
19

llel
the

ach
um-

and
ram
y
in

pro-
Mes-
n

are

end
llo-
four
nks,

ion
ent

Basic Concepts
MPI Programming Primer

Through Message Passing Interface (MPI) an application views its para
environment as a static group of processes. An MPI process is born into
world with zero or more siblings. This initial collection of processes is
called the world group. A unique number, called a rank, is assigned to e
member process from the sequence 0 through N-1, where N is the total n
ber of processes in the world group. A member can query its own rank
the size of the world group. Processes may all be running the same prog
(SPMD) or different programs (MIMD). The world group processes ma
subdivide, creating additional subgroups with a potentially different rank
each group.

A process sends a message to a destination rank in the desired group. A
cess may or may not specify a source rank when receiving a message.
sages are further filtered by an arbitrary, user specified, synchronizatio
integer called a tag, which the receiver may also ignore.

An important feature of MPI is the ability to guarantee independent softw
developers that their choice of tag in a particular library will not conflict
with the choice of tag by some other independent developer or by the
user of the library. A further synchronization integer called a context is a
cated by MPI and is automatically attached to every message. Thus, the
main synchronization variables in MPI are the source and destination ra
the tag and the context.

A communicator is an opaque MPI data structure that contains informat
on one group and that contains one context. A communicator is an argum
 MPI Primer / Developing with LAM

Kurt W Lust
From: MPI Primer / Programming with LAM. (Ohio Supercomputer Center.)
http://www.mpi.nd.edu/lam/

20

es

:

om-
mu-

pi.h.
to all MPI communication routines. After a process is created and initializ
MPI, three predefined communicators are available.

MPI_COMM_WORLD the world group
MPI_COMM_SELF group with one member, myself
MPI_COMM_PARENT an intercommunicator between two groups

my world group and my parent group (See
Dynamic Processes.)

Many applications require no other communicators beyond the world c
municator. If new subgroups or new contexts are needed, additional com
nicators must be created.

MPI constants, templates and prototypes are in the MPI header file, m

#include <mpi.h>
 MPI Primer / Developing with LAM

21

-

em-
rt
erly-

otal
ma-

is

Initialization

Basic Parallel
Information
MPI_Init Initialize MPI state.
MPI_Finalize Clean up MPI state.
MPI_Abort Abnormally terminate.
MPI_Comm_size Get group process count.
MPI_Comm_rank Get my rank within process group.

MPI_Initialized Has MPI been initialized?

The first MPI routine called by a program must be MPI_Init(). The com
mand line arguments are passed to MPI_Init().

MPI_Init(int *argc, char **argv[]);

A process ceases MPI operations with MPI_Finalize().

MPI_Finalize(void);

In response to an error condition, a process can terminate itself and all m
bers of a communicator with MPI_Abort(). The implementation may repo
the error code argument to the user in a manner consistent with the und
ing operation system.

MPI_Abort (MPI_Comm comm, int errcode);

Two numbers that are very useful to most parallel applications are the t
number of parallel processes and self process identification. This infor
tion is learned from the MPI_COMM_WORLD communicator using the
routines MPI_Comm_size() and MPI_Comm_rank().

MPI_Comm_size (MPI_Comm comm, int *size);

MPI_Comm_rank (MPI_Comm comm, int *rank);

Of course, any communicator may be used, but the world information
usually key to decomposing data across the entire parallel application.
 MPI Primer / Developing with LAM

22

nes.
he
t by

ign-
 but
data
cted
u-
:

mes-
is

n

.
eive

mes-

 Blocking
Point-to-Point

Send Modes

Standard Send
MPI_Send Send a message in standard mode.
MPI_Recv Receive a message.
MPI_Get_count Count the elements received.
MPI_Probe Wait for message arrival.

MPI_Bsend Send a message in buffered mode.
MPI_Ssend Send a message in synchronous mode.
MPI_Rsend Send a message in ready mode.
MPI_Buffer_attach Attach a buffer for buffered sends.
MPI_Buffer_detach Detach the current buffer.
MPI_Sendrecv Send in standard mode, then receive.
MPI_Sendrecv_replace Send and receive from/to one area.
MPI_Get_elements Count the basic elements received.

This section focuses on blocking, point-to-point, message-passing routi
The term “blocking” in MPI means that the routine does not return until t
associated data buffer may be reused. A point-to-point message is sen
one process and received by one process.

The issues of flow control and buffering present different choices in des
ing message-passing primitives. MPI does not impose a single choice
instead offers four transmission modes that cover the synchronization,
transfer and performance needs of most applications. The mode is sele
by the sender through four different send routines, all with identical arg
ment lists. There is only one receive routine. The four send modes are

standard The send completes when the system can buffer the
sage (it is not obligated to do so) or when the message
received.

buffered The send completes when the message is buffered i
application supplied space, or when the message is
received.

synchronous The send completes when the message is received
ready The send must not be started unless a matching rec

has been started. The send completes immediately.

