siesta can output
the LDOS integrated over a range of energies. This information can be used to obtain simple
STM images in the Tersoff-Hamann approximation (See Util/STM/simple-stm).

LocalDensityOfStates (block): Instructs to write the LDOS, integrated between two given
energies, at the mesh used by DHSCF, in file SystemLabel.LDOS. This file can be read
by routine IORHO, which may be used by an application program in later versions. The
block must be a single line with the energies of the range for LDOS integration (relative
to the program’s zero, i.e. the same as the eigenvalues printed by the program) and their
units. An example is:

%block LocalDensityOfStates

-3.50 0.00 eV

%endblock LocalDensityOfStates

Use: The two energies of the range must be ordered, with lowest first. File
SystemLabel.LDOS is only written, not read, by siesta.

Default value: LDOS not calculated nor written.

6.15 Options for chemical analysis

6.15.1 Mulliken charges and overlap populations

WriteMullikenPop (integer): It determines the level of Mulliken population analysis printed:

• 0 = None

• 1 = atomic and orbital charges

• 2 = 1 + atomic overlap pop.

• 3 = 2 + orbital overlap pop.

The order of the orbitals in the population lists is defined by the order of atoms. For each
atom, populations for PAO orbitals and double-z, triple-z, etc... derived from them are
displayed first for all the angular momenta. Then, populations for perturbative polariza-
tion orbitals are written. Within a l-shell be aware that the order is not conventional,
being y, z, x for p orbitals, and xy, yz, z2, xz, and x2 − y2 for d orbitals.

Default value: 0 (see LongOutput)

65



MullikenInSCF (logical): If true, the Mulliken populations will be written for every SCF step
at the level of detail specified in WriteMullikenPop. Useful when dealing with SCF
problems, otherwise too verbose.

Default value: .false.

MullikenInSCF (logical): If true, the Mulliken populations will be written for every SCF step
at the level of detail specified in WriteMullikenPop. Useful when dealing with SCF
problems, otherwise too verbose.

Default value: .false.

6.15.2 Crystal-Orbital overlap and hamilton populations (COOP/COHP)

These curves are quite useful to analyze the electronic structure to get insight about bonding
characteristics. See the Util/COOP directory for more details. The COOP.Write option must
be activated to get the information needed.

References:

• Original COOP reference: Hughbanks, T.; Hoffmann, R., J. Am. Chem. Soc., 1983, 105,
3528.

• Original COHP reference: Dronskowski, R.; Blchl, P. E., J. Phys. Chem., 1993, 97, 8617.

• A tutorial introduction: Dronskowski, R. Computational Chemistry of Solid State Mate-
rials; Wiley-VCH: Weinheim, 2005.

• Online material maintained by R. Dronskowski’s group: http://www.cohp.de/

COOP.Write (logical): Instructs the program to generate SystemLabel.WFSX (packed
wavefunction file) and SystemLabel.HSX (H, S and X ij file), to be processed by
Util/COOP/mprop to generate COOP/COHP curves, (projected) densities of states, etc.

The WFSX file is in a more compact form than the usual WFS, and the wavefunctions are
output in single precision. The Util/wfsx2wfs program can be used to convert to the old
format. The HSX file is in a more compact form than the usual HS, and the Hamiltonian,
overlap matrix, and relative-positions array (which is always output, even for gamma-point
only calculations) are in single precision.

Default value: .false.

The user can narrow the energy-range used (and save some file space) by using the
WFS.EnergyMin and WFS.EnergyMax options (both take an energy (with units)
as extra argument).

66



6.16 Optical properties

OpticalCalculation (logical): If specified, the imaginary part of the dielectric function will be
calculated and stored in a file called Systemlabel.EPSIMG. The calculation is performed
using the simplest approach based on the dipolar transition matrix elements between
different eigenfunctions of the self-consistent Hamiltonian. For molecules the calculation
is performed using the position operator matrix elements, while for solids the calculation
is carried out in the momentum space formulation. Corrections due to the non-locality of
the pseudopotentials are introduced in the usual way.

Default value: false

Optical.EnergyMinimum (real energy): This specifies the minimum of the energy range in
which the frequency spectrum will be calculated.

Default value: 0 Ry.

Optical.EnergyMaximum (real energy): This specifies the maximum of the energy range in
which the frequency spectrum will be calculated.

Default value: 10 Ry.

Optical.Broaden (real energy): If this is value is set then a Gaussian broadening will be
applied to the frequency values.

Default value: 0 Ry.

Optical.Scissor (real energy): Because of the tendency of DFT calculations to under estimate
the band gap, a rigid shift of the unoccupied states, known as the scissor operator, can
be added to correct the gap and thereby improve the calculated results. This shift is only
applied to the optical calculation and no where else within the calculation.

Default value: 0 Ry.

Optical.NumberOfBands (integer): This option controls the number of bands that are in-
cluded in the optical property calculation. Clearly this number must be larger than the
number of occupied bands and less than or equal to the number of basis functions (which
determines the number of unoccupied bands available). Note, while including all the bands
may be the most accurate choice this will also be the most expensive!

Default value: All bands.

Optical.Mesh (data block): This block contains 3 numbers that determine the mesh size used
for the integration across the Brillouin zone. For example:

%block Optical.Mesh

5 5 5

%endblock Optical.Mesh

67



The three values represent the number of mesh points in the direction of each reciprocal
lattice vector.

Default value: Empty in general. For atoms or molecules a k-sampling of only one point
is assumed.

Optical.OffsetMesh (logical): If set to true, then the mesh is offset away from the gamma
point for odd numbers of points.

Default value: false

Optical.PolarizationType (string): This option has three possible values that represent the
type of polarization to be used in the calculation. The options are polarized, which implies
the application of an electric field in a given direction, unpolarized, which implies the
propagation of light in a given direction, and polycrystal. In the case of the first two
options a direction in space must be specified for the electric field or propagation using
the Optical.Vector data block.

Default value: polycrystal

Optical.Vector (data block): This block contains 3 numbers that specify the vector direction
for either the electric field or light propagation, for a polarized or unpolarized calculation,
respectively. A typical block might look like:

%block Optical.Vector

1.0 0.0 0.5

%endblock Optical.Vector

Default value: Empty.

6.17 Macroscopic polarization

PolarizationGrids (data block): If specified, the macroscopic polarization will be calculated
using the geometric Berry phase approach (R.D. King-Smith, and D. Vanderbilt, PRB 47,
1651 (1993)). In this method the electronic contribution to the macroscopic polarization,
along a given direction, is calculated using a discretized version of the formula

Pe,∥ =
ifqe
8π3

∫
A
dk⊥

M∑
n=1

∫ |G∥|

0
dk∥⟨ukn|

δ

δk∥
|ukn⟩ (4)

where f is the occupation (2 for a non-magnetic system), qe the electron charge, M is the
number of occupied bands (the system must be an insulator), and ukn are the periodic
Bloch functions. G∥ is the shortest reciprocal vector along the chosen direction.

As it can be seen in formula (4), to compute each component of the polarization we must
perform a surface integration of the result of a 1-D integral in the selected direction. The
grids for the calculation along the direction of each of the three lattice vectors are specified
in the block PolarizationGrids.

68



%block PolarizationGrids

10 3 4 yes

2 20 2 no

4 4 15

%endblock PolarizationGrids

All three grids must be specified, therefore a 3×3 matrix of integer numbers must be
given: the first row specifies the grid that will be used to calculate the polarization along
the direction of the first lattice vector, the second row will be used for the calculation along
the the direction of the second lattice vector, and the third row for the third lattice vector.
The numbers in the diagonal of the matrix specifie the number of points to be used in the
one dimensional line integrals along the different directions. The other numbers specifie
the mesh used in the surface integrals. The last column specifies if the bidimensional grids
are going to be diplaced from the origin or not, as in the Monkhorst-Pack algorithm (PRB
13, 5188 (1976)). This last column is optional. If the number of points in one of the grids
is zero, the calculation will not be performed for this particular direction.

For example, in the given example, for the computation in the direction of the first lattice
vector, 15 points will be used for the line integrals, while a 3×4 mesh will be used for
the surface integration. This last grid will be displaced from the origin, so Γ will not be
included in the bidimensional integral. For the directions of the second and third lattice
vectors, the number of points will be 20 and 2×2, and 15 and 4×4, respectively.

It has to be stressed that the macroscopic polarization can only be meaningfully calculated
using this approach for insulators. Therefore, the presence of an energy gap is necessary,
and no band can cross the Fermi level. The program performs a simple check of this
condition, just by counting the electrons in the unit cell ( the number must be even for
a non-magnetic system, and the total spin polarization must have an integer value for
spin polarized systems), however is the responsability of the user to check that the system
under study is actually an insulator (for both spin components if spin polarized).

The total macroscopic polarization, given in the output of the program, is the sum of the
electronic contribution (calculated as the Berry phase of the valence bands), and the ionic
contribution, which is simply defined as the sum of the atomic positions within the unit
cell multiply by the ionic charges (

∑Na
i Ziri). In the case of the magnetic systems, the

bulk polarization for each spin component has been defined as

Pσ = Pσ
e +

1

2

Na∑
i

Ziri (5)

Na is the number of atoms in the unit cell, and ri and Zi are the positions and charges of
the ions.

It is also worth noting, that the macroscopic polarization given by formula (4) is only
defined modulo a “quantum” of polarization (the bulk polarization per unit cell is only well
defined modulo fqeR, being R an arbitrary lattice vector). However, the experimentally
observable quantities are associated to changes in the polarization induced by changes
on the atomic positions (dynamical charges), strains (piezoelectric tensor), etc... The
calculation of those changes, between different configurations of the solid, will be well

69



defined as long as they are smaller than the “quantum”, i.e. the perturbations are small
enough to create small changes in the polarization.

Use: Only compatible with SolutionMethod = diagon.
Default value: Empty. No calculation performed.

BornCharge (logical): If true, the Born effective charge tensor is calculated for each atom
by finite differences, by calculating the change in electric polarization (see Polarization-
Grids) induced by the small displacements generated for the force constants calculation
(see MD.TypeOfRun = FC):

Z∗
i,α,β =

Ω0

e

∂Pα

∂ui,β

∣∣∣∣∣
q=0

(6)

where e is the charge of an electron and Ω0 is the unit cell volume.

To calculate the Born charges it is necessary to specify both the Born charge flag and the
mesh used to calculate the polarization, for example:

%block PolarizationGrids

7 3 3

3 7 3

3 3 7

%endblock PolarizationGrids

BornCharge True

The Born effective charge matrix is then written to the file SystemLabel.BC.

The method by which the polarization is calculated may introduce an arbitrary phase
(polarization quantum), which in general is far larger than the change in polarization
which results from the atomic displacement. It is removed during the calculation of the
Born effective charge tensor.

The Born effective charges allow the calculation of LO-TO splittings and infrared activities.
The version of the Vibra utility code in which these magnitudes are calculated is not yet
distributed with Siesta, but can be obtained form Tom Archer (archert@tcd.ie).

Use: Only used if MD.TypeOfRun is FC.

Default value: false

6.18 Systems with net charge or dipole, and electric fields

NetCharge (real): Specify the net charge of the system (in units of |e|). For charged systems,
the energy converges very slowly versus cell size. For molecules or atoms, a Madelung
correction term is applied to the energy to make it converge much faster with cell size
(this is done only if the cell is SC, FCC or BCC). For other cells, or for periodic systems
(chains, slabs or bulk), this energy correction term can not be applied, and the user is
warned by the program. It is not advised to do charged systems other than atoms and
molecules in SC, FCC or BCC cells, unless you know what you are doing.

70



Use: For example, the F− ion would have NetCharge = -1, and the Na+ ion would have
NetCharge = 1. Fractional charges can also be used.

Default value: 0.0

SimulateDoping (boolean):

This option instructs the program to add a background charge density to simulate doping.
The new “doping” routine calculates the net charge of the system, and adds a compensating
background charge that makes the system neutral. This background charge is constant at
points of the mesh near the atoms, and zero at points far from the atoms. This simulates
situations like doped slabs, where the extra electrons (holes) are compensated by oposite
charges at the material (the ionized dopant impurities), but not at the vacuum. This
serves to simulate properly doped systems in which there are large portions of vacuum,
such as doped slabs.

(See Tests/sic-slab)

Default value: .false.

ExternalElectricField (data block): It specifies an external electric field for molecules, chains
and slabs. The electric field should be orthogonal to ‘bulk directions’, like those parallel
to a slab (bulk electric fields, like in dielectrics or ferroelectrics, are not allowed). If it
is not, an error message is issued and the components of the field in bulk directions are
suppressed automatically. The input is a vector in Cartesian coordinates, in the specified
units. Example:

%block ExternalElectricField

0.000 0.000 0.500 V/Ang

%endblock ExternalElectricField

Default value: zero field

SlabDipoleCorrection (boolean):

If true, Siesta calculates the electric field required to compensate the dipole of the system
at every iteration of the self-consistent cycle. The potential added to the grid corresponds
to that of a dipole layer at the middle of the vacuum layer. For slabs, this exactly com-
pensates the electric field at the vacuum created by the dipole moment of the system, thus
allowing to treat asymmetric slabs (including systems with an adsorbate on one surface)
and compute properties such as the work funcion of each of the surfaces.

NOTE: If the program is fed a starting density matrix from an uncorrected calculation
(i.e., with an exagerated dipole), the first iteration might use a compensating field that is
too big, with the risk of taking the system out of the convergence basin. In that case, it is
advisable to use the DM.MixSCF1 option to request a mix of the input and output density
matrices after that first iteration.

