.....

Parallel Programming with MPI
on Clusters

Rusty Lusk
Mathematics and Computer Science Division
Argonne National Laboratory

(The rest of our group: Bill Gropp, Rob Ross,
David Ashton, Brian Toonen, Anthony Chan)

Outline

.....

Clusters are a significant component of high-
performance computing. (Duh!)

MPI is a significant component of the programming
and execution environment on clusters.

This talk touches on three components of the MPI
universe:

— The MPI Standard
* And why it has been “successful”

— Implementation issues and status
* With a little extra on MPICH

— Non-MPI software that interacts with MPI implementations
* Tools and environments
An example MPI application
— lllustrates several points, excuse to show pretty pictures

What is MP1?

T

A message-passing library specification
— extended message-passing model
— not a language or compiler specification
— not a specific implementation or product

For parallel computers, clusters, heterogeneous
networks

Full-featured

Designed to provide access to advanced parallel
hardware for

— end users

— library writers
— tool developers

Where Did MPI Come From?

.....

Early vendor systems (NX, EUI, CMMD) were not
portable.

Early portable systems (PVM, p4, TCGMSG,
Chameleon) were mainly research efforts.

— Did not address the full spectrum of message-passing issues
— Lacked vendor support

— Were not implemented at the most efficient level

The MPI Forum organized in 1992 with broad
participation by vendors, library writers, and end
users.

MPI| Standard (1.0) released June, 1994; many
Implementation efforts.

MPI-2 Standard (1.2 and 2.0) released July, 1997.

MPI-2.1 being defined now to remove errors and
ambiguities.

MPI Sources

.....

The Standard itself:
— at http://ww. npi -forum org
— All MPI official releases, in both postscript and HTML

Books on MPI and MPI-2:

— MPI. The Complete Reference, volumes 1 and 2, MIT
Press, 1999.

— Using MPI: Portable Parallel Programming with the
Message-Passing Interface (2"¢ edition), by Gropp, Lusk,
and Skjellum, MIT Press, 1999.

— Using MPI-2: Extending the Message-Passing Interface, by
Gropp, Lusk, and Thakur, MIT Press, 1999

Other information on Web:
— athttp://ww. nts. anl . gov/ npi

— pointers to lots of stuff, including other talks and tutorials, a
FAQ, other people’'s MPI pages

The MPI Standard Documentation

!:.;Illl-.1 (EERL \.
[k - o

MPI

—The Complete Reference
Volume 1, The MPI Core Volume 2, The MPI Extensions

Tutorial Material on MPI, MPI-2

Using MPI Using MPI 2

Fortable Faralle! Frogramming Advanced Features of the

with the Message Passing Interface

Why Has MPI Succeeded?

(Important to understand when contemplating alternatives)

T

Open process of definition
— All invited, but hard work required
— All drafts and deliberations open at all times

Portability
— Need not lead to lowest common denominator approach
— MPI semantics allow aggressive implementations

Performance

— MPI can help manage the memory hierarchy

— Collective operations can provide scalability

— Cooperates with optimizing compilers

Simplicity

— MPI-2 has 275 functions; is that a lot?

— Can write serious MPI applications with 6 functions
— Economy of concepts

Why Has MPI Succeeded?

(continued)

T

* Modularity

— MPI supports component-based software with
communicators

— Support for libraries means some applications may contain
no MPI calls
« Composability
— MPI works with other tools (compilers, debuggers, profiliers)
— Provides precise interactions with multithreaded programs

« Completeness
— Any parallel algorithm can be expressed

— Easy things are not always easy with MPI, but
— Hard things are possible

MPI Implementation Status

 All parallel computer vendors have MPI-1, and some
have complete MPI-2 implementations.