Standard mode serves the needs of most applications. A standard mode
sage is sent with MPI_Send().

MPI_Send (void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);
 MPI Primer / Developing with LAM

23

le-
truc-

()
es-

tor.

spe-
pon
ot

des-
 with
e

sta-
e
and/

he
ondi-
age
, the

Receive

Status Object

Message Lengths
An MPI message is not merely a raw byte array. It is a count of typed e
ments. The element type may be a simple raw byte or a complex data s
ture. SeeMessage Datatypes.

The four MPI synchronization variables are indicated by the MPI_Send
parameters. The source rank is the caller’s. The destination rank and m
sage tag are explicitly given. The context is a property of the communica

As a blocking routine, the buffer can be overwritten when MPI_Send()
returns. Although most systems will buffer some number of messages, e
cially short messages, without any receiver, a programmer cannot rely u
MPI_Send() to buffer even one message. Expect that the routine will n
return until there is a matching receiver.

A message in any mode is received with MPI_Recv().

MPI_Recv (void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm,
MPI_Status *status);

Again the four synchronization variables are indicated, with source and
tination swapping places. The source rank and the tag can be ignored
the special values MPI_ANY_SOURCE and MPI_ANY_TAG. If both thes
wildcards are used, the next message for the given communicator is
received.

An argument not present in MPI_Send() is the status object pointer. The
tus object is filled with useful information when MPI_Recv() returns. If th
source and/or tag wildcards were used, the actual received source rank
or message tag are accessible directly from the status object.

status.MPI_SOURCE the sender’s rank
status.MPI_TAG the tag given by the sender

It is erroneous for an MPI program to receive a message longer than t
specified receive buffer. The message might be truncated or an error c
tion might be raised or both. It is completely acceptable to receive a mess
shorter than the specified receive buffer. If a short message may arrive
application can query the actual length of the message with
MPI_Get_count().

MPI_Get_count (MPI_Status *status,
MPI_Datatype dtype, int *count);
 MPI Primer / Developing with LAM

24

The
. See

()
lly

ro-
yn-

e

Probe
The status object and MPI datatype are those provided to MPI_Recv().
count returned is the number of elements received of the given datatype
Message Datatypes.

Sometimes it is impractical to pre-allocate a receive buffer. MPI_Probe
synchronizes a message and returns information about it without actua
receiving it. Only synchronization variables and the status object are p
vided as arguments. MPI_Probe() does not return until a message is s
chronized.

MPI_Probe (in source, int tag, MPI_Comm comm,
MPI_Status *status);

After a suitable message buffer has been prepared, the same messag
reported by MPI_Probe() can be received with MPI_Recv().
 MPI Primer / Developing with LAM

25

ly
arily
fter

ck-
st is
has

fer at
pu-
hen
 not

.

Nonblocking
Point-to-Point
MPI_Isend Begin to send a standard message.
MPI_Irecv Begin to receive a message.
MPI_Wait Complete a pending request.
MPI_Test Check or complete a pending request.
MPI_Iprobe Check message arrival.

MPI_Ibsend Begin to send a buffered message.
MPI_Issend Begin to send a synchronous message.
MPI_Irsend Begin to send a ready message.
MPI_Request_free Free a pending request.
MPI_Waitany Complete any one request.
MPI_Testany Check or complete any one request.
MPI_Waitall Complete all requests.
MPI_Testall Check or complete all requests.
MPI_Waitsome Complete one or more requests.
MPI_Testsome Check or complete one or more requests.
MPI_Cancel Cancel a pending request.
MPI_Test_cancelled Check if a pending request was cancelled.

The term “nonblocking” in MPI means that the routine returns immediate
and may only have started the message transfer operation, not necess
completed it. The application may not safely reuse the message buffer a
a nonblocking routine returns. The four blocking send routines and one
blocking receive routine all have nonblocking counterparts. The nonblo
ing routines have an extra output argument - a request object. The reque
later passed to one of a suite of completion routines. Once an operation
completed, its message buffer can be reused.

The intent of nonblocking message-passing is to start a message trans
the earliest possible moment, continue immediately with important com
tation, and then insist upon completion at the latest possible moment. W
the earliest and latest moment are the same, nonblocking routines are
useful. Otherwise, a non-blocking operation on certain hardware could
overlap communication and computation, thus improving performance

MPI_Isend() begins a standard nonblocking message send.

MPI_Isend (void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm,
MPI_Request *req);
 MPI Primer / Developing with LAM

26

ing
end
st.
er

est
 If

ct

s
r that
pres-

fast
pli-
ty to
pre-
nta-
uld
on-

Request
Completion

Probe
Likewise, MPI_Irecv() begins a nonblocking message receive.

MPI_Irecv (void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm,
MPI_Request *req);

Both routines accept arguments with the same meaning as their block
counterparts. When the application wishes to complete a nonblocking s
or receive, a completion routine is called with the corresponding reque
The Test() routine is nonblocking and the Wait() routine is blocking. Oth
completion routines operate on multiple requests.