(See Tests/sic-slab)

Default value: false

71



6.19 Output of charge densities and potentials on the grid

Siesta represents these magnitudes on the real-space grid. The following options control the
generation of the appropriate files, which can be processed by the programs in the Util/Grid

directory, and also by Andrei Postnikov’s utilities in Util/Contrib/APostnikov. See also
/Util/Denchar for an alternative way to plot the charge density (and wavefunctions).

SaveRho (logical): Instructs to write the valence pseudocharge density at the mesh used by
DHSCF, in file SystemLabel.RHO.

Use: File SystemLabel.RHO is only written, not read, by siesta. This file can be read by
routine IORHO, which may be used by other application programs.

If netCDF support is compiled in, the file Rho.grid.nc is produced.

Default value: .false.

SaveDeltaRho (logical): Instructs to write δρ(r⃗) = ρ(r⃗) − ρatm(r⃗), i.e., the valence pseu-
docharge density minus the sum of atomic valence pseudocharge densities. It is done for
the mesh points used by DHSCF and it comes in file SystemLabel.DRHO. This file can be
read by routine IORHO, which may be used by an application program in later versions.

Use: File SystemLabel.DRHO is only written, not read, by siesta.

If netCDF support is compiled in, the file DeltaRho.grid.nc is produced.

Default value: .false.

SaveElectrostaticPotential (logical): Instructs to write the total electrostatic potential,
defined as the sum of the hartree potential plus the local pseudopotential, at the mesh
used by DHSCF, in file SystemLabel.VH. This file can be read by routine IORHO, which
may be used by an application program in later versions.

Use: File SystemLabel.VH is only written, not read, by siesta.

If netCDF support is compiled in, the file ElectrostaticPotential.grid.nc is produced.

Default value: .false.

SaveNeutralAtomPotential (logical): Instructs to write the neutral-atom potential, defined
as the sum of the hartree potential of a “pseudo atomic valence charge” plus the local
pseudopotential, at the mesh used by DHSCF, in file SystemLabel.VNA. It is written at
the start of the self-consistency cycle, as this potential does not change.

Use: File SystemLabel.VNA is only written, not read, by siesta.

If netCDF support is compiled in, the file Vna.grid.nc is produced.

Default value: .false.

SaveTotalPotential (logical): Instructs to write the valence total effective local poten-
tial (local pseudopotential + Hartree + Vxc), at the mesh used by DHSCF, in file
SystemLabel.VT. This file can be read by routine IORHO, which may be used by an
application program in later versions.

72



Use: File SystemLabel.VT is only written, not read, by siesta.

If netCDF support is compiled in, the file TotalPotential.grid.nc is produced.

Default value: .false.

SaveIonicCharge (logical): Instructs to write the soft diffuse ionic charge at the mesh used by
DHSCF, in file SystemLabel.IOCH. This file can be read by routine IORHO, which may
be used by an application program in later versions. Remember that, within the Siesta
sign convention, the electron charge density is positive and the ionic charge density is
negative.

Use: File SystemLabel.IOCH is only written, not read, by siesta.

If netCDF support is compiled in, the file Chlocal.grid.nc is produced.

Default value: .false.

SaveTotalCharge (logical): Instructs to write the total charge density (ionic+electronic) at
the mesh used by DHSCF, in file SystemLabel.TOCH. This file can be read by routine
IORHO, which may be used by an application program in later versions. Remember that,
within the Siesta sign convention, the electron charge density is positive and the ionic
charge density is negative.

Use: File SystemLabel.TOCH is only written, not read, by siesta.

Default value: .false.

SaveInitialChargeDensity (logical):

If “true”, the program generates a SystemLabel.RHOINIT file (and a RhoInit.grid.nc

file if netCDF support is compiled in) containing the charge density used to start the first
self-consistency step, and it stops. Note that if an initial density matrix (DM file) is used,
it is not normalized. This is useful to generate the charge density associated to “partial”
DMs, as created by progras such as dm creator and dm filter.

Default value: .false.

6.20 Auxiliary Force field

It is possible to supplement the DFT interactions with a limited set of force-field options,
typically useful to simulate dispersion interactions. It is not yet possible to turn off DFT and
base the dynamics only on the force field. The GULP program should be used for that.

MM.Potentials (data block): This block allows the input of molecular mechanics potentials
between species. The following potentials are currently implemented:

• C6, C8, C10 powers of the Tang-Toennes damped dispersion potential.

• A harmonic interaction.

73



• A dispersion potential of the Grimme type (similar to the C6 type but with a different
damping function). (See S. Grimme, J. Comput. Chem. Vol 27, 1787-1799 (2006)).
See also MM.Grimme.D and MM.Grimme.S6 below.

The format of the input is the two species numbers that are to interact, the potential name
(C6, C8, C10, harm, or Grimme), followed by the potential parameters. For the damped
dispersion potentials the first number is the coefficient and the second is the exponent of
the damping term (i.e., a reciprocal length). A value of zero for the latter term implies
no damping. For the harmonic potential the force constant is given first, followed by r0.
For the Grimme potential C6 is given first, followed by the (corrected) sum of the van der
Waals radii for the interacting species (a real length). Positive values of the C6, C8, and
C10 coefficients imply attractive potentials.

Use: Gives the input for the molecular mechanics potentials.

%block MM.Potentials

1 1 C6 32.0 2.0

1 2 harm 3.0 1.4

2 3 Grimme 6.0 3.2

%endblock MM.Potentials

Default value: None.

MM.Cutoff (physical): Specifies the distance out to which molecular mechanics potential will
act before being treated as going to zero.

Use: Limits the real space range of the molecular mechanics potentials.

Default value: 30.0 Bohr

MM.UnitsEnergy (units): Specifies the units to be used for energy in the molecular mechanics
potentials.

Use: Controls the units for energy in the molecular mechanics input.

Default value: eV (Note: Currently this the only option)

MM.UnitsDistance (units): Specifies the units to be used for distance in the molecular me-
chanics potentials.

Use: Controls the units for distance in the molecular mechanics input.

Default value: Ang (Note: Currently this the only option)

MM.Grimme.D : Specifies the scale factor d for the scaling function in the Grimme dispersion
potential (see above).

Default value: 20.0

74



MM.Grimme.S6 : Specifies the overall fitting factor s6 for the Grimme dispersion potential
(see above). This number depends on the quality of the basis set, the exchange-correlation
functional, and the fitting set.

Default value: 1.66 (for DZP basis sets).

6.21 Parallel options

BlockSize (integer): The orbitals are distributed over the processors when running in parallel
using a 1-D block-cyclic algorithm. BlockSize is the number of consecutive orbitals
which are located on a given processor before moving to the next one. Large values of this
parameter lead to poor load balancing, while small values can lead to inefficient execution.
The performance of the parallel code can be optimised by varying this parameter until a
suitable value is found.

Use: Controls the blocksize used for distributing orbitals over processors

Default value: 8

ProcessorY (integer): The mesh points are divided in the Y and Z directions (more precisely,
along the second and third lattice vectors) over the processors in a 2-D grid. ProcessorY
specifies the dimension of the processor grid in the Y-direction and must be a factor of the
total number of processors. Ideally the processors should be divided so that the number
of mesh points per processor along each axis is as similar as possible.

Use: Controls the dimensions of the 2-D processor grid for mesh distribution

Default value: Variable - chosen using multiples of factors of the total number of processors

Diag.Memory (real no units): Whether the parallel diagonalisation of a matrix is successful
or not can depend on how much workspace is available to the routine when there are
clusters of eigenvalues. Diag.Memory allows the user to increase the memory available,
when necessary, to achieve successful diagonalisation and is a scale factor relative to the
minimum amount of memory that SCALAPACK might need.

Use: Controls the amount of workspace available to parallel matrix diagonalisation

Default value: 1.0

Diag.ParallelOverK (logical): For the diagonalisation there is a choice in strategy about
whether to parallelise over the K points or over the orbitals. K point diagonalisation is
close to perfectly parallel but is only useful where the number of K points is much larger
than the number of processors and therefore orbital parallelisation is generally preferred.
The exception is for metals where the unit cell is small, but the number of K points to be
sampled is very large. In this last case it is recommend that this option be used.

NOTE: This scheme is not used for the diagonalizations involved in the generation of
the band-structure (as specified with BandLines or BandPoints) or in the generation
of wave-function information (as specified with WaveFuncKpoints). In these cases the
program falls back to using parallelization over orbitals.

75



Use: Controls whether the diagonalisation is parallelised with respect to orbitals or K
points - not allowed for non-co-linear spin case.

Default value: false

RcSpatial (real distance): When performing a parallel order N calculation, a domain/spatial
decomposition algorithm is used in which the system is divided into cells, which are then
assigned to the nodes. The size of the cells is, by default, equal to the maximum distance
at which there is a non-zero matrix element in the Hamiltonian between two orbitals, or
the radius of the Wannier function - which ever is the larger. If this is the case, then an
orbital will only interact with other orbitals in the same or neighbouring cells. However,
by decreasing the cell size and searching over more cells it is possible to achieve better
load balance in some cases.

Use: Controls the domain size during the spatial decomposition

Default value: maximum of the matrix element range or the Wannier radius

6.22 Efficiency options

DirectPhi (logical): The calculation of the matrix elements on the mesh requires the value of
the orbitals on the mesh points. This array represents one of the largest uses of memory
within the code. If set to true this option allows the code to generate the orbital values
when needed rather than storing the values. This obviously costs more computer time but
will make it possible to run larger jobs where memory is the limiting factor.

Use: Controls whether the values of the orbitals at the mesh points are stored or calculated
on the fly.

Default value: false

6.23 Memory accounting options

AllocReportLevel (integer): Sets the level of the allocation report, printed in file
SystemLabel.alloc. However, not all the allocated arrays are included in the report (this
will be corrected in future versions). The allowed values are:

• level 0 : no report at all (the default)

• level 1 : only total memory peak and where it occurred

• level 2 : detailed report printed only at normal program termination

• level 3 : detailed report printed at every new memory peak

• level 4 : print every individual (re)allocation or deallocation

Default value: 0

76



6.24 The catch-all option UseSaveData

This is a dangerous feature, and is deprecated, but retained for historical compatibility. Use the
individual options instead.

UseSaveData (logical): Instructs to use as much information as possible stored from previous
runs in files SystemLabel.XV, SystemLabel.DM and SystemLabel.LWF, where System-
Label is the name associated to parameter SystemLabel.

Use: If the required files do not exist, warnings are printed but the program does not stop.

Default value: .false.

6.25 Output of information for Denchar

The program denchar in Util/Denchar can generate charge-density and wavefunction contours.

WriteDenchar (logical): Instructs to write information needed by the utility program DEN-
CHAR (by J. Junquera and P. Ordejón) to plot the valence charge density contours (see
Util/Denchar). The information is written in file SystemLabel.PLD.

Use: File SystemLabel.PLD is only written, not read, by siesta.

Apart from the PLD file, you will need the Density-Matrix (DM) file and/or a wavefunction
(WFS) file. For the latter, remember that Siesta now produces only a packed WFSX file.
You will need to run the wfsx2wfs program to convert it to the WFS format. This will be
fixed shortly.

Default value: .false.

7 STRUCTURAL RELAXATION, PHONONS, AND
MOLECULAR DYNAMICS

This functionality is not Siesta-specific, but is implemented to provide a more complete simu-
lation package. The program has an outer geometry loop: it computes the electronic structure
(and thus the forces and stresses) for a given geometry, updates the atomic positions (and maybe
the cell vectors) accordingly and moves on to the next cycle.

Several options for MD and structural optimizations are implemented, selected by
MD.TypeOfRun (string):

• CG Coordinate optimization by conjugate gradients). Optionally (see variable
MD.VariableCell below), the optimization can include the cell vectors.

• Broyden Coordinate optimization by a modified Broyden scheme). Optionally, (see vari-
able MD.VariableCell below), the optimization can include the cell vectors.

77



• FIRE Coordinate optimization by Fast Inertial Relaxation Engine (FIRE) (E. Bitzek et al,
PRL 97, 170201, (2006)). Optionally, (see variable MD.VariableCell below), the optimiza-
tion can include the cell vectors.

• Verlet Standard Verlet algorithm MD

• Nose MD with temperature controlled by means of a Nosé thermostat

• ParrinelloRahman MD with pressure controlled by the Parrinello-Rahman method

• NoseParrinelloRahman MD with temperature controlled by means of a Nosé thermostat
and pressure controlled by the Parrinello-Rahman method

• Anneal MD with annealing to a desired temperature and/or pressure (see variable
MD.AnnealOption below)

• FC Compute force constants matrix for phonon calculations.

• Phonon Compute forces for a specified set of atomic displacements chosen with the help of
the Phonon program. 3 .

• Forces (Receive coordinates from, and return forces to, an external driver program, using
Unix pipes for communication. The routines in module fsiesta.f90 allow the user’s program
to perform this communication transparently, as if siesta were a conventional force-field
subroutine. See Util/SiestaSubroutine/README for details. WARNING: if this option
is specified without a driver program sending data, siesta may hang without any notice).

See directory Util/Scripting for other driving options.

Default value: Verlet (CG for one-atom systems)

Note that some options specified in later variables (like quenching) modify the behavior of these
MD options. If the system contains just one atom, CG is the only available dynamics option.

7.1 Structural relaxation

In this mode of operation, the program moves the atoms (and optionally the cell vectors) trying
to minimize the forces (and stresses) on them.

These are the options common to all relaxation methods. If the Zmatrix input option is in effect
(see Sec. 6.4.2) the Zmatrix-specific options take precedence. The ’MD’ prefix is misleading but
kept for historical reasons.

MD.VariableCell (logical): If true, the lattice is relaxed together with the
atomic coordinates. It allows to target hydrostatic pressures or arbitrary
stress tensors. See MD.MaxStressTol, MD.TargetPressure, MD.TargetStress,
MD.ConstantVolume, and MD.PreconditionVariableCell.