* Implementations for clusters

— MPICH, LAM, MPI-Pro have MPI-1, parts of MPI-2 for Linux
clusters

— For Windows2000, MPICH and MPIPro

 MPICH-derived special implementations
— Myricom’s MPICH-GM (for Myrinet)
— Globus’s MPICH-G2 (for multiple MPI's)
— Scyld’'s BeoMPI (for Scyld Beowulf clusters)
— LBL’s MVICH (for Linux clusters with VIA)
— Research implementations (e.g. BIPnQ)

y A — others

MPI Implementation
Research Issues and Topics

T

The existence of a standard API like MPI focuses implementation
research, like standard languages focus compiler research
Datatypes
— Packing algorithms
— Exploiting MPI_Type commit
 Memory motion reduction
— Eliminating interlayer copies
— Utilizing cache-aware data structures
« Portability and performance through lower-level communication
abstractions
— (useful even outside MPI)
» Better collective operation implementations
— Most implementations layer on point-to-point MPI
— Need stream-oriented methods that understand MPI datatypes

11

More Implementation Research
Issues and Topics

T

Parallel 1/0

— Exploiting MPI collective operations

— The abstract interface for parallel I/0O

— Tuning for cluster parallel file systems (e.g. PVFS)

Optimizing communication algorithms and data structures for
new hardware and software

— Infiniband

— VIA

— What can go on the NIC?
Fault tolerance

— Intercommunicators can provide one approach
Checkpointing

— Interfaces for saving state

Exploiting multithreading at multiple levels

Scalable startup

12

The MPICH Implementation of MPI

T

As a research project: exploring tradeoffs between
performance and portability; conducting research in
Implementation issues.

As a software project. providing a free MPI
Implementation on most machines; enabling vendors
and others to build complete MPI implementations on
their own communication services.

MPICH 1.2.2.2 just released, with complete MPI-1, parts
of MPI-2 (/O and C++), port to Windows2000.

Avallable at http://www.mcs.anl.gov/mpi/mpich

13

MPICH-1 Design and Status

T

MPICH’s architecture has
encouraged its use In
other projects and vendor
MPI’s.

Limitations:

— Not thread-safe
OMPLTHREAD_FUNNELLED)

— No dynamic processes
— No RMA

Most recent change: TCP

— Fast startup with MPD
process manager

MPI

1/O

collective

\

pt-to-pt

ADI

shmem

VIA

devices

\

ADIO

N

Parallel file systems

TCP+shmem

14

MPICH-2 Goals and Design

T

Design goals

— Same as before:
» Portable and efficient
* Modular for use by others

* Implementation research
vehicle

— Plus:
o All of MPI-2

« All levels of thread
support

* Ready for next-
generation hardware

« Scalability a major goal
Status

— Detailed design nearly
complete

MPI
ADI

Multi-

method Glo_bus others

: device
device
TCP shmem VIA others
methods

15

MPI1 Works with Other Tools

.....

e Since itis a library, MPI applications can use latest
compilers (e.g. new Intel C and Fortran compilers,
choice of Fortran compilers for Linux, Windows
compilers, OpenMP compilers.

e Since it supports libraries, it can be used to
Implement other portable software components
— PETSc
— ScalLAPACK
— Global Arrays
— Paramesh
— HDF-5
— Autopack

e Since it Is a specification, it encourages multiple
Implementations and implementation research.

16

Interfaces Promote MPI
Application Use of Tools

T

 The MPI Profiling Interface
— Part of any conforming implementation
— Encourages commercial tools (e.g., GuideView, Vampir)
— Encourages open tools (e.g. Jumpshot, XMPI), personal tools

 The Debugger Interface (Cownie & Gropp, 1999)
— Allows debuggers access to message queues
— Used by TotalView
— Implemented by MPICH and other MPI implementations

 The Process Manager Interface (Butler, Lusk, & Gropp,
2000)

— Allows multiple Process Managers to provide startup and other
services to multiple MPI implementations

— Used by MPICH
— Implemented by MPD Process Manager (comes with MPICH)

17

MPI and OpenMP

* MPI provides interface (MPI_Thread_init) for requesting a specific level
of thread safety
— MPI_THREAD_SINGLE - single threaded
— MPI_THREAD_FUNNELLED — needed for loop parallelism
— MPI_THREAD_SERIAL — needed for “single” directive
— MPI_THREAD_MULTIPLE — needed for complete multithreading

 Thread-aware MPI tools: TotalView (Etnus) and GuideView (Pallas/Intel)

| RE VAMPIR - Global Timeline

I I ——
18

The MPI Implementation as a
Component of a Cluster Environment

Meta Meta Meta
Scheduler Monitor Manager

Access control
Security
manager

mm—m————————

Interacts with
all components

Node

System

Accountin b .
J Monitor Cog' ﬂﬁ%t'on
Manager
Resource
Allocation ‘ '