MPI_Test (MPI_Request *req, int *flag,
MPI_Status *status);

MPI_Wait (MPI_Request *req, MPI_Status *status);

MPI_Test() returns a flag in an output argument that indicates if the requ
completed. If true, the status object argument is filled with information.
the request was a receive operation, the status object is filled as in
MPI_Recv(). Since MPI_Wait() blocks until completion, the status obje
argument is always filled.

MPI_Iprobe() is the nonblocking counterpart of MPI_Probe(), but it doe
not return a request object since it does not begin any message transfe
would need to complete. It sets the flag argument which indicates the
ence of a matching message (for a subsequent receive).

MPI_Iprobe (int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status);

Programmers should not consider the nonblocking routines as simply
versions of the blocking calls and therefore the preferred choice in all ap
cations. Some implementations cannot take advantage of the opportuni
optimize performance offered by the nonblocking routines. In order to
serve the semantics of the message-passing interface, some impleme
tions may even be slower with nonblocking transfers. Programmers sho
have a clear and substantial computation overlap before considering n
blocking routines.
 MPI Primer / Developing with LAM

27

ribed
ssary
e

res,

 C
ta is

om-

Message
Datatypes
MPI_Type_vector Create a strided homogeneous vector.
MPI_Type_struct Create a heterogeneous structure.
MPI_Address Get absolute address of memory location.
MPI_Type_commit Use datatype in message transfers.
MPI_Pack Pack element into contiguous buffer.
MPI_Unpack Unpack element from contiguous buffer.
MPI_Pack_size Get packing buffer size requirement.

MPI_Type_continuous Create contiguous homogeneous array.
MPI_Type_hvector Create vector with byte displacement.
MPI_Type_indexed Create a homogeneous structure.
MPI_Type_hindexed Create an index with byte displacements.
MPI_Type_extent Get range of space occupied by a datatype.
MPI_Type_size Get amount of space occupied by a datatype.
MPI_Type_lb Get displacement of datatype’s lower bound.
MPI_Type_ub Get displacement of datatype’s upper bound.
MPI_Type_free Free a datatype.

Heterogeneous computing requires that message data be typed or desc
somehow so that its machine representation can be converted as nece
between computer architectures. MPI can thoroughly describe messag
datatypes, from the simple primitive machine types to complex structu
arrays and indices.

The message-passing routines all accept a datatype argument, whose
typedef is MPI_Datatype. For example, recall MPI_Send(). Message da
specified as a number of elements of a given type.

Several MPI_Datatype values, covering the basic data units on most c
puter architectures, are predefined:

MPI_CHAR signed char
MPI_SHORT signed short
MPI_INT signed int
MPI_LONG signed long
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_FLOAT float
 MPI Primer / Developing with LAM

28

rre-

,
eger
nica-

y

pa-
on-

in
mn.

ted

).
s-

Derived
Datatypes

Str ided Vector
Datatype
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE a raw byte

The number of bytes occupied by these basic datatypes follows the co
sponding C definition. Thus, MPI_INT could occupy four bytes on one
machine and eight bytes on another machine. A message count of one
MPI_INT specified by both sender and receiver would, in one direction
require padding and always be correct. In the reverse direction, the int
may not be representable in the lesser number of bytes and the commu
tion will fail.

Derived datatypes are built by combining basic datatypes, or previousl
built derived datatypes. A derived datatype describes a memory layout
which consists of multiple arrays of elements. A generalization of this ca
bility is that the four varieties of constructor routines offer more or less c
trol over array length, array element datatype and array displacement.

contiguous one array length, no displacement, one datatype
vector one array length, one displacement, one datatype
indexed multiple array lengths, multiple displacements, one

datatype
structure multiple everything

Consider a two dimensional matrix with R rows and C columns stored
row major order. The application wishes to communicate one entire colu
A vector derived datatype fits the requirement.

MPI_Type_Vector (int count, int blocklength,
int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype);

Assuming the matrix elements are of MPI_INT, the arguments for the sta
requirement would be:

int R, C;
MPI_Datatype newtype;
MPI_Type_vector(R, 1, C, MPI_INT, &newtype);
MPI_Type_commit(&newtype);

The count of blocks (arrays) is the number of elements in a column (R
Each block contains just one element and the elements are strided (di
placed) from each other by the number of elements in a row (C).1
 MPI Primer / Developing with LAM

29

age
 to

ith

Structure
Datatype
An arbitrary record whose template is a C structure is a common mess
form. The most flexible MPI derived datatype, the structure, is required
describe the memory layout.

MPI_Type_struct (int count, int blocklengths[],
MPI_Aint displacements[], MPI_Datatype
dtypes[], MPI_Datatype *newtype);

In the following code fragment, a C struct of diverse fields is described w
MPI_Type_struct() in the safest, most portable manner.