Use: Used only if MD.TypeOfRun is CG or Broyden or FIRE

Default value: .false.

3Phonon is c⃝ copyright by Krzysztof Parlinski

78



MD.ConstantVolume (logical): If true, the cell volume is kept constant in a variable-cell
relaxation: only the cell shape and the atomic coordinates are allowed to change. Note
that it does not make much sense to specify a target stress or pressure in this case, except
for anisotropic (traceless) stresses. See MD.VariableCell, MD.TargetStress.

Use: Used only if MD.TypeOfRun is CG or Broyden or FIRE, and MD.VariableCell is
.true..

Default value: .false.

MD.RelaxCellOnly (logical):

If true, only the cell parameters are relaxed (by the Broyden or FIRE method, not CG).
The atomic coordinates are re-scaled to the new cell, keeping the fractional coordinates con-
stant. For Zmatrix calculations, the fractional position of the first atom in each molecule
is kept fixed, and no attempt is made to rescale the bond distances or angles.

Use: Used only if MD.TypeOfRun is FIRE or Broyden and MD.VariableCell is .true..

Default value: .false.

MD.MaxForceTol (real force): Force tolerance in coordinate optimization. Run stops if the
maximum atomic force is smaller than MD.MaxForceTol (see MD.MaxStressTol for
variable cell).

Use: Used only if MD.TypeOfRun is CG or Broyden or FIRE

Default value: 0.04 eV/Ang

MD.MaxStressTol (real pressure): Stress tolerance in variable-cell CG optimization. Run
stops if the maximum atomic force is smaller than MD.MaxForceTol and the maximum
stress component is smaller than MD.MaxStressTol.

Use: Used only if MD.TypeOfRun is CG or Broyden or FIRE, and Md.VariableCell is
.true.

Special consideration is needed if used with Sankey-type basis sets, since the combination
of orbital kinks at the cutoff radii and the finite-grid integration originate discontinuities in
the stress components, whose magnitude depends on the cutoff radii (or energy shift) and
the mesh cutoff. The tolerance has to be larger than the discontinuities to avoid endless
optimizations if the target stress happens to be in a discontinuity.

Default value: 1.0 GPa

MD.NumCGsteps (integer): Maximum number of conjugate gradient (or Broyden) minimiza-
tion moves (the minimization will stop if tolerance is reached before; see MD.MaxForceTol
below).

Use: Used only if MD.TypeOfRun is CG or Broyden

Default value: 0

MD.MaxCGDispl (real length): Maximum atomic displacements in an optimization move.

Use: Used only if MD.TypeOfRun is CG or Broyden or FIRE (despite its name). For
the Broyden optimization method, it is also possible to limit indirectly the initial atomic

79



displacements using MD.Broyden.Initial.Inverse.Jacobian. For the FIRE method,
the same result can be obtained by choosing a small time step.

Note that there are Zmatrix-specific options that override this option.

Default value: 0.2 Bohr

MD.PreconditionVariableCell (real length): A length to multiply to the strain components
in a variable-cell optimization. The strain components enter the minimization on the same
footing as the coordinates. For good efficiency, this length should make the scale of energy
variation with strain similar to the one due to atomic displacements. It is also used for
the application of the MD.MaxCGDispl value to the strain components.

Use: Used only if MD.TypeOfRun is CG or Broyden or FIRE and MD.VariableCell is .true.

Default value: 5.0 Ang

ZM.ForceTolLength (real force): Parameter that controls the convergence with respect to
forces on Z-matrix lengths

Use: This option sets the convergence criteria for the forces that act on Z-matrix compo-
nents with units of length.

Default value: 0.00155574 Ry/Bohr

ZM.ForceTolAngle (torque): Parameter that controls the convergence with respect to forces
on Z-matrix angles

Use: This option sets the convergence criteria for the forces that act on Z-matrix compo-
nents with units of angle.

Default value: 0.00356549 Ry/rad

ZM.MaxDisplLength (real length): Parameter that controls the maximum change in a Z-
matrix length during an optimisation step.

Use: This option sets the maximum displacement for a Z-matrix length

Default value: 0.2 Bohr

ZM.MaxDisplAngle (real angle): Parameter that controls the maximum change in a Z-matrix
angle during an optimisation step.

Use: This option sets the maximum displacement for a Z-matrix angle

Default value: 0.003 rad

7.1.1 Conjugate-gradients optimization

This was historically the default geometry-optimization method, and all the above options were
introduced specifically for it, hence their names. The following pertains only to this method:

MD.UseSaveCG (logical): Instructs to read the conjugate-gradient hystory information
stored in file SystemLabel.CG by a previous run.

80



Use: To get actual continuation of iterrupted CG runs, use together with
MD.UseSaveXV = .true. with the XV file generated in the same run as the CG
file. If the required file does not exist, a warning is printed but the program does not stop.
Overrides UseSaveData.

Default value: .false.

(No such feature exists yet for a Broyden-based relaxation.)

7.1.2 Broyden optimization

It uses the modified Broyden algorithm to build up the Jacobian matrix. (See D.D. Johnson,
PRB 38, 12807 (1988)). (Note: This is not BFGS.)

MD.Broyden.History.Steps (integer):

Number of relaxation steps during which the modified Broyden algorithm builds up the
Jacobian matrix.

Use: Used only if MD.TypeOfRun is Broyden.

Default value: 5

MD.Broyden.Cycle.On.Maxit (logical):

Upon reaching the maximum number of history data sets which are kept for Jacobian
estimation, throw away the oldest and shift the rest to make room for a new data set.
The alternative is to re-start the Broyden minimization algorithm from a first step of a
diagonal inverse Jacobian (which might be useful when the minimization is stuck).

Use: Used only if MD.TypeOfRun is Broyden.

Default value: .true.

MD.Broyden.Initial.Inverse.Jacobian (real):

Initial inverse Jacobian for the optimization procedure. (The units are those implied by
the internal Siesta usage (Bohr for lenghts and Ry for energies). The default value seems
to work well for most systems.

Use: Used only if MD.TypeOfRun is Broyden.

Default value: 1.0

7.1.3 FIRE relaxation

Implementation of the Fast Inertial Relaxation Engine (FIRE) method (E. Bitzek et al, PRL
97, 170201, (2006) in a manner compatible with the CG and Broyden modes of relaxation. (An
older implementation activated by the MD.FireQuench variable is still available).

MD.FIRE.TimeStep (real time):

The (fictitious) time-step for FIRE relaxation. This is the main user-variable when the
option FIRE for MD.TypeOfRun is active.

81



Default value: The molecular-dynamics time-step, as specified by MD.LengthTimeStep,
but this is misleading and should be avoided.

There are other low-level options tunable by the user (see the routines fire optim and
cell fire optim for more details.

7.1.4 Quenched MD

These methods are really based on molecular dynamics, but are used for structural relaxation.

Note that the Zmatrix input option (see Sec. 6.4.2) is not compatible with molecular dynamics.
The initial geometry can be specified using the Zmatrix format, but the Zmatrix generalized
coordinates will not be updated.

Note also that the force and stress tolerances have no effect on the termination conditions of
these methods. They run for the number of MD steps requested (this is arguably a bug).

MD.Quench (logical): Logical option to perform a power quench during the molecular dy-
namics. In the power quench, each velocity component is set to zero if it is opposite to
the corresponding force of that component. This affects atomic velocities, or unit-cell
velocities (for cell shape optimizations).

Use: Used only if MD.TypeOfRun = Verlet or ParrinelloRahman. It is incompatible
with Nose thermostat options. The quench option allows structural relaxations of only
atomic coordinates (with MD.TypeOfRun = Verlet) or atomic coordinates AND cell
shape (with MD.TypeOfRun = ParrinelloRahman). MD.Quench is superseded by
MD.FireQuench (see below).

Default value: .false.

MD.FireQuench (logical) (Deprecated)

SEE the new option FIRE for MD.TypeOfRun

Logical option to perform a FIRE quench during a Verlet molecular dynamics run, as
described by Bitzek et al. in Phys. Rev. Lett. 97, 170201 (2006). It is a relaxation algo-
rithm, and thus the dynamics are of no interest per se: the initial time-step can be played
with (it uses MD.LengthTimeStep as initial ∆t), as well as the initial temperature
(recommended 0) and the atomic masses (recommended equal). Preliminary tests seem to
indicate that the combination of ∆t = 5 fs and a value of 20 for the atomic masses works
reasonably. The dynamics stops when the force tolerance is reached (MD.MaxForceTol).
The other parameters controlling the algorithm (initial damping, increase and decrease
thereof etc.) are hardwired in the code, at the recommended values in the cited paper,
including ∆tmax = 10 fs.

Use: Used only if MD.TypeOfRun = Verlet. It is incompatible with Nose thermostat
options. No variable cell option implemented for this at this stage. MD.FireQuench su-
persedesMD.Quench. This option is deprecated. The new option FIRE for MD.TypeOfRun
should be used instead.

Default value: .false.

82



7.2 Target stress options

Useful for structural optimizations and constant-pressure molecular dynamics.

MD.TargetPressure (real pressure): Target pressure for Parrinello-Rahman method, variable
cell optimizations, and annealing options.

Use: Used only if MD.TypeOfRun = ParrinelloRahman, NoseParrinelloRahman, CG,
Broyden, or FIRE (variable cell), or Anneal (if MD.AnnealOption = Pressure or
TemperatureandPressure)

Default value: 0.0 GPa

MD.TargetStress (data block): External or target stress tensor for variable cell optimizations.
Stress components are given in a line, in the order xx, yy, zz, xy, xz, yz. In units of
MD.TargetPressure, but with the opposite sign. For example, a uniaxial compressive
stress of 2 GPa along the 100 direction would be given by

MD.TargetPressure 2. GPa

%block MD.TargetStress

-1.0 0.0 0.0 0.0 0.0 0.0

%endblock MD.TargetStress

Use: Used only if MD.TypeOfRun is CG, Broyden, or FIRE and MD.VariableCell is
.true.

Default value: Hydrostatic target pressure: -1., -1., -1., 0., 0., 0.

MD.RemoveIntramolecularPressure (logical):

If .true., the contribution to the stress coming from the internal degrees of freedom of
the molecules will be subtracted from the stress tensor used in variable-cell optimization
or variable-cell molecular-dynamics. This is done in an approximate manner, using the
virial form of the stress, and assumming that the “mean force” over the coordinates of
the molecule represents the “inter-molecular” stress. The correction term was already
computed in earlier versions of Siesta and used to report the “molecule pressure”. The
correction is now computed molecule-by-molecule if the Zmatrix format is used.

If the intra-molecular stress is removed, the corrected static and total stresses are printed
in addition to the uncorrected items. The corrected Voigt form is also printed.

Default value: .false.

7.3 Molecular dynamics

In this mode of operation, the program moves the atoms (and optionally the cell vectors) in
response to the forces (and stresses), using the classical equations of motion.

Note that the Zmatrix input option (see Sec. 6.4.2) is not compatible with molecular dynamics.
The initial geometry can be specified using the Zmatrix format, but the Zmatrix generalized
coordinates will not be updated.

83



MD.InitialTimeStep (integer): Initial time step of the MD simulation. In the current version
of Siesta it must be 1.

Use: Used only if MD.TypeOfRun is not CG or Broyden

Default value: 1

MD.FinalTimeStep (integer): Final time step of the MD simulation.

Default value: 1

MD.LengthTimeStep (real time): Length of the time step of the MD simulation.

Default value: 1.0 fs

MD.InitialTemperature (real temperature or energy): Initial temperature for the MD run.
The atoms are assigned random velocities drawn from the Maxwell-Bolzmann distribution
with the corresponding temperature. The constraint of zero center of mass velocity is
imposed.

Use: Used only if MD.TypeOfRun = Verlet, Nose, ParrinelloRahman,

NoseParrinelloRahman or Anneal.

Default value: 0.0 K

MD.TargetTemperature (real temperature or energy): Target temperature for Nose thermo-
stat and annealing options.

Use: Used only if MD.TypeOfRun = Nose, NoseParrinelloRahman or Anneal (if
MD.AnnealOption = Temperature or TemperatureandPressure)

Default value: 0.0 K

MD.NoseMass (real moment of inertia): Generalized mass of Nose variable. This determines
the time scale of the Nose variable dynamics, and the coupling of the thermal bath to the
physical system.

Use: Used only if MD.TypeOfRun = Nose or NoseParrinelloRahman

Default value: 100.0 Ry*fs**2

MD.ParrinelloRahmanMass (real moment of inertia): Generalized mass of Parrinello-
Rahman variable. This determines the time scale of the Parrinello-Rahman variable dy-
namics, and its coupling to the physical system.

Use: Used only if MD.TypeOfRun = ParrinelloRahman or NoseParrinelloRahman

Default value: 100.0 Ry*fs**2

Default value: Same as NumberOfAtoms

MD.AnnealOption (string): Type of annealing MD to perform. The target temperature or
pressure are achieved by velocity and unit cell rescaling, in a given time determined by
the variable MD.TauRelax below.

• Temperature (Reach a target temperature by velocity rescaling)

• Pressure (Reach a target pressure by scaling of the unit cell size and shape)

84



• TemperatureandPressure (Reach a target temperature and pressure by velocity
rescaling and by scaling of the unit cell size and shape)

Use: Used only if MD.TypeOfRun = Anneal

Default value: TemperatureAndPressure

MD.TauRelax (real time): Relaxation time to reach target temperature and/or pressure in
annealing MD. Note that this is a “relaxation time”, and as such it gives a rough estimate
of the time needed to achieve the given targets. As a normal simulation also exhibits
oscillations, the actual time needed to reach the averaged targets will be significantly
longer.