Job
Manager &

/ Monitor

Checkpoint/
Restart

E ig
Usage . Performance
— Reports ! Communicatiq
7 E N | & 1/0

N Application Environment) 19

o ———— - e e e e e e e e e e e e e e e e e e e = =

An MPI Application

o Goal of the FLASH project: To simulate matter
accumulation on the surface of compact stars, nuclear
Ignition of the accreted (and possibly underlying stellar)
material, and the subsequent evolution of the star’s
Interior, surface, and exterior

o X-ray bursts (on neutron star surfaces)
* Novae (on white dwarf surfaces)
* Type la supernovae (in white dwarf interiors)

+ “Normal”
Rotation ain-sequence
companion

Mass-transfer
stream

o ik :
& b
o %
) ! Roche lobe
J (a) of companion

20

The FLASH Code

T

Solves complex systems of equations for
hydrodynamics and nuclear burning

Adaptive mesh refinement on rectangular grid

Written primarily in Fortran-90
— Alittle C and Python

Gordon Bell prize winner in 2000
lllustrates nearly all aspects of MPI discussed here

21

Role of MPI in FLASH

Provides Portability and Scalability (see next slide)

Relies heavily on MPI-based libraries

— Uses Paramesh library for adaptive mesh refinement; Paramesh is
implemented with MPI; no MPI in FLASH itself

— Parallel I/O (for checkpointing, visualization, other purposes) done with
HDF-5 library, which is implemented with MPI-10

Debugged with TotalView, using standard debugger interface

Tuned with Jumpshot and Vampir, using MPI profiling interface

FLASH Scaling Runs

1000 ————

- - @
~
U) -
N
I g
& PPUNETE, cirrtits Syieyiiie Jprye: Sotttl: PR S
= 000 o 4
L e——e Blue Horizon (4 PEs/node) e——e Chiba City (1 PE/node) 4
| e --¢ Blue Horizon (8 PEs/node) e - -e Chiba City (2 PEs/node) |
. =———= ASCI Blue Pacific (4 PEs/node) e——= ASCI Frost (4 PEs/node) -
- e——= ASCI Red (1 PE/node) o - - ASCI| Frost (8 PEs/node) -
| * - -¢ ASCI Red (2 PEs/node) o-—-- ASCI Frost (12 PEs/node) |
ASCI Nirvana o—---— ASCI Frost (16 PEs/node)
1 1 1

Number of Processors

23

X-Ray Burst on the Surface of a Neutron Star

y (em)

Log10 Dansity {g/cm?)
1 }{1 |} T T T T | T T T T T T T

it
B2100
1t

2x10

o g1 ot 1.0%10 1.5%1 07 o007
* (ocm)

—4 =2 0 z 4 a B
tima = Q.000 p=
nurber of Elocke =- 3203 24

AMA levels = a

Showing the AMR Grid

Log10 Dansity {g/cm?)

=10

ot |— _

G107 — —]

¥ {em)

it |— —

10T = _

—4 =2 "] z 3 L] G

tima = 1.011 p=
numbar of Elocke = 30z
AME levels = a

FLASH Scientific Results

Wide range of compressibility
Wide range of length and time scales

Compressible turbulence

Many interacting physical processes

Richtmyer-Meshkov instability

» 703 7
_Ae 7 a(S
a0 b " iac el

il
» b
- -
%\. i By w

Cellular detonations

Helium burning on neutron stars

{ﬁ Rayleigh-Taylor instability

Future Developments in Parallel
Programming: MPI and Beyond

T

MPI not perfect

Any widely-used replacement will have to share the
properties that made MPI a success.

Some directions (in decreasing order of
speculativeness)

— Improvements to MPI implementations
« Better collective operation performance, full MPI-2

— Improvements to the MPI definition
* E.g., better remote memory operations

— Continued evolution of libraries
— Interactions with compilers

— Further out: radically different programming models for
radically different architectures.

27

Summary

.....

MPI is a successful example of a community defining,
Implementing, and adopting a standard programming
methodology.

It happened because of the open MPI process, the
MPI design itself, and early implementation work.

MPI research continues to refine implementations on
modern platforms, and this is the “main road” ahead.

Tools that work with MPI programs are thus a good
Investment.

MPI provides portability and performance for complex
applications on a variety of architectures.

28