/*
 * non-trivial structure
 */
struct cell {

double energy;
char flags;
float coord[3];

};
/*
 * We want to be able to send arrays of this datatype.
 */
struct cell cloud[2];
/*
 * new datatype for cell struct
 */
MPI_Datatype celltype;

1. Note that this datatype is not sufficient to send multiple columns
from the matrix, since it does not presume the final displacement
between the last element of the first column and the first element of
the second column. One solution is to use MPI_Type_struct() and
MPI_UB. SeeStructure Datatype.

blklen (#elements)

displacement (#elements)

Figure 2: Strided Vector Datatype
 MPI Primer / Developing with LAM

30

stor-
for

ory.

ater
ents
f the

fer
some
ore
int blocklengths[4] = {1, 1, 3, 1};
MPI_Aint base;
MPI_Aint displacements[4];
MPI_Datatype types[4] = {MPI_DOUBLE, MPI_CHAR,

MPI_FLOAT, MPI_UB};
MPI_Address(&cloud[0].energy, &displacement[0]);
MPI_Address(&cloud[0].flags, &displacement[1]);
MPI_Address(&cloud[0].coord, &displacement[2]);
MPI_Address(&cloud[1].energy, &displacement[3]);
base = displacement[0];
for (i = 0; i < 4; ++i) displacement[i] -= base;
MPI_Type_struct(4, blocklengths, displacements, types,

&celltype);
MPI_Type_commit(&celltype);

The displacements in a structure datatype are byte offsets from the first
age location of the C structure. Without guessing the compiler’s policy
packing and alignment in a C structure, the MPI_Address() routine and
some pointer arithmetic are the best way to get the precise values.
MPI_Address() simply returns the absolute address of a location in mem
The displacement of the first element within the structure is zero.

When transferring arrays of a given datatype (by specifying a count gre
than 1 in MPI_Send(), for example), MPI assumes that the array elem
are stored contiguously. If necessary, a gap can be specified at the end o
derived datatype memory layout by adding an artificial element of type
MPI_UB, to the datatype description and giving it a displacement that
extends to the first byte of the second element in an array.

MPI_Type_Commit() separates the datatypes that will be used to trans
messages from the intermediate ones that are scaffolded on the way to
very complicated datatype. A derived datatype must be committed bef
being used in communication.

blklen (#elements)

displacement (#bytes)

Figure 3: Struct Datatype
 MPI Primer / Developing with LAM

31

ny
ruc-
ny

rly
ion
as-
ecial

its

for a
pe
d.

with
e
ut”
size

Packed Datatype
 The description of a derived datatype is fixed after creation at runtime. If a
slight detail changes, such as the blocklength of a particular field in a st
ture, a new datatype is required. In addition to the tedium of creating ma
derived datatypes, a receiver may not know in advance which of a nea
identical suite of datatypes will arrive in the next message. MPI’s solut
is packing and unpacking routines that incrementally assemble and dis
semble a contiguous message buffer. The packed message has the sp
MPI datatype, MPI_PACKED, and is transferred with a count equal to
length in bytes.

MPI_Pack_size (int incount, MPI_Datatype dtype,
MPI_Comm comm, int *size);

MPI_Pack_size() returns the packed message buffer size requirement
given datatype. This may be greater than one would expect from the ty
description due to hidden, implementation dependent packing overhea

MPI_Pack (void *inbuf, int incount, MPI_Datatype
dtype, void *outbuf, int outsize,
int *position, MPI_Comm comm);

Contiguous blocks of homogeneous elements are packed one at a time
MPI_Pack(). After each call, the current location in the packed messag
buffer is updated. The “in” data are the elements to be packed and the “o
data is the packed message buffer. The outsize is always the maximum
of the packed message buffer, to guard against overflow.

Figure 4: Packed Datatype

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

outcount (#bytes)

incount (#elements)

position
 MPI Primer / Developing with LAM

32

 is

es-
byte

n a
MPI_Unpack (void *inbuf, int insize,
int *position, void *outbuf, int outcount,
MPI_Datatype datatype, MPI_Comm comm);

MPI_Unpack() is the natural reverse of MPI_Pack() where the “in” data
the packed message buffer and the “out” data are the elements to be
unpacked.

Consider a networking application that is transferring a variable length m
sage consisting of a count, several (count) Internet addresses as four
character arrays and an equal number of port numbers as shorts.