Use: Used only if MD.TypeOfRun = Anneal

Default value: 100.0 fs

MD.BulkModulus (real pressure): Estimate (may be rough) of the bulk modulus of the sys-
tem. This is needed to set the rate of change of cell shape to reach target pressure in
annealing MD.

Use: Used only if MD.TypeOfRun = Anneal, when MD.AnnealOption = Pressure

or TemperatureAndPressure

Default value: 100.0 Ry/Bohr**3

7.4 Output options for dynamics

Every time the atoms move, either during coordinate relaxation or molecular dynamics, their
positions predicted for next step and current velocities are stored in file SystemLabel.XV.
The shape of the unit cell and its associated ’velocity’ (in Parrinello-Rahman dynamics) are also
stored in this file.

Other options follow.

WriteCoorInitial (logical): It determines whether the initial atomic coordinates of the sim-
ulation are dumped into the main output file. These coordinates correspond to the ones
actually used in the first step (see the section on precedence issues in structural input)
and are output in Cartesian coordinates in Bohr units.

It is not affected by the setting of LongOutput.

Default value: .true.

WriteCoorStep (logical): If .true. it writes the atomic coordinates to standard output
at every MD time step or relaxation step. The coordinates are always written in the
Systemlabel.XV file, but overriden at every step. They can be also accumulated in the
Systemlabel.MD or Systemlabel.MDX files depending on WriteMDhistory.

Default value: .false. (see LongOutput)

WriteForces (logical): If .true. it writes the atomic forces to the output file at every MD
time step or relaxation step. Note that the forces of the last step can be found in the file
Systemlabel.FA .

85



Default value: .false. (see LongOutput)

WriteMDhistory (logical): If .true. Siesta accumulates the molecular dynamics trajectory
in the following files:

• Systemlabel.MD : atomic coordinates and velocities (and lattice vectors and their
time derivatives, if the dynamics implies variable cell). The information is stored
unformatted for postprocessing with utility programs to analyze the MD trajectory.

• Systemlabel.MDE : shorter description of the run, with energy, temperature, etc., per
time step.

These files are accumulative even for different runs.

Default value: .false.

The trajectory of a molecular dynamics run (or a conjugate gradient minimization) can
be accumulated in different files: SystemLabel.MD, SystemLabel.MDE, and SystemLa-
bel.ANI. The first file keeps the whole trajectory information, meaning positions and
velocities at every time step, including lattice vectors if the cell varies. NOTE that the
positions (and maybe the cell vectors) stored at each time step are the predicted val-
ues for the next step. Care should be taken if joint position-velocity correlations need to
be computed from this file. The second gives global information (energy, temperature,
etc), and the third has the coordinates in a form suited for XMol animation. See the
WriteMDhistory and WriteMDXmol data descriptors above for information. Siesta
always appends new information on these files, making them accumulative even for differ-
ent runs.

The iomd subroutine can generate both an unformatted file SystemLabel.MD (default) or
ASCII formatted files SystemLabel.MDX and SystemLabel.MDC containing the atomic
and lattice trajectories, respectively. Edit the file to change the settings if desired.

7.5 Restarting geometry optimizations and MD runs

Every time the atoms move, either during coordinate relaxation or molecular dynamics, their
positions predicted for next step and current velocities are stored in file SystemLa-
bel.XV, where SystemLabel is the value of that FDF descriptor (or ’siesta’ by default). The
shape of the unit cell and its associated ’velocity’ (in Parrinello-Rahman dynamics) are also
stored in this file. For MD runs of type Verlet, Parrinello-Rahman, Nose, or Nose-Parrinello-
Rahman, a file named SystemLabel.VERLET RESTART, SystemLabel.PR RESTART, System-
Label.NOSE RESTART, or SystemLabel.NPR RESTART, respectively, is created to hold the
values of auxiliary variables needed for a completely seamless continuation. Due to the intro-
duction of this enhanced continuation feature in Siesta 2.0, an MD run made with Siesta 1.3
cannot be directly restarted with later versions of Siesta: the user would need to create the right
kind of restart file in addition to setting the MD.UseSaveXV flag in the FDF file.

This restart fix is not complete in all cases nor satisfactory from a fundamental point of view,
so the MD subsystem in Siesta will have to be redesigned. In the meantime, users are reminded
that the scripting hooks being steadily introduced (see Util/Scripting) might be used to create
custom-made MD scripts.

86



7.6 Use of general constraints

Note: The Zmatrix format (see Sec. 6.4.2) provides an alternative constraint formulation which
can be useful for system involving molecules.

GeometryConstraints (data block) Fixes constraints to the change of atomic coordinates
during geometry relaxation or molecular dynamics. Allowed constraints are:

• cellside: fixes the unit-cell side lengths to their initial values (not implemented
yet).

• cellangle: fixes the unit-cell angles to their initial values (not implemented yet).

• stress: fixes the specified stresses to their initial values.

• position: fixes the positions of the specified atoms to their initial values.

• center: fixes the center (mean position, not center of mass) of a group of atoms to
its initial value (not implemented yet).

• rigid: fixes the relative positions of a group of atoms, without restricting their
displacement or rotation as a rigid unit (not implemented yet).

• routine: Additionally, the user may write a problem-specific routine called constr
(with the same interface as in the example below), which inputs the atomic forces
and stress tensor and outputs them orthogonalized to the constraints. For example,
to maintain the relative height of atoms 1 and 2:

subroutine constr( cell, na, isa, amass, xa, stress, fa )

c real*8 cell(3,3) : input lattice vectors (Bohr)

c integer na : input number of atoms

c integer isa(na) : input species indexes

c real*8 amass(na) : input atomic masses

c real*8 xa(3,na) : input atomic Cartesian coordinates (Bohr)

c real*8 stress( 3,3) : input/output stress tensor (Ry/Bohr**3)

c real*8 fa(3,na) : input/output atomic forces (Ry/Bohr)

c integer ntcon : output total number of position constraints

c imposed in this routine

integer na, isa(na), ntcon

double precision amass(na), cell(3,3), fa(3,na),

. stress(3,3), xa(3,na), fz

fz = fa(3,1) + fa(3,2)

fa(3,1) = fz * amass(1)/(amass(1)+amass(2))

fa(3,2) = fz * amass(2)/(amass(1)+amass(2))

ntcon=1

end

NOTE that the input of the routine constr has changed with respect to Siesta
versions prior to 1.3. Now, it includes the argument ntcon, where the routine should
store the number of position constraints imposed in it, as an output. The user should
update older constr routines accordingly. In the example above, the number of

87



constraints is one, since only the relative z position of two atoms is constrained to be
constant.

Example: consider a diatomic molecule (atoms 1 and 2) above a surface, represented by a
slab of 5 atomic layers, with 10 atoms per layer. To fix the cell height, the slab’s bottom
layer (last 10 atoms), the molecule’s interatomic distance, its height above the surface
and the relative height of the two atoms (but not its azimuthal orientation and lateral
position):

%block GeometryConstraints

cellside c

cellangle alpha beta gamma

position from -1 to -10

rigid 1 2

center 1 2 0.0 0.0 1.0

stress 4 5 6

routine constr

%endblock GeometryConstraints

The first line fixes the height of the unit cell, leaving the width and depth free to change
(with the appropriate type of dynamics). The second line fixes all three unit-cell angles.
The third line fixes all three coordinates of atoms 1 to 10, counted backwards from the
last one (you may also specify a given direction, like in center). The fourth line specifies
that atoms 1 and 2 form a rigid unit. The fifth line fixes the center of the molecule (atoms
1 and 2), in the z direction (0.,0.,1.). This vector is given in Cartesian coordinates and,
without it, all three coordinates will be fixed (to fix a center, or a position, in the x and
y directions, but not in the z direction, two lines are required, one for each direction).
The sixth line specifies that the stresses 4, 5 and 6 should be fixed. The convention used
for numbering stresses is that 1=xx,2=yy,3=zz, 4=yz,5=xz,6=xy. The list of atoms for
a given constraint may contain several atoms (as in lines 4 and 5) or a range (as in the
third line), but not both. But you may specify many constraints of the same type, and a
total of up to 10000 lines in the block. Lines may be up to 130 characters long. Ranges of
atoms in a line may contain up to 1000 atoms. All names must be in lower case.

Notice that, if you only fix the position of one atom, the rest of the system will move to
reach the same relative position. In order to fix the relative atomic position, you may fix
the center of the whole system by including a line specifying ’center’ without any list or
range of atoms (though possibly with a direction).

Constraints are imposed by suppressing the forces in those directions, before applying
them to move the atoms. For nonlinear constraints (like ’rigid’), this does not impose the
exact conservation of the constrained magnitude, unless the displacement steps are very
small.

Default value: No constraints

88



7.7 Phonon calculations

IfMD.TypeOfRun= FC, Siesta sets up a special outer geometry loop that displaces individual
atoms along the coordinate directions to build the force-constant matrix.

The output (see below) can be analyzed to extract phonon frequencies and vectors with the
VIBRA package in the Util/Vibra directory. For computing the Born effective charges together
with the force constants, see BornCharge ).

MD.FCDispl (real length): Displacement to use for the computation of the force constant
matrix for phonon calculations.

Use: Used only if MD.TypeOfRun = FC.

Default value: 0.04 Bohr

MD.FCfirst (integer): Index of first atom to displace for the computation of the force constant
matrix for phonon calculations.

Use: Used only if MD.TypeOfRun = FC.

Default value: 1

MD.FClast (integer): Index of last atom to displace for the computation of the force constant
matrix for phonon calculations.

Use: Used only if MD.TypeOfRun = FC.

The force-constants matrix is written in file SystemLabel.FC. The format is the following: for
the displacement of each atom in each direction, the forces on each of the other atoms is writen
(divided by the value of the displacement), in units of eV/Å2. Each line has the forces in the x,
y and z direction for one of the atoms.

7.8 Interface to the PHONON program

The interface to the Phonon program was prepared for an earlier version of Siesta, but it
cannot be maintained properly by the developers because we do not use the program. We would
appreciate help with testing and improving this interface. Alternatively, a script driving Siesta
can be written instead. See Util/Scripting.

Here are the relevant options, active when MD.TypeOfRun=Phonon.

PhononLabels (data block): It provides the mapping between the species number and those
used by the Phonon program. Note that chemically identical elements might be assigned
different labels if they are not related by symmetry.

%block PhononLabels

1 A Mg

2 B O

%endblock PhononLabels

89



The species number is followed by the Phonon program label and by the chemical symbol.

Use: This block is mandatory if MD.TypeOfRun is Phonon.

Default: No default.

MD.ATforPhonon (data block): List of “symmetry irreducible” atomic displacements for
which to compute forces. Each line gives the fractional displacement for an atom, iden-
tified by its number in the atom list, and by a one-character code generated by the
Phonon program. These codes are put in correspondence with the species labels in block
PhononLabels).

%block MD.ATforPhonon

0.002358 0.000000 0.000000 L 1

0.000000 0.000000 0.003488 L 1

0.002358 0.000000 0.000000 A 33

0.000000 0.000000 0.003488 A 33

-0.002358 0.000000 0.000000 L 1

0.000000 0.000000 -0.003488 L 1

-0.002358 0.000000 0.000000 A 33

0.000000 0.000000 -0.003488 A 33

%endblock MD.ATforPhonon

Note: The presence of this block atomatically sets MD.TypeOfRun to Phonon.

Default value: None.

If the dynamics option is set to the calculation of the forces for selected displacements
(MD.TypeOfRun=Phonon, and/or the block MD.ATforPhonon exists), the forces are writ-
ten in file SystemLabel.PHONON. The format is the following: Comment line, cell vectors in Å,
and for each displacement: atom displaced and its coordinates plus fractional displacement,
Cartesian components of forces on all the atoms in units of eV/Å.

8 TRANSIESTA

The present Siesta release includes the possibility of performing calculations of electronic trans-
port properties using the TranSiesta method. This Section describes how to compile the code
to be able to use these capabilities, and a reference guide to the relevant FDF options. We
describe here only the additional options available for TranSiesta calculations, while the rest
of the Siesta functionalities and variables are described in the previous sections of this User’s
Guide.

8.1 Brief description

The TranSiesta method is a procedure to solve the electronic structure of an open system
formed by a finite structure sandwiched between two semi-infinite metallic leads. A finite bias

90



can be applied between both leads, to drive a finite current. The method is described in detail in
Phys. Rev. B 65, 165401 (2002). In practical terms, calculations using TranSiesta involve the
solution of the electronic density from the DFT Hamiltonian using Green’s functions techniques,
instead of the usual diagonalization procedure. Therefore, TranSiesta calculations involve a
Siesta run, in which a set of routines are invoked to solve the Green’s functions and the charge
density for the open system. These routines are packed in a set of modules, and we will refer to
it as the ’TranSIESTA module’ in what follows.

TranSiesta was originally developed by Mads Brandbyge, José-Luis Mozos, Pablo Ordejón,
Jeremy Taylor and Kurt Stokbro (see references). It consisted, mainly, in setting up an interface
between Siesta and the (tight-binding) transport codes developed by M. Brandbyge and K.
Stokbro. Initially everything was written in Fortran-77. As Siesta started to be translated to
Fortran-90, so were the TranSiesta parts of the code. This was accomplished by José-Luis
Mozos, who also worked on the parallelization of TranSiesta. The present distribution has
been adapted to the new Siesta code structure. With respect to the previous implementations,
it has the additional feature of allowing for the use of a k-point sampling other than the gamma
point (for the 2D Brillouin zone perpendicular to the transport direction). These modifications,
among others, were done by Frederico D. Novaes.