#define MAXN 100
unsigned char addrs[MAXN][4];
short ports[MAXN];

In the following code fragment, a message is packed and sent based o
given count.

unsigned int membersize, maxsize;
int position;
int nhosts;
int dest, tag;
char *buffer;
/*
 * Do this once.
 */
MPI_Pack_size(1, MPI_INT, MPI_COMM_WORLD, &membersize);
maxsize = membersize;
MPI_Pack_size(MAXN * 4, MPI_UNSIGNED_CHAR, MPI_COMM_WORLD,

&membersize);
maxsize += membersize;
MPI_Pack_size(MAXN, MPI_SHORT, MPI_COMM_WORLD, &membersize);
maxsize += membersize;
buffer = malloc(maxsize);
/*
 * Do this for every new message.
 */
nhosts = /* some number less than MAXN */ 50;
position = 0;
MPI_Pack(nhosts, 1, MPI_INT, buffer, maxsize, &position,

MPI_COMM_WORLD);
MPI_Pack(addrs, nhosts * 4, MPI_UNSIGNED_CHAR, buffer,

maxsize, &position, MPI_COMM_WORLD);
MPI_Pack(ports, nhosts, MPI_SHORT, buffer, maxsize,

&position, MPI_COMM_WORLD);
MPI_Send(buffer, position, MPI_PACKED, dest, tag,

MPI_COMM_WORLD);
 MPI Primer / Developing with LAM

33

s-
ked,
A buffer is allocated once to contain the maximum size of a packed me
sage. In the following code fragment, a message is received and unpac
based on a count packed into the beginning of the message.

int src;
int msgsize;
MPI_Status status;
MPI_Recv(buffer, maxsize, MPI_PACKED, src, tag,

MPI_COMM_WORLD, &status);
position = 0;
MPI_Get_count(&status, MPI_PACKED, &msgsize);
MPI_Unpack(buffer, msgsize, &position, &nhosts, 1, MPI_INT,

MPI_COMM_WORLD);
MPI_Unpack(buffer, msgsize, &position, addrs, nhosts * 4,

MPI_UNSIGNED_CHAR, MPI_COMM_WORLD);
MPI_Unpack(buffer, msgsize, &position, ports, nhosts,

MPI_SHORT, MPI_COMM_WORLD);
 MPI Primer / Developing with LAM

34

.
s.

ap-
rnal

ro-
er-

s,
ify
the

s
nt to

mu-
-

Collective
Message-

Passing

Broadcast

Scatter
MPI_Bcast Send one message to all group members.
MPI_Gather Receive and concatenate from all members
MPI_Scatter Separate and distribute data to all member
MPI_Reduce Combine messages from all members.

MPI_Barrier Wait until all group members reach this point.
MPI_Gatherv Vary counts and buffer displacements.
MPI_Scatterv Vary counts and buffer displacements.
MPI_Allgather Gather and then broadcast.
MPI_Allgatherv Variably gather and then broadcast.
MPI_Alltoall Gather and then scatter.
MPI_Alltoallv Variably gather and then scatter.
MPI_Op_create Create reduction operation.
MPI_Allreduce Reduce and then broadcast.
MPI_Reduce_scatter Reduce and then scatter.
MPI_Scan Perform a prefix reduction.

Collective operations consist of many point-to-point messages which h
pen more or less concurrently (depending on the operation and the inte
algorithm) and involve all processes in a given communicator. Every p
cess must call the same MPI collective routine. Most of the collective op
ations are variations and/or combinations of four primitives: broadcast,
gather, scatter and reduce.

MPI_Bcast (void *buf, int count, MPI_Datatype
dtype, int root, MPI_Comm comm);

In the broadcast operation, all processes specify the same root proces
whose buffer contents will be sent. Processes other than the root spec
receive buffers. After the operation, all buffers contain the message from
root process.

MPI_Scatter (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm);

MPI_Scatter() is also a one-to-many collective operation. All processe
specify the same receive count. The send arguments are only significa
the root process, whose buffer actually contains sendcount * N elements of
the given datatype, where N is the number of processes in the given com
nicator. The send buffer will be divided equally and dispersed to all pro
 MPI Primer / Developing with LAM

35

nt
first

 send-

s
pro-
cess.

Gather

Reduce
cesses (including itself). After the operation, the root has sent sendcou
elements to each process in increasing rank order. Rank 0 receives the
sendcount elements from the send buffer. Rank 1 receives the second
count elements from the send buffer, and so on.

MPI_Gather (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm);

MPI_Gather() is a many-to-one collective operation and is a complete
reverse of the description of MPI_Scatter().

MPI_Reduce (void *sendbuf, void *recvbuf,
int count, MPI_Datatype dtype, MPI_Op op,
int root, MPI_Comm comm);

MPI_Reduce() is also a many-to-one collective operation. All processe
specify the same count and reduction operation. After the reduction, all
cesses have sent count elements from their send buffer to the root pro

Figure 5: Primitive Collective Operations

Broadcast

Gather

Scatter

Reduce

rank 0

rank 1

rank 2

rank 3
 MPI Primer / Developing with LAM

36

ise
ffer.
and
ns
, all

re-

ns
.g.,
t

al
r the
fol-
Elements from corresponding send buffer locations are combined pair-w
to yield a single corresponding element in the root process’s receive bu
The full reduction expression over all processes is always associative
may or may not be commutative. Application specific reduction operatio
can be defined at runtime. MPI provides several pre-defined operations
of which are commutative. They can be used only with sensible MPI p
defined datatypes.

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bitwise and
MPI_LOR logical or
MPI_BOR bitwise or
MPI_LXOR logical exclusive or
MPI_BXOR bitwise exclusive or

The following code fragment illustrates the primitive collective operatio
together in the context of a statically partitioned regular data domain (e
1-D array). The global domain information is initially obtained by the roo
process (e.g., rank 0) and is broadcast to all other processes. The initi
dataset is also obtained by the root and is scattered to all processes. Afte
computation phase, a global maximum is returned to the root process
lowed by the new dataset itself.

/*
 * parallel programming with a single control process
 */

int root;
int rank, size;
int i;
int full_domain_length;
int sub_domain_length;
double *full_domain, *sub_domain;
double local_max, global_max;
root = 0;
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI Primer / Developing with LAM

37
/*
 * Root obtains full domain and broadcasts its length.
 */

if (rank == root) {
get_full_domain(&full_domain,

&full_domain_length);
}
MPI_Bcast(&full_domain_length, 1 MPI_INT, root,

MPI_COMM_WORLD);
/*
 * Distribute the initial dataset.
 */

sub_domain_length = full_domain_length / size;
sub_domain = (double *) malloc(sub_domain_length *

sizeof(double));
MPI_Scatter(full_domain, sub_domain_length,

MPI_DOUBLE, sub_domain, sub_domain_length,
MPI_DOUBLE, root, MPI_COMM_WORLD);

/*
 * Compute the new dataset.
 */

compute(sub_domain, sub_domain_length, &local_max);
/*
 * Reduce the local maxima to one global maximum
 * at the root.
 */

MPI_Reduce(&local_max, &global_max, 1, MPI_DOUBLE,
MPI_MAX, root, MPI_COMM_WORLD);

/*
 * Collect the new dataset.
 */

MPI_Gather(sub_domain, sub_domain_length, MPI_DOUBLE,
full_domain, sub_domain_length, MPI_DOUBLE,
root, MPI_COMM_WORLD);
 MPI Primer / Developing with LAM

38

tion
ode
ese
.
lled:

ext.
g, but
ro-
e,

pri-

Creating
Communicators
MPI_Comm_dup Duplicate communicator with new context.
MPI_Comm_split Split into categorized sub-groups.
MPI_Comm_free Release a communicator.
MPI_Comm_remote_size

Count intercomm. remote group members.
MPI_Intercomm_merge Create an intracomm. from an intercomm.

MPI_Comm_compare Compare two communicators.
MPI_Comm_create Create a communicator with a given group.
MPI_Comm_test_inter Test for intracommunicator or intercommunicator.
MPI_Intercomm_create Create an intercommunicator.

MPI_Group_size Get number of processes in group.
MPI_Group_rank Get rank of calling process.
MPI_Group_translate_ranks

Processes in group A have what ranks in B?
MPI_Group_compare Compare membership of two groups.
MPI_Comm_group Get group from communicator.
MPI_Group_union Create group with all members of 2 others.
MPI_Group_intersection Create with common members of 2 others.
MPI_Group_difference Create with the complement of intersection.
MPI_Group_incl Create with specific members of old group.
MPI_Group_excl Create with the complement of incl.
MPI_Group_range_incl Create with ranges of old group members.
MPI_Group_range_excl Create with the complement of range_incl.
MPI_Group_free Release a group object.

A communicator could be described simply as a process group. Its crea
is synchronized and its membership is static. There is no period in user c
where a communicator is created but not all its members have joined. Th
qualities make communicators a solid parallel programming foundation
Three communicators are prefabricated before the user code is first ca
MPI_COMM_WORLD, MPI_COMM_SELF and
MPI_COMM_PARENT. SeeBasic Concepts.

Communicators carry a hidden synchronization variable called the cont
If two processes agree on source rank, destination rank and message ta
use different communicators, they will not synchronize. The extra synch
nization means that the global software industry does not have to divid
allocate or reserve tag values. When writing a library or a module of an
application, it is a good idea to create new communicators, and hence a
 MPI Primer / Developing with LAM

39

 is
tic-

ta

e
pu-
d to

 or
tor

ne
me
 in
he

old
im-
vate synchronization space. The simplest MPI routine for this purpose
MPI_Comm_dup(), which duplicates everything in a communicator, par
ularly the group membership, and allocates a new context.

MPI_Comm_dup (MPI_comm comm, MPI_comm *newcomm);

Applications may wish to split into many subgroups, sometimes for da
parallel convenience (i.e. a row of a matrix), sometimes for functional
grouping (i.e. multiple distinct programs in a dataflow architecture). Th
group membership can be extracted from the communicator and mani
lated by an entire suite of MPI routines. The new group can then be use
create a new communicator. MPI also provides a powerful routine,
MPI_Comm_split(), that starts with a communicator and results in one
more new communicators. It combines group splitting with communica
creation and is sufficient for many common application requirements.