8.2 Source code structure

In this implementation, the original TranSiesta routines have been grouped in a set of modules
whose file names begin with m ts (such as in e.g. m ts electrode.F90 ). Several new subroutines
have been added. These modules are located in the Src directory. The inclusion of TranSiesta
has also required the modification of some of the Siesta routines. Presently, these modifications
are controlled by pre-processor compilation directives (such as in #ifdef TRANSIESTA ). See the
next section for compilation instructions.

8.3 Compilation

The standard Siesta executable (obtained as described in Section 2) does not include the
TranSiesta modules. In order to use the TranSiesta capabilities, you must compile the
Siesta package as indicated in this Section. In this way, the compilation is done using the
appropriate preprocessor flags needed to include the TranSiesta modules in the binary file.
To generate a binary of Siesta which includes the TranSiesta capabilities, just type:

$ make transiesta

using the appropriate arch.make file for your system (note that you do not need to make any
modification on your arch.make file: you can use the same one that you have used to make a
standard Siesta compilation in your system). The Makefile takes care of defining the appro-
priate preprocessor flag -DTRANSIESTA so that the TranSiesta modules and modifications
are compiled and incorporated into the binary. Upon successful compilation, the binary file
transiesta will be generated, containing an executable version of Siesta with TranSiesta
capabilities.

91



8.4 Running a fast example

Before giving more detailed explanations about TranSiesta, let us start with an example to
show the basic operations of a transport calculation. Starting from the top Siesta directory:

$ cd Tests/transiesta/Fast

First it is necessary to do the electrode calculation (see below for details),

$ cd Elec

$ mkdir OUT_Test

$ cd OUT_Test

$ cp ../* .

$ transiesta < elec.fast.fdf > elec.fast.out

Note that apart from the usual files generated by Siesta, now you will find the elec.fast.TSHS
file (in general <SystemLabel>.TSHS). This file contains the real-space Hamiltonian and Overlap
matrices, together with some other information, that will be used, in the case of electrodes, to
calculate the surface Green’s functions.

Once the electrode file has been generated, we can perform the TranSiesta calculation (where
the SolutionMethod flag is set to transiesta).

$ cd ../../Scat

$ mkdir OUT_TS_Test

$ cd OUT_TS_Test

$ cp ../* .

$ cp ../../Elec/OUT_Test/elec.fast.TSHS .

$ transiesta < scat.fast.fdf > scat.fast.out

Now the two following files should have been generated, scat.fast.TSHS and scat.fast.TSDE.
The first one contains, as previously mentioned, essentially the Hamiltonian and Overlap ma-
trices, and the .TSDE file has the TranSiesta density matrix, the equivalent to the .DM file of
Siesta. The transmission function and the current are calculated using the tbtrans postpro-
cessing (bellow).

8.5 Brief explanation

• Transport calculations involve Electrodes (EL) calculations, and then the Scattering Re-
gion (SR) calculation. The Electrodes calculations are usual Siesta calculations, but
where a file <SystemLabel>.TSHS is generated. These files contain the information nec-
essary for the SR calculation. If both electrodes are identical structures (see below) the
same .TSHS file can be used to describe both. In general, however, both Electrodes can be
different and therefore two different .TSHS files must be generated. The location of these
Electrode files must be specified in the file FDF input file of the SR calculation (they are
usually copied to the same directory where the SR calculation is performed).

92



• For the SR, TranSiesta starts with the usual Siesta procedure, converging a Density
Matrix (DM) with the usual Kohn-Sham scheme for periodic systems. It uses this solution
as an initial input for the Green’s functions self consistent cycle. As it is known, Siesta
stores the DM in a file with extension .DM. In the case of TranSiesta, this is done in
a file named <SystemLabel>.TSDE. In a rerun of the same system (meaning the same
<SystemLabel>), if the code finds a .TSDE file in the directory, it will take this DM as the
initial input and this is then considered a continuation run. In this case it does not perform
an initial Siesta run. It must be clear that when starting a calculation from scratch, in the
end one will find both files, <SystemLabel>.DM and <SystemLabel>.TSDE. The first one
stores the Siesta density matrix (periodic boundary conditions in all directions and no
voltage), and the latter the TranSiesta solution. It is a good practice to, when increasing
the bias, use as an initial DM a .TSDE that had been obtained for a lower voltage. It is
also usefull to point out here that the <SystemLabel>.TSDE file has the same format as
the <SystemLabel>.DM file (with extra information appendend in the end). Being so, one
can for example use DENCHAR to analyse the non equilibrium charge density.

• As in the case of Siesta calculations, what TranSiesta does is to obtain a converged DM,
but for open boundary conditions and possibly a finite bias applied between the Electrodes.
The corresponding Hamiltonian matrix (once self consistency is achieved) of the SR is also
stored in a <SystemLabel>.TSHS file. The transport properties are obtained in a post-
processing procedure using the tbtrans code (located in the Util/TBTrans directory).
What tbtrans does is, using the .TSHS file of the SR obtained with TranSiesta, and the
Electrode’s .TSHS files, to calculate the transmission spectrum and the electronic current.
The tbtrans input file is typically the same as the one that was used for TranSiesta,
with the additional tbtrans options. It is to be noted that the .TSHS files contain all the
needed structural information (atomic positions, matrix elements, . . . ), and so this kind
of parameters will not be changed by input (fdf) flags once they are read a .TSHS file.

• TranSiesta defines the Left Electrode to be the first atoms specified in the SR .fdf file,
and the Right Electrode to be the last ones. The transport direction has to be considered
to be the the third cartesian axis, the z axis. The Left Electrode atoms must have smaller
z components than the Right Electrode atoms. It is also crucial that the atomic positions
specified at the left (right) EL calculation must be equivalent to the left (right) electrode
part of the SR setup. Here, equivalent means that they can be made equal by a simple
translation in space. It is also possible to use buffer atoms. This is mostly useful for
simulations with different Electrodes. In this case, TranSiesta will not consider these
atoms, and the buffer atoms are considered only for the initial Siesta calculation, to get
a better “bulk-like” environment at the electrodes.

• An important parameter is: TS.ComplexContour.Emin It specifies the starting energy for
the contour integration. It is a good practice, to start with a Siesta calculation for the SR
and look at the eigenvalues of the system. The value of TS.ComplexContour.Emin must
be (considerably) lower than the smallest eigenvalue obtained with Siesta. This ensures
that all the states are considered in the contour integration.

• TranSiesta still assumes periodic boundary conditions in the xy directions. For Tran-
Siesta, the specified k-point sampling (of this 2-dimensional Brillouin zone) used in a

93



SR calculation must be the same as the one that was used for the electrodes, if they are
different the code will stop. In practice this means that the first and the second lines of
the kgrid Monkhorst Pack block must be the same. In the case of tbtrans, the k-point
sampling has to be specified also using a kgrid Monkhorst Pack block, and can differ
from the sampling that was used in the TranSiesta calculation. The convergence of the
transmission function with respect to the k sampling can be slower than the one for the
density matrix. This means that one may have to increase the number of k-points used in
tbtrans.

8.6 Electrodes

In order to calculate the electronic structure of a system under external bias, TranSiesta
attaches the system to semi-infinite electrodes which extend to the left and right of the contact
region. Examples of electrodes would include surfaces, nanowires, nanotubes or even atomic
chains. The electrode must be oriented along the z-axis and the unit cell along the z-direction
must be large enough so that orbitals within the unit cell only interact with a single nearest
neighbor cell (the size of the unit cell can thus be derived from the range of support for the
orbital basis functions). The electrode description is also used in tbtrans. The electrodes are
generated by a separate transiesta run on a bulk system. The results are saved in a file with
extension .TSHS which contains a description of the electrode unit cell, the position of the atoms
within the unit cell, as well as the Hamiltonian and overlap matrices that describe the electronic
structure of the lead. One can generate a variety of electrodes and the typical use of transiesta
would involve reusing the same electrode for several setups. In this version of TranSiesta, one
must manually provide a valid description of the electrode and the atomic coordinates input to
must conform with this description.

8.7 TranSiesta Options

The FDF options shown here are only to be used at the input file for the scattering region.
When using transiesta for electrode calculations, only the usual Siesta options are relevant.

8.7.1 General options

SolutionMethod (string): Must be set to transiesta in order to perform a TranSiesta
calculation

Default value: diagon

TS.SaveHS (logical): Save the Hamiltonian in the file with extension .TSHS. Must be true

when calculating the electrode Hamiltonian (it is by default). The .TSHS file must also
be generated in TranSiesta calculations if tbtrans is to be used after the run.

Default value: true

TS.Voltage (physical ): The voltage applied along the z-direction of the unit cell between the
two electrodes.

94



Default value: 0.0 eV

TS.MixH (logical): During the self consisten cycle, usually the density matrix of previous steps
are mixed to give the next density matrix. This flag represents the possibility of mixing
the Hamiltonian instead. If used, it may result in faster convergence.

Default value: false

TS.UpdateDMCROnly (logical): During the TranSiesta (Green’s functions) self consistent
cycle, it updates only the density matrix elements of the contact region, if set to true.
The electrodes and coupling terms are kept as the ones obtained in a first Siesta run. If
set as false, the coupling terms are also updated by the Green’s functions density matrix.
If a larger number of electrode layers (metallic systems) are included in the contact region,
the coupling terms may not need to be updated. If set to false, however, may result in
larger number of iterations to converge.

Default value: true

TS.CalcGF (logical): The generated surface Green’s functions of the electrodes depend on the
atomic structure, but also on the energy points of the contour (that will dependend on
the voltage). It is possible to use previously generated .GF files, but care must be taken.
If it is just a rerun of the same system, this flag can safely be set as false. This will save
computing time.

Default value: true

TS.TriDiag (logical): If represented in terms of the left electrode, the contact region and the
right electrode, the Hamiltonian is tridiagonal (no interactions between the electrodes).
To obtain the Green’s function used to compute the density matrix, the essential operation
is an inversion of a tridiagonal matrix. This matrix can be inverted directly or by using
smaller matrices (due to the tridiagonality). If set to true, it is done in this way. Different
memory uses and times for the inversion operation can be obtained when using one or the
other.

Default value: false

8.7.2 Electrode description options

TS.HSFileLeft (string): Name of the .TSHS file output from the initial electrode run. N.B.:
The program will stop if this file is not found.

Default value: NONE

TS.GFFileLeft (string): Name of the .GF file of the left electrode. N.B.: The program will
generate a new one if not found.

Default value: Left.GF

TS.HSFileRight (string): Name of .TSHS file describing right electrode. See TS.HSFileLeft.

Default value: NONE

95



TS.GFFileRight (string): Name of the .GF file of the left electrode. N.B.: The program will
generate a new one if not found.

Default value: Right.GF

TS.NumUsedAtomsLeft (integer): The number of electrode atoms to include in the left lead
(for example it could be 2 if only the Greens function of the first two layers of a fcc(111)
surface is needed and in which case you need 3 atoms in the bulk unit cell to represent the
A,B,C,A,.. stacking). Must be less than or equal to the number of atoms in the simple
unit cell of the left electrode. If it is less than the number of atoms in the simple unit
cell, the last TS.NumUsedAtomsLeft atoms are taken. If it is less than the number of
atoms in the simple unit cell, the atoms in the left electrode must be ordered according to
their coordinate along the z-direction, from smallest to largest.

Default value: Number of atoms in the simple unit cell of the Left electrode

TS.NumUsedAtomsRight (integer): The number of electrode atoms to include in the right
lead. Must be less than or equal to the number of atoms in the simple unit cell of the
right electrode. If it is less than the number of atoms in the simple unit cell, the first
TS.NumUsedAtomsRight atoms are taken. If it is less than the number of atoms in
the simple unit cell, the atoms in the right electrode must be ordered according to their
coordinate along the z-direction, from smallest to largest.

Default value: Number of atoms in the simple unit cell of the Right electrode

TS.BufferAtomsLeft (integer): Number of atoms starting from the first atom to neglect in
the TranSiesta run.

Default value: 0

TS.BufferAtomsRight (integer): Number of atoms starting from the last atom to neglect in
the TranSiesta run.

Default value: 0

8.7.3 Complex contour integration options

TS.ComplexContour.Emin (physical): The starting point of the complex energy contour. In
a TranSiesta run this value should be below the lowest energy in the energy spectrum
otherwise some charge will be missing in the integration.

Default value: -3.0 Ry

TS.ComplexContour.NumCircle (integer): Number of points along the arc part of the con-
tour (starting at TS.ComplexContour.Emin and ending at EF = 0).

Default value: 24

TS.ComplexContour.NumLine (integer): Number of points on the line part of the contour.

Default value: 6

96



TS.ComplexContour.NumPoles (integer): Number of Fermi poles that the complex contour
should include.

Default value: 6

8.7.4 Bias contour integration options

TS.BiasContour.Eta (physical): Small finite complex part of the real energy contour.

Default value: 10−6 Ry

TS.BiasContour.Method (string): This describes how the points on the real axis contour
are chosen. Options are:

• Sommerfeld: equally spaced points with Sommerfeld expansion for including the
electron temperature.

• GaussFermi: Gaussian quadrature weighted with the Fermi distribution function.

Default value: GaussFermi

TS.BiasContour.NumPoints (integer): Number of contour points on the close-to-real axis
part of the contour in the voltage bias window.

Default value: 5

8.8 Matching TranSiesta coordinates: basic rules

Having discussed the possible input options of TranSiesta here we just list a set of rules to
construct the appropriate coordinates of the scattering region. The order of atoms be such that:

• The first TS.BufferAtomsLeft atoms will be considered buffer atoms that will not be
used in the TranSiesta calculation, but which are used in the Siesta calculation. This
number can, of course, be zero.

• The next TS.NumUsedAtomsLeft correspond to the left electrode atoms.

• The next atoms correspond to the contact region.

• The next TS.NumUsedAtomsRight are the right electrode atoms.