MPI_Comm_split (MPI_comm comm, int color,
int key, MPI_Comm *newcomm);

The color and key arguments guide the group splitting. There will be o
new communicator for each value of color. Processes providing the sa
value for color will be grouped in the same communicator. Their ranks
the new communicator are determined by sorting the key arguments. T
lowest value of key will become rank 0. Ties are broken by rank in the
communicator. To preserve relative order from the old communicator, s
ply use the same key everywhere.

A communicator is released by MPI_Comm_free(). Underlying system
resources may be conserved by releasing unwanted communicators.

MPI_Comm_free (MPI_Comm *comm);

Figure 6: Communicator Split
 MPI Primer / Developing with LAM

40

n-
he
ups
ee
a-
is
n

of
ank
en

 is

er
mpt

mu-
le at

-

o

ad

. See

Inter-
communicators

Fault Tolerance
An intercommunicator contains two groups: a local group in which the ow
ing process is a member and a remote group of separate processes. T
remote process group has the mirror image intercommunicator - the gro
are flipped. Spawning new processes creates an intercommunicator. S
Dynamic Processes. MPI_Intercomm_merge() creates an intracommunic
tor (the common form with a single group) from an intercommunicator. Th
is often done to permit collective operations, which can only be done o
intracommunicators.

MPI_Intercomm_merge (MPI_Comm intercomm,
int high, MPI_Comm *newintracomm);

The new intracommunicator group contains the union of the two groups
the intercommunicator. The operation is collective over both groups. R
ordering within the two founding groups is maintained. Ordering betwe
the two founding groups is controlled by the high parameter, a boolean
value. The intercommunicator group that sets this parameter true will
occupy the higher ranks in the intracommunicator.

The number of members in the remote group of an intercommunicator
obtained by MPI_Comm_remote_size().

MPI_Comm_remote_size (MPI_Comm comm, int *size);

Some MPI implementations may invalidate a communicator if a memb
process dies. The MPI library may raise an error condition on any atte
to use a dead communicator, including requests in progress whose com
nicator suddenly becomes invalid. These faults would then be detectab
the application level by setting a communicator’s error handler to
MPI_ERRORS_RETURN (SeeMiscellaneous MPI Features).

A crude but portable fault tolerant master/slave application can be con
structed by using the following strategy:

• Spawn processes in groups of one.

• Set the error handler for the parent / child intercommunicators t
MPI_ERRORS_RETURN.

• If a communication with a child returns an error, assume it is de
and free the intercommunicator.

• Spawn another process, if desired, to replace the dead process
Dynamic Processes.
 MPI Primer / Developing with LAM

41

.

der-
nce,

it is
plica-
a

or-

ion
lign

a

an
re-

ian

Process
Topologies
MPI_Cart_create Create cartesian topology communicator.
MPI_Dims_create Suggest balanced dimension ranges.
MPI_Cart_rank Get rank from cartesian coordinates.
MPI_Cart_coords Get cartesian coordinates from rank.
MPI_Cart_shift Determine ranks for cartesian shift.

MPI_Cart_sub Split into lower dimensional sub-grids.
MPI_Graph_create Create arbitrary topology communicator.
MPI_Topo_test Get type of communicator topology.
MPI_Graphdims_get Get number of edges and nodes.
MPI_Graph_get Get edges and nodes.
MPI_Cartdim_get Get number of dimensions.
MPI_Cart_get Get dimensions, periodicity and local coordinates.
MPI_Graph_neighbors_count

Get number of neighbors in a graph topology.
MPI_Graph_neighbors Get neighbor ranks in a graph topology.
MPI_Cart_map Suggest new ranks in an optimal cartesian mapping
MPI_Graph_map Suggest new ranks in an optimal graph mapping.

MPI is a process oriented programming model that is independent of un
lying nodes in a parallel computer. Nevertheless, to enhance performa
the data movement patterns in a parallel application should match, as
closely as possible, the communication topology of the hardware. Since
difficult for compilers and message-passing systems to guess at an ap
tion’s data movement, MPI allows the application to supply a topology to
communicator, in the hope that the MPI implementation will use that inf
mation to identify processes in an optimal manner.

For example, if the application is dominated by Cartesian communicat
and the parallel computer has a cartesian topology, it is preferable to a
the distribution of data with the machine, and not blindly place any dat
coordinate at any node coordinate.

MPI provides two types of topologies, the ubiquitous cartesian grid, and
arbitrary graph. Topology information is attached to a communicator by c
ating a new communicator. MPI_Cart_create() does this for the cartes
topology.

MPI_Cart_create (MPI_Comm oldcomm, int ndims,
int *dims, int *periods, int reorder,
MPI_Comm *newcomm);
 MPI Primer / Developing with LAM

42

en-
en-

that
y
 the

di-
on
and

s,
rly

re
f the

 of
oth
ge

ton
sses,
first
us
The essential information for a cartesian topology is the number of dim
sions, the length of each dimension and a periodicity flag (does the dim
sion wrap around?) for each dimension. The reorder argument is a flag
indicates if the application will allow a different ranking in the new topolog
communicator. Reordering may make coordinate calculation easier for
MPI implementation.