• The nextTS.BufferAtomsRight correspond to atoms that are neglected in the transiesta
part of the calculation, only take part in the first Siesta run (only occurs if it is not a
continuation run)

The order shown here must also correspond to increasing values of the z coordinates of the
atoms, in the sense that the left buffer atoms must all have smaller z components than the
left electrode atoms, and so on. But, within each “block”(buffer atoms, or electrode atoms, etc
. . . ), the coordinates do not have to be ordered in any special way (except when using for the
electrodes a number smaller than what was used in the electrode’s unit cell).

97



8.9 Output

TranSiesta generates several output files. The output files are named <SystemLabel>.ext,
defined using the SystemLabel FDF command , and .ext depends on the type of the output.
Below we list the .ext files which are specific to transiesta. For a description of the other output
files, we refer the user to the Siesta manual.

.DM : The Siesta density matrix. Siesta initially performs a calculation at zero bias as-
suming periodic boundary conditions in all directions, and no voltage, which is used as a
starting point for the transiesta calculation.

.TSDE : The TranSiesta density matrix and energy density matrix. During a transiesta
run, the .DM values are used for the density matrix in the buffer (if used) and elec-
trode regions. The coupling terms may o may no be updated in a TranSiesta run (see
TS.UpdateDMCROnly).

.TSHS : The Hamiltonian corresponding to .TSDE, and other information needed by Tran-
Siesta and tbtrans.

8.10 Utilities for analysis: tbtrans.

The tbtrans code can be found in the directory Util/TBTrans. It is used in order to obtain, in
a post-processing way, the transport properties after a TranSiesta run. It was developed by
M. Brandbyge, and the present version contains modifications made by Frederico D. Novaes.

In order to run it, it requires the electrode’s .TSHS files (may be just one file if the left and right
electrodes are equal), and the scattering region’s .TSHS file. These are generated as explained
above. The location of these files are specified by the (already discussed) TS.HSFileLeft,
TS.HSFileRight input options, and by:

TS.TBT.HSFile (string): Scattering region .TSHS file.

Default value: SystemLabel.TSHS

respectively for the left and right electrodes and the scattering region .TSHS file.

The energy scale in tbtrans is shifted so that the Fermi level of the system, if no voltage were
applied, is zero. When computing the transmission function of a zero bias calculation, the
transmission at the Fermi level is then given by T(E=0). When there is a finite bias, the Fermi
energy of the left electrode is placed at V/2, and that of the right electrode at -V/2.

The voltage is specified by TS.Voltage. The energy window and number of points for the
computation of the transmission function is specified by

TS.TBT.Emin (physical): Lowest energy value of the computed transmission function.

Default value: -2.0 eV

TS.TBT.Emax (physical): Highest energy value of the computed transmission function.

98



Default value: 2.0 eV

TS.TBT.NPoints (integer): Number of energy points of the transmission function between
TS.TBT.Emin and TS.TBT.Emax.

Default value: 100

Note that it is important to specify the voltage, since this information is not stored in the .TSHS
files. The current will be computed using the resulting transmission function, so be sure to make
it suited for the integration in the bias window (the energy window defined by TS.TBT.Emin
and TS.TBT.Emax being bigger than or equal to the applied bias).

The k-point sampling is defined by the kgrid Monkhorst Pack block. The averaged (over
k-points) transmission function is printed in the file <SystemLabel>.AVTRANS.

The present version of the code is only parallelized over k-points, so the number of nodes should
not be bigger than the number of k-points.

An additional options is:

TS.TBT.NEigen (integer): Number of eigenvalues of the transmission matrix to be computed.

Default value: 0

To summarize, here we give a list of the parameters read by tbtrans from the input file (the
fdf flags):

• TS.Voltage

• kgrid Monkhorst Pack (block)

• TS.HSFileLeft

• TS.HSFileRight

• TS.TBT.HSFile

• TS.TBT.Emin

• TS.TBT.Emax

• TS.TBT.NPoints

• TS.TBT.NEigen

• TS.BufferAtomsLeft

• TS.BufferAtomsRight

• TS.NumUsedAtomsLeft

• TS.NumUsedAtomsRight

• SpinPolarized

99



8.10.1 Compiling TBTtrans

In the Util/TBTrans directory, simply type make if your main Siesta compilation directory
is the top Obj directory. If you have used another object directory MyObjDir, type make

OBJDIR=MyObjDir.

9 ANALYSIS TOOLS

There are a number of analysis tools and programs in the Util directory. Some of them have
been directly or indirectly mentioned in this manual. Their documentation is the appropriate
sub-directory of Util. See Util/README.

10 SCRIPTING

In the Util/Scripting directory we provide an experimental python scripting framework built
on top of the ’Atomic Simulation Environment’ (see https://wiki.fysik.dtu.dk/ase2) by
the Campos group at DTU, Denmark.

(NOTE: ”ASE version 2”, not the new version 3, is needed)

There are objects implementing the ”Siesta as server/subroutine” feature, and also hooks for file-
oriented-communication usage. This interface is different from the Siesta-specific functionality
already contained in the ASE framework.

Users can create their own scripts to customize the ”outer geometry loop” in Siesta, or to perform
various repetitive calculations in compact form.

Note that the interfaces in this framework are still evolving and are subject to change.

Suggestions for improvements can be sent to Alberto Garcia (albertog@icmab.es)

11 PROBLEM HANDLING

11.1 Error and warning messages

chkdim: ERROR: In routine dimension parameter = value. It must be ... And other
similar messages.

Description: Some array dimensions which change infrequently, and do not lead to much
memory use, are fixed to oversized values. This message means that one of this parameters
is too small and neads to be increased. However, if this occurs and your system is not
very large, or unusual in some sense, you should suspect first of a mistake in the data file
(incorrect atomic positions or cell dimensions, too large cutoff radii, etc).

Fix: Check again the data file. Look for previous warnings or suspicious values in the out-
put. If you find nothing unusual, edit the specified routine and change the corresponding
parameter.

100



11.2 Known but unsolved problems and bugs

• Input (fdf) files with CRLF line endings (the DOS standard) are not correctly read by
Siesta on Unix machines.

Solution: Please convert to the normal LF-terminated form. This is easy, running for
example: $ dos2unix yourinput.fdf

• k-points are not properly generated (kgrid) if using a SuperCell block with a non-
diagonal matrix.

Solution: Make an empty run with SuperCell first to generate the whole geometry, and
then run for the large unit cell (without the SuperCell) with k-points at will.

• For some systems the program stops with the error message

"Failure to converge standard eigenproblem Stopping Program from Node: 0

It is related to the use of the Divide & Conquer algorithm for diagonalisation.

Solution: If it happens, disable Diag.DivideAndConquer and run again.

12 REPORTING BUGS

Your assistance is essential to help improve the program. If you find any problem, please report
it back to us by email to siesta@uam.es. Please keep in mind the following guidelines:

• To be useful, bug reports should be as detailed as possible, yet concise and to the point.

• Describe the exact steps you followed to see the problem. You might want to include a
copy of the fdf file you used in the calculation, details about the pseudopotentials, etc, or
provide a means for us to download the information. If in doubt, do not send large files.
State the problem in the most concise form possible and we will request more info from
you.

• Be specific. Describe what happened and how it differs from what should have happened.

• If you have any idea about how to fix the problem, by all means tell us!

• Please make sure that your bug report includes:

– Your name and email address. This is essential for a proper followup of the problem.

– A brief one-line synopsis of the problem.

– The Siesta version in which the problem was found. We can’t assume that you have
the very latest version, and a problem that exists in one version may not exist in
another. Use the version number printed at the top of any output file (also found in
file version.info in the top directory).

– The platform on which the problem was found, and the operating system and compiler
version. State whether the problem appears in a serial and/or parallel run. Including
your arch.make is also a good idea.

• Please limit your communication to one bug report per form or message.

101



13 ACKNOWLEDGMENTS

We want to acknowledge the use of a small number of routines, written by other authors,
in developing the siesta code. In most cases, these routines were acquired by now-forgotten
routes, and the reported authorships are based on their headings. If you detect any incorrect or
incomplete attribution, or suspect that other routines may be due to different authors, please
let us know.

• The main nonpublic contribution, that we thank thoroughly, are modified versions of a
number of routines, originally written by A. R. Williams around 1985, for the solution of
the radial Schrödinger and Poisson equations in the APW code of Soler and Williams (PRB
42, 9728 (1990)). Within Siesta, they are kept in files arw.f and periodic table.f, and they
are used for the generation of the basis orbitals and the screened pseudopotentials.

• Routine pulayx, used for the SCF mixing, was originally written by In-Ho Lee in 1997.

• The exchange-correlation routines contained in file xc.f were written by J.M.Soler in 1996
and 1997, in collaboration with C. Balbás and J. L. Martins. Routine pzxc (in the
same file), which implements the Perdew-Zunger LDA parametrization of xc, is based on
routine velect, written by S. Froyen.

• A small number of routines are modified versions of those from Numerical Recipes. The
Art of Scientific Computing by W. H. Press, S. A. Teukolsky, W. T. Veterling and
B. P. Flannery (Cambridge U.P. 1987-1992), and are kept in file recipes.f

• Some standard linear-algebra routines from the EISPACK, BLAS, and LAPACK pack-
ages are in files eispack.F, and in several files in Libs.

• The serial version of the multivariate fast fourier transform used to solve Poisson’s equation
was written by R. C. Singleton in 1968.

• Subroutine iomd.f for writing MD history in files was originally written by J. Kohanoff.

We want to thank very specially O. F. Sankey, D. J. Niklewski and D. A. Drabold for
making the FIREBALL code available to P. Ordejón. Although we no longer use the routines
in that code, it was essential in the initial development of the Siesta project, which still uses
many of the algorithms developed by them.

We thank V. Heine for his supporting and encouraging us in this project.

The Siesta project is supported by the Spanish DGES through several contracts. We also
acknowledge past support by the Fundación Ramón Areces.

102



14 APPENDIX: Physical unit names recognized by FDF

Magnitude Unit name MKS value

mass Kg 1.E0
mass g 1.E-3
mass amu 1.66054E-27
length m 1.E0
length cm 1.E-2
length nm 1.E-9
length Ang 1.E-10
length Bohr 0.529177E-10
time s 1.E0
time fs 1.E-15
time ps 1.E-12
time ns 1.E-9
time mins 60.E0
time hours 3.6E3
time days 8.64E4
energy J 1.E0
energy erg 1.E-7
energy eV 1.60219E-19
energy meV 1.60219E-22
energy Ry 2.17991E-18
energy mRy 2.17991E-21
energy Hartree 4.35982E-18
energy K 1.38066E-23
energy kcal/mol 6.94780E-21
energy mHartree 4.35982E-21
energy kJ/mol 1.6606E-21
energy Hz 6.6262E-34
energy THz 6.6262E-22
energy cm-1 1.986E-23
energy cm**-1 1.986E-23
energy cmˆ -1 1.986E-23
force N 1.E0
force eV/Ang 1.60219E-9
force Ry/Bohr 4.11943E-8

103



Magnitude Unit name MKS value

pressure Pa 1.E0
pressure MPa 1.E6
pressure GPa 1.E9
pressure atm 1.01325E5
pressure bar 1.E5
pressure Kbar 1.E8
pressure Mbar 1.E11
pressure Ry/Bohr**3 1.47108E13
pressure eV/Ang**3 1.60219E11
charge C 1.E0
charge e 1.602177E-19
dipole C*m 1.E0
dipole D 3.33564E-30
dipole debye 3.33564E-30
dipole e*Bohr 8.47835E-30
dipole e*Ang 1.602177E-29
MomInert Kg*m**2 1.E0
MomInert Ry*fs**2 2.17991E-48
Efield V/m 1.E0
Efield V/nm 1.E9
Efield V/Ang 1.E10
Efield V/Bohr 1.8897268E10
Efield Ry/Bohr/e 2.5711273E11
Efield Har/Bohr/e 5.1422546E11
angle deg 1.d0
angle rad 5.72957795E1
torque eV/deg 1.E0
torque eV/rad 1.745533E-2
torque Ry/deg 13.6058E0
torque Ry/rad 0.237466E0
torque meV/deg 1.E-3
torque meV/rad 1.745533E-5
torque mRy/deg 13.6058E-3
torque mRy/rad 0.237466E-3

104



15 APPENDIX: NetCDF

¿From the NetCDF User’s Guide:

The purpose of the Network Common Data Form (netCDF) interface is to allow
you to create, access, and share array-oriented data in a form that is self-describing
and portable. ”Self-describing” means that a dataset includes information defining
the data it contains. ”Portable” means that the data in a dataset is represented in
a form that can be accessed by computers with different ways of storing integers,
characters, and floating-point numbers. Using the netCDF interface for creating new
datasets makes the data portable. Using the netCDF interface in software for data
access, management, analysis, and display can make the software more generally
useful.

[...]
NetCDF is an abstraction that supports a view of data as a collection of self-

describing, portable objects that can be accessed through a simple interface. Array
values may be accessed directly, without knowing details of how the data are stored.
Auxiliary information about the data, such as what units are used, may be stored
with the data. Generic utilities and application programs can access netCDF datasets
and transform, combine, analyze, or display specified fields of the data. The devel-
opment of such applications may lead to improved accessibility of data and improved
reusability of software for array-oriented data management, analysis, and display.

In the context of electronic structure calculations, such an interface is useful to share pseu-
dopotential, wavefunction, and other files among different computers, regardless of their native
floating point format or their endian-ness. At present, some degree of transportability can be
achieved by using ascii-binary converters. However, the other major advantage of the NetCDF
format, the self-description of the data and the ease of accessibility is of great interest also.

A netCDF dataset contains dimensions, variables, and attributes, which all have
both a name and an ID number by which they are identified. These components can
be used together to capture the meaning of data and relations among data fields in an
array-oriented dataset. The netCDF library allows simultaneous access to multiple
netCDF datasets which are identified by dataset ID numbers, in addition to ordinary
file names.

To be able to generate NetCDF files in Siesta, the public domain NetCDF library (V. 3.6.12
or higher recommended) must be installed. It can be downloaded from

http://www.unidata.ucar.edu/software/netcdf/.

In the arch.make file, the following information must exist:

NETCDF_LIBS=-L/path/to/netcdf/library/directory -lnetcdf

NETCDF_INCLUDE=-I/path/to/netcdf/include/directory

DEFS_CDF=-DCDF

105



$(NETCDF LIBS) must be added to the LIBS list and $(NETCDF INCLUDE) must be added to the
INCFLAGS list (or INCFLAGS may be set directly). See examples in the Src/Sys directory, and
Src/Sys/DOCUMENTED-TEMPLATE.make.

(Siesta used to include an old f90 interface to NetCDF in the Src/NetCDF directory. Current
versions of NetCDF now come with their own, so that directory has dissappeared.

While it might seem a hassle to install the library, the added functionality is significant: speedup
in diagonalization with k-points by storing the eigenvectors, optional restarts with charge density
information instead of a density-matrix, new analysis tools, etc.

106



16 APPENDIX: Parallel Siesta

At present, Siesta has been parallelised with moderate system sizes in mind and is suitable
for comensurately moderate parallel computing systems of the type most widely available. A
version suitable for massively parallel systems in order to tackle grand challenge problems will
hopefully be available in the future.

Apart from the possibility of faster real time performance, there is another major driving force
for the use of the parallel version. All significant parts of the code have been written using a
distributed data strategy over the Nodes. This means that the use of a parallel machine can
allow access to a larger amount of physical memory.

Given the targets for the present version, the strategy for parallelism does not employ spatial
decomposition since this is only beneficial for very large problem sizes. Hence the work is divided
in 2 ways depending on the section of the code :

• For operations that are orbital based, a 1-D block cyclic distribution has been used to
divide the work over processors. This is controlled by the parameter BlockSize. For
optimal performance, this parameter should be adjusted according to the size of problem
and the machine being used. Very small and very large values tend to be inefficient and
typically values in the range 8 - 32 tend to be optimal. Parts of the code that parallelise
in this way are, evaluation of the kinetic energy, the non-local pseudopotential contri-
bution, determination of the overlap integrals and matrix diagonalisation/order N. Note
that for matrix diagonalisation, the default option is now to transform the Hamiltonian
and Overlap matrices into a 2-D blocked distribution since this gives better scaling within
Scalapack. The 1-D block cyclic data distribution can be maintained by setting the option
Diag.Use2D to false.

• For operations that are grid based, a 2-D block cyclic distribution over mesh points has
been used to divide the work. The mesh is divided in the Y and Z directions, but not
currently in the X direction. How the mesh points are divided is controlled by the Pro-
cessorY option which must be a factor of the total number of processors. Performance
will be optimal when the load is balanced evenly over all processors. For dense bulk ma-
terials this is straightforward to achieve. For surfaces, where there is a region of vacuum,
it is worth ensuring that the mesh is divided so as to ensure that some processors do
not have just vacuum regions. Parts of the code that parallelise in this way are anything
connected to the mesh (i.e. within DHSCF), including the evaluation of the Hartree and
exchange-correlation energies.

There is also a second mode in which the parallel version can be used. For systems where the
number of K points is very large and the size of the Hamiltonian/Overlap matrices is small,
then the work can be parallelised over K points. This is far more efficient in the diagonalisation
step since this phase becomes embarrassingly parallel once the matrices have been distributed
to each Node. This mode is selected using the ParallelOverK option.

The order-N facility of Siesta was rewritten as of version 2.0 to parallelise over spatial regions
with a domain decomposition. In the ideal situation, each domain interacts with only the
neighbouring domains if the size of the domains is greater than the Wannier function radius

107



and the range of matrix elements in the Hamiltonian. In order to achieve load balance, it may
be advantageous to use smaller domain sizes. The domain size can be controlled through the
RcSpatial option.

In the current implementation of the domain decomposition parallelisation, both the local ele-
ments of the orbital coefficients in the Wannier functions and those connected via the transpose
are locally stored on each node in order to minimise communication. However, this leads to
greater demands on the memory and works best when the system size to processor ratio is high.
Work is in progress to offer a modified algorithm with higher communication, but lower memory
demands.

In order to use the parallel version of the code you must have the following libraries installed
on your computer :

(a) MPI : The Message Passing Interface library - this allows the

processors to communicate. Most machine vendors have their

own implementations available for their own platforms.

However, there are two freely available versions that can

be installed :

MPICH :

http://www-unix.mcs.anl.gov/mpi/mpich/

LAMMPI :

http://www.lam-mpi.org/

(b) Blacs : This is a communications library that runs on top of MPI. Again

if can be obtained for free from :

http://www.netlib.org/

Both source code and pre-compiled binaries are available.

(c) Scalapack : This is a parallel library for dense linear algebra, equivalent

to "lapack" but for parallel systems. Once again this is freely

available as source code or in precompiled form from :

http://www.netlib.org/

Parallel versions of the files for arch.make suitable for a number of systems are provided in the
Src/Sys directory. Should there be no suitable file there for your system, then the following
are the key variables to be set in the arch.make file (see also the commented arch.make file in
Src/Sys/DOCUMENTED-TEMPLATE.make):

108



MPI_INTERFACE=libmpi_f90.a

MPI_INCLUDE=/usr/local/include

DEFS_MPI=-DMPI

#

LIBS= -lscalapack -lblacs -lmpi

Here MPI INTERFACE indicates that the interface to MPI provided should be used which handles
the issue of the variable type being passed. This will be needed in nearly all cases. MPI INCLUDE

indicates the directory where the header file ”mpif.h” can be found on the present machine.
The environment variable DEFS MPI should always be set to "-DMPI", since this causes the
preprocessor to include the parallel code in the source. Finally LIBS must now include all the
libraries required - namely Scalapack, Blacs and MPI, in addition to any machine optimised
Blas, etc.

To execute the parallel version, on most machine, the command will now be of the form :

mpirun -np <nproc> siesta < input.fdf > output

Where <nproc> is the desired number of processors, input.fdf is the Siesta input file and
output is the name of the output file.

Finally, a word concerning performance of parallel execution. This is a very variable quantity
and depends on the exact system you are using since it will vary according to the latency and
bandwidth of the communication mechanism. This is a function of the means by which the
processors are physically connected and by software factors relating to the implementation of
MPI. The one almost universal truth is that, for significant system sizes, parallel diagonalisation
becomes the bottleneck and the place where efficiency is most readily lost. This is basically just
the nature of diagonalisation, but it is always worth tuning the BlockSize parameter.

109



17 APPENDIX: File Formats

The file formats in Siesta are in a state of flux. On the one hand, some of the legacy formats
were inefficient or incomplete, so new ones have been devised, and appropriate translators pro-
vided when necessary. Examples are the WFS (WFSX) wavefunction file, and the HS (HSX)
Hamiltonian-and-overlap file. On the other hand, we are introducing new files in netCDF format
which facilitate the exchange of information among different computers and offer new function-
ality in Siesta. Examples are the DM.nc and the .Grid.nc files.

Here we provide an overview of some of the most important files and their associated tools.

• Density matrix

DM

Traditional Density Matrix (DM) file. The DM is written by default at the end of each
SCF step, after mixing, so it can be directly used in a restart. It is a binary file.

DM.nc

DM in netCDF format. It contains the same information as DM, plus the number of
orbitals in the auxiliary supercell and the array indxuo which maps the orbitals in the
supercell to the unit cell. If the history option is used, this file will store all the DMs in
an SCF cycle.

DMHS.nc

DMin, DMout, Hamiltonian, and Overlap matrix in netCDF format. If the appropriate
fdf history option is used, this file will store the corresponding information for all the steps
in an SCF cycle.

Associated tools:

Util/DensityMatrix: cdf2dm, dm2cdf: DM <--> DM.nc conversion

experimental octave/matlab scripts to process DM .nc files

Util/SCF: experimental python scripts to process DM .nc files

• Hamiltonian and overlap matrices

HS

The old format, very inefficient in terms of space used. It contains (if produced by a
calculation using k-points) also the xij array and information about the atomic species
and orbitals. As of siesta-3.0-rc2, it has been superseded by the HSX format. If some
legacy utility needs the HS format, it can be re-generated using the tools in Util/HSX.

HSX

The new format, with better packing of binary records.

DMHS

See above

110



• Wavefunctions

WFS

Old format, now superseded by WFSX.

WFSX

New format, without redundant information, and in single precision.

WFS.nc

A netCDF file to store the eigenvectors (in routine diagk file) as they are computed, thus
saving a second round of diagonalization after the calculation of the Fermi level.

Associated tools:

Util/WFS: readwfx, wfsnc2wfsx, readwf, wfs2wfsx, wfsx2wfs

• Grid magnitudes

RHO, VT, DRHO, VH...

These are binary files, read directly by (for example) Andrei Postnikov’s utilities.

...Grid.nc

netCDF files which can be directly processed by a number of programs and scripts. The
Rho.Grid.nc and DeltaRho.Grid.nc files can also be read by Siesta to start a new SCF
cycle.

Associated tools:

Util/Grid:

Operating on old-style files: grid2val, grid2cube, grid2cdf

Operating on netCDF files: average_x.m cdf2xsf,

average_z.m cdf_diff, cdf2grid, cdf_fft

Util/Contrib/APostnikov: rho2xsf, etc.

111



18 APPENDIX: XML Output

¿From version 2.0, Siesta includes an option to write its output to an XML file. The XML it
produces is in accordance with the CMLComp subset of version 2.2 of the Chemical Markup
Language. Further information and resources can be found at http://cmlcomp.org/ and tools
for working with the XML file can be found in the Util/CMLComp directory.

As of June 2009, the engine for CML output production is a subset of the FoX library (see
http://www.uszla.me.uk/FoX).

The main motivation for standarised XML (CML) output is as a step towards standarising
formats for uses like the following.

• To have Siesta communicating with other software, either for postprocessing or as part of
a larger workflow scheme. In such a scenario, the XML output of one Siesta simulation
may be easily parsed in order to direct further simulations. Detailed discussion of this is
out of the scope of this manual.

• To generate webpages showing Siesta output in a more accessible, graphically rich, fash-
ion. This section will explain how to do this.

18.1 Controlling XML output

XML.Write (logical): Determine if the main XML file should be created for this run.

Default value: true

XML.AbortOnErrors (logical): This controls the behaviour of the XML output library when
it detects internal errors or erroneous use of the API and is intended to aid debugging.
When this option is false, the library will emit a diagnostic message to standard error
before stopping execution with a Fortran stop statement. When this option is true, the
message is generated but execution will be terminated by generating a runtime exception
leading to an abort signal. Depending on the execution environment and compiler options,
this can lead to the generation of a core file or stack trace.

Default value: false

XML.AbortOnWarnings (logical): This controls the behaviour of the XML output library
when it detects minor errors and is intended to aid debugging. When this option is false,
the library will emit a diagnostic message to standard error before continuing execution.
When this option is true, the message is generated but execution will also be terminated
by generating a runtime exception leading to an abort signal. Depending on the execution
environment and compiler options, this can lead to the generation of a core file or stack
trace.

Default value: false

112



18.2 Converting XML to XHTML

The translation of the Siesta XML output to a HTML-based webpage is done using XSLT
technology. The stylesheets conform to XSLT-1.0 plus EXSLT extensions; an xslt processor
capable of dealing with this is necessary. However, in order to make the system easy to use, a
script called ccViz is provided in Util/CMLComp that works on most Unix or Mac OS X systems.
It is run like so:

./ccViz SystemLabel.xml

A new file will be produced. Point your web-browser at SystemLabel.xhtml to view the output.

The generated webpages include support for viewing three-dimensional interactive images of the
system. If you want to do this, you will either need jMol (http://jmol.sourceforge.net)
installed or access to the internet. As this is a Java applet, you will also need a working Java
Runtime Environment and browser plugin - installation instructions for these are outside the
scope of this manual, though. However, the webpages are still useful and may be viewed without
this plugin.

An online version of this tool is avalable from http://cmlcomp.org/ccViz/, as are updated
versions of the ccViz script.

113



19 APPENDIX: Selection of precision for storage

Some of the real arrays used in Siesta are by default single-precision, to save memory. This
applies to the grid-related magnitudes, and to the historical data sets in Broyden mixing. Unless
you have memory problems running Siesta, we recommend that the defaults are changed by using
pre-processing symbols at compile time:

• Add -DGRID DP to the DEFS variable in arch.make to use double-precision arrays on the
grid (but consider using also -DPHI GRID SP to safely keep a large orbital-values array in
single precision.)

• Add -DBROYDEN DP to the DEFS variable in arch.make to use double-precision arrays for the
Broyden historical data sets. (Remember that the Broyden mixing for SCF convergence
acceleration is an experimental feature.)

114



Index

.DM, 98

.TSDE, 98

.TSHS, 98

AllocReportLevel, 76
animation, 38
antiferromagnetic initial DM, 47
AtomCoorFormatOut, 32
AtomicCoordinatesAndAtomicSpecies,

32
AtomicCoordinatesFormat, 31
AtomicCoordinatesOrigin, 32
AtomicMass, 15

band structure, 61
BandLines, 60
BandLinesScale, 60
BandPoints, 61
basis, 27

basis set superposition error (BSSE), 27
Bessel functions, 26
default soft confinement potential, 22
default soft confinement, 22
default soft confinement radius, 22
effective pressure, 28
filtering, 27
fix split-valence table, 22
Gen-basis standalone program, 27, 28
ghost atoms, 26
minimal, 20
new split-valence code, 21, 22
PAO, 20, 21, 24
per-shell split norm, 26
point at infinity, 29
polarization, 20, 26
reparametrization of pseudopotential, 29
soft confinement potential, 26
split valence, 21
split valence for H, 21
User basis, 27
User basis (NetCDF format), 28

basis
PAO, 118

BasisPressure, 28

Berry phase, 68
Bessel functions, 26
%block, 11
BlockSize, 75
Blocksize, 107
BLYP, 42
Born effective charges, 70
BornCharge, 89
BornCharge, 70
Broyden mixing, 44, 114
Broyden optimization, 81
bug reports, 101
bulk polarization, 68

CA, 41
cell relaxation, 78
Cerius2, 37
ChangeKgridInMD, 40
Charge of the system, 70
Chebyshev Polynomials, 59
Chemical Potential, 59
ChemicalSpeciesLabel, 14, 30
CML, 112
Conjugate-gradient history information, 80
constant-volume cell relaxation, 79
constraints in relaxations, 87
COOP.Write, 66
cutoff radius, 24

denchar, 77
density of states, 56, 63
Diag.AllInOne, 55
Diag.DivideAndConquer, 55
Diag.Memory, 75
Diag.NoExpert, 55
Diag.ParallelOverK, 75
Diag.PreRotate, 56
Diag.Use2D, 56
Dielectric function, optical absorption, 67
diffuse orbitals, 20
DirectPhi, 76
DM.AllowExtrapolation, 48
DM.AllowReuse, 47
DM.Broyden.Cycle.On.Maxit, 45

115



DM.Broyden.Variable.Weight, 45
DM.EnergyTolerance, 49
DM.FormattedFiles, 46
DM.FormattedInput, 46
DM.FormattedOutput, 47
DM.Harris.Tolerance, 50
DM.InitSpin, 47
DM.InitSpinAF, 47
DM.KickMixingWeight, 45
DM.MixingWeight, 43
DM.MixSCF1, 71
DM.MixSCF1, 45
DM.NumberBroyden, 44
DM.NumberKick, 45
DM.NumberPulay, 43
DM.Pulay.Avoid.First.After.Kick, 44
DM.PulayOnFile, 44
DM.Require.Energy.Convergence, 49
DM.Require.Harris.Convergence, 49
DM.Tolerance, 49
DM.UseSaveDM, 46
DZ, 20
DZP, 20

egg-box effect, 51–53
EggboxRemove, 52
EggboxScale, 53
Eig2dos, 56, 63
ElectronicTemperature, 56, 57
ExternalElectricField, 71

FDF, 11
fdf.log, 10–12
ferromagnetic initial DM, 47
files (ON.functional), 58
FilterCutoff, 27
FilterTol, 27
finite-range pseudo-atomic orbitals, 20
FixAuxiliaryCell, 54
fixed spin state, 42, 43
FixSpin, 42
Force Constants Matrix

using Phonon, 78
Force Constants Matrix, 78
Force Constants Matrix, 89

using Phonon, 90

FoX XML library, 112
fractional program, 15

Gaussians, 20
Gen-basis, 17
Gen-basis, 28
GeometryConstraints, 87
GGA, 41
ghost atoms, 14, 26
Gnubands, 62
grid, 50
GridCellSampling, 51
Ground-state atomic configuration, 21

Harris functional, 43

input file, 11
interatomic distances, 39
isotopes, 15

JMol, 37

kgrid cutoff, 40
kgrid Monkhorst Pack, 40
Kim, 57
Kleinman-Bylander projectors, 23

LatticeConstant, 30
LatticeParameters, 30
LatticeVectors, 31
LDA, 41
Linear mixing kick, 45
LocalDensityOfStates, 65
Localized Wave Functions, 59, 60
LongOutput, 13
Lower order N memory, 60
LSD, 41–43

Makefile, 8
MaxBondDistance, 39
MaxSCFIterations, 43
MD.AnnealOption, 84
MD.Broyden.Cycle.On.Maxit, 81
MD.Broyden.History.Steps, 81
MD.Broyden.Initial.Inverse.Jacobian, 81
MD.BulkModulus, 85
MD.ConstantVolume, 79
MD.FCDispl, 89

116



MD.FCfirst, 89
MD.FClast, 89
MD.FinalTimeStep, 84
MD.FIRE.TimeStep, 81
MD.FireQuench, 82
MD.InitialTemperature, 84
MD.InitialTimeStep, 84
MD.LengthTimeStep, 84
MD.MaxCGDispl, 79
MD.MaxForceTol, 79
MD.MaxStressTol, 79
MD.NoseMass, 84
MD.NumCGsteps, 79
MD.ParrinelloRahmanMass, 84
MD.PreconditionVariableCell, 80
MD.Quench, 82
MD.RelaxCellOnly, 79
MD.RemoveIntramolecularPressure, 83
MD.TargetPressure, 83
MD.TargetTemperature, 84
MD.TauRelax, 85
MD.TypeOfRun, 77
MD.UseSaveCG, 80
MD.UseSaveXV, 38, 39
MD.UseSaveZM, 38
MD.UseStructFile, 36
MD.VariableCell, 78
mesh, 50
MeshCutoff, 50
MeshSubDivisions, 50
MINIMAL, 20
minimal basis, 20
mixps program, 15
MM.Cutoff, 74
MM.Grimme.D, 74
MM.Grimme.S6, 75
MM.Potentials, 73
MM.UnitsDistance, 74
MM.UnitsEnergy, 74
Mulliken population analysis, 13, 65
MullikenInSCF, 66
multiple-ζ, 20, 21

NaiveAuxiliaryCell, 54
NeglNonOverlapInt, 53
NetCDF format, 27, 28, 105

NetCDF library, 105
NetCharge, 70
New.A.Parameter, 29
New.B.Parameter, 29
NEXT ITER.UCELL.ZMATRIX, 37
nodes, 20
NonCollinearSpin, 42
nonodes, 20
NumberOfAtoms, 14, 30
NumberOfEigenStates, 55
NumberOfSpecies, 14, 30

OccupationFunction, 56, 57
OccupationMPOrder, 57
ON.ChemicalPotential, 59
ON.ChemicalPotentialOrder, 59
ON.ChemicalPotentialRc, 59
ON.ChemicalPotentialTemperature, 59
ON.ChemicalPotentialUse, 59
ON.eta, 58, 59
ON.eta alpha, 58
ON.eta beta, 58
ON.etol, 58
ON.functional, 57
ON.LowerMemory, 60
ON.MaxNumIter, 58
ON.RcLWF, 59
ON.UseSaveLWF, 60
Optical.Broaden, 67
Optical.EnergyMaximum, 67
Optical.EnergyMinimum, 67
Optical.Mesh, 67
Optical.NumberOfBands, 67
Optical.OffsetMesh, 68
Optical.PolarizationType, 68
Optical.Scissor, 67
Optical.Vector, 68
Ordejon-Mauri, 58
OUT.UCELL.ZMATRIX, 37
output

δρ(r⃗), 72
atomic coordinates
in a dynamics step, 85
in a dynamics step, 13
initial, 85

band k⃗ points, 13, 61

117



band structure, 61
basis, 27
charge density, 72, 73
charge density and/or wfs for DENCHAR

code, 77
customization, 13
dedicated files, 13
density matrix, 49
density matrix, 48, 49
density matrix history, 49
eigenvalues, 13, 56, 63
electrostatic potential, 72
forces, 13, 85
grid k⃗ points, 13, 41
Hamiltonian, 49
Hamiltonian & overlap, 53
Hamiltonian history, 49
HSX file, 54
Information for COOP/COHP curves, 66
ionic charge, 73
local density of states, 65
long, 13
main output file, 12
molecular dynamics
history, 86

molecular dynamics
Force Constants Matrix, 89
history, 86
PHONON forces file, 90

Mulliken analysis, 13, 65
overlap matrix, 49
projected density of states, 64
total charge, 73
total potential, 72
wave functions, 13, 63

PAO.Basis, 24
PAO.BasisSize, 20
PAO.BasisSizes, 21
PAO.BasisType, 20
PAO.FixSplitTable, 22
PAO.NewSplitCode, 21
PAO.SoftDefault, 22
PAO.SoftInnerRadius, 22
PAO.SoftPotential, 22
PAO.SplitNorm, 21

PAO.SplitNormH, 21
PAO.SplitTailNorm, 22
Parallel Siesta, 107
ParallelOverK, 107
PBE, 41
PBEsol, 41
perturbative polarization, 20, 26
Phonon program, 78
Phonon program, 89
PhononLabels, 89
polarization orbitals, 20
PolarizationGrids, 68
Precision selection, 114
ProcessorY, 75, 107
ProjectedDensityOfStates, 64
PS.KBprojectors , 23
PS.lmax, 23
pseudopotential

example generation, 9
files, 16
generation, 15

Pulay mixing, 43
PW92, 41
PZ, 41

RcSpatial, 76
reading saved data

deformation charge density, 48
reading saved data, 77

all, 77
CG, 80
charge density, 48
density matrix, 46, 47
localized wave functions (order-N), 60
XV, 38
ZM, 38

readwf, 63
readwfsx, 63
relaxation of cell parameters only, 79
removal of intramolecular pressure, 83
Reparametrize.Pseudos, 29
Restart of O(N) calculations, 60
Restricted.Radial.Grid, 29
revPBE, 41
rippling, 51–53
Rmax.Radial.Grid, 29

118



RPBE, 41

SaveDeltaRho, 72
SaveElectrostaticPotential, 72
SaveHS, 53
SaveInitialChargeDensity, 73
SaveIonicCharge, 73
SaveNeutralAtomPotential, 72
SaveRho, 72
SaveTotalCharge, 73
SaveTotalPotential, 72
scale factor, 26
SCF, 43

mixing, 43–45
Broyden, 44, 45
energy convergence, 49
harris energy convergence, 49
linear, 43, 45
Pulay, 43

SCF convergence criteria, 49
SCF.Read.Charge.NetCDF, 48
SCF.Read.Deformation.Charge.NetCDF,

48
SCFMustConverge, 43
Scripting, 78
Sies2arc, 38
Sies2arc, 37
Siesta, 5
siesta, 14
SimulateDoping, 71
single-ζ, 20
SingleExcitation, 43
Slab dipole correction, 71
SlabDipoleCorrection, 71
Slabs with net charge, 71
SolutionMethod, 54, 94
species, 14
species.ion, 10
spin, 42, 43, 47

initialization, 47
non-collinear, 42

SpinPolarized, 42
split valence, 20
splitgauss, 20
STANDARD, 20
structure input precedence issues, 39

SuperCell, 31
synthetic atoms, 15
SyntheticAtoms, 15
SystemLabel, 14
Systemlabel, 11
Systemlabel..ANI, 11
Systemlabel.DM, 10
Systemlabel..EIG, 11
Systemlabel..FA, 11
Systemlabel.STRUCT IN, 38
Systemlabel.STRUCT NEXT ITER, 36
Systemlabel.STRUCT OUT, 10, 36
Systemlabel.xml, 11
Systemlabel.XV, 10
SystemName, 14
SZ, 20
SZP, 20

tbtrans, 98
Tests, 9
TotalSpin, 43
TranSiesta, 6
TS.BiasContour.Eta, 97
TS.BiasContour.Method, 97
TS.BiasContour.NumPoints, 97
TS.BufferAtomsLeft, 96
TS.BufferAtomsRight, 96
TS.CalcGF, 95
TS.ComplexContour.Emin, 96
TS.ComplexContour.NumCircle, 96
TS.ComplexContour.NumLine, 96
TS.ComplexContour.NumPoles, 97
TS.GFFileLeft, 95
TS.GFFileRight, 96
TS.HSFileLeft, 95, 98
TS.HSFileRight, 95
TS.MixH, 95
TS.NumUsedAtomsLeft, 96
TS.NumUsedAtomsRight, 96
TS.SaveHS, 94
TS.TBT.Emax, 98
TS.TBT.Emin, 98
TS.TBT.NEigen, 99
TS.TBT.NPoints, 99
TS.TriDiag, 95
TS.UpdateDMCROnly, 95

119



Use.New.Diagk, 55
User.Basis, 27
User.Basis.NetCDF, 28
UseSaveData, 77
UseStructFile, 38

VCA, 15
VIBRA, 89

WarningMinimumAtomicDistance, 39
WaveFuncKPoints, 63
WaveFuncKPoints, 63
WaveFuncKPointsScale, 62
WC, 41
WFSX file, 63
WriteBands, 61
WriteCoorCerius, 37
WriteCoorInitial, 85
WriteCoorStep, 85
WriteCoorStep, 13
WriteCoorXmol, 37
WriteDenchar, 77
WriteDM, 48
WriteDM.History.NetCDF, 49
WriteDM.NetCDF, 48
WriteDMHS.History.NetCDF, 49
WriteDMHS.NetCDF, 49
WriteEigenvalues, 13, 56
WriteForces, 85
WriteForces, 13
WriteKbands, 13, 61
WriteKpoints, 13, 41
WriteMDhistory, 86
WriteMDXmol, 38
WriteMullikenPop, 13, 65
WriteWaveFunctions, 13, 63

XC.authors, 41
XC.functional, 41
XC.hybrid, 42
XML, 112
XML.AbortOnErrors, 112
XML.AbortOnWarnings, 112
XML.Write, 112
XMol, 37, 38

ZM.ForceTolAngle, 80

ZM.ForceTolLength, 80
ZM.MaxDisplAngle, 80
ZM.MaxDisplLength, 80
ZM.UnitsAngle, 36
ZM.UnitsLength, 36
Zmatrix, 32

120