With a topology enhanced communicator, the application will use coor
nates to decide source and destination ranks. Since MPI communicati
routines still use ranks, the coordinates must be translated into a rank
vice versa. MPI eases this translation with MPI_Cart_rank() and
MPI_Cart_coords().

MPI_Cart_rank (MPI_comm comm, int *coords,
int *rank);

MPI_Cart_coords (MPI_Comm comm, int rank,
int maxdims, int *coords);

To further assist process identification in cartesian topology application
MPI_Cart_shift() returns the ranks corresponding to common neighbou
shift communication. The direction (dimension) and relative distance a
input arguments and two ranks are output arguments, one on each side o
calling process along the given direction. Depending on the periodicity
the cartesian topology associated with the given communicator, one or b
ranks may be returned as MPI_PROC_NULL, indicating a shift off the ed
of the grid.

MPI_Cart_shift (MPI_Comm comm, int direction,
int distance, int *rank_source,
*int rank_dest);

Consider a two dimensional cartesian dataset. The following code skele
establishes a corresponding process topology for any number of proce
and then creates a new communicator for collective operations on the
column of processes. Finally, it obtains the ranks which hold the previo
and next rows, which would lead to data exchange.

int mycoords[2];
int dims[2];
int periods[2] = {1, 0};
int rank_prev, rank_next;
int size;
MPI_Comm comm_cart;
MPI_Comm comm_col1;
 MPI Primer / Developing with LAM

43

his
ons.
/*
 * Create communicator with 2D grid topology.
 */

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Dims_create(size, 2, dims);
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 1,

&comm_cart);
/*
 * Get local coordinates.
 */

MPI_Comm_rank(comm_cart, &rank);
MPI_Cart_coords(comm_cart, rank, 2, mycoords);

/*
 * Build new communicator on first column.
 */

if (mycoords[1] == 0) {
MPI_Comm_split(comm_cart, 0, mycoords[0],

&comm_col1);
} else {

MPI_Comm_split(comm_cart, MPI_UNDEFINED, 0,
&comm_col1);

}
/*
 * Get the ranks of the next and previous rows, same column.
 */

MPI_Cart_shift(comm_cart, 0, 1, &rank_prev,
&rank_next);

MPI_Dims_create() suggests the most balanced (“square”) dimension
ranges for a given number of nodes and dimensions.

A good reason for building a communicator over a subset of the grid, in t
case the first column in a mesh, is to enable the use of collective operati
SeeCollective Message-Passing.

Figure 7: 2D Cartesian Topology

0,10,0 0,2 0,3

1,11,0 1,2 1,3

2,12,1 2,2 2,3

3,13,0 3,2 3,3
 MPI Primer / Developing with LAM

44

e.

tion
 a

e in
d

ha-
An
d to
he
par-

p of

Process
Creation
MPI_Spawn Start copies of one program.

MPI_Spawn_multiple Start multiple programs.
MPI_Port_open Obtain a connection point for a server.
MPI_Port_close Release a connection point.
MPI_Accept Accept a connection from a client.
MPI_Connect Make a connection to a server.
MPI_Name_publish Publish a connection point under a service nam
MPI_Name_unpublish Stop publishing a connection point.
MPI_Name_get Get connection point from service name.

MPI_Info_create Create a new info object.
MPI_Info_set Store a key/value pair to an info object.
MPI_Info_get Read the value associated with a stored key.
MPI_Info_get_valuelen Get the length of a key value.
MPI_Info_get_nkeys Get number of keys stored with an info object.
MPI_Info_get_nthkey Get the key name in a sequence position.
MPI_Info_dup Duplicate an info object.
MPI_Info_free Destroy an info object.
MPI_Info_delete Remove a key/value pair from an info object.

Due to the static nature of process groups in MPI (a virtue), process crea
must be done carefully. Process creation is a collective operation over
given communicator. A group of processes are created by one call to
MPI_Spawn(). The child processes start up, initialize and communicat
the traditional MPI way. They must begin by calling MPI_Init(). The chil
group has its own MPI_COMM_WORLD which is distinct from the world
communicator of the parent group.

MPI_Spawn (char program[], char *argv[], int
maxprocs, MPI_Info info, int root, MPI_Comm,
parents, MPI_Comm *children, int errs[]);

How do the parents communicate with their children? The natural mec
nism for communication between two groups is the intercommunicator.
intercommunicator whose remote group contains the children is returne
the parents in the second communicator argument of MPI_Spawn(). T
children get the mirror communicator, whose remote group contains the
ents, as the pre-defined communicator MPI_COMM_PARENT. In the
application’s original process world that has no parent, the remote grou
MPI_COMM_PARENT is of size 0. SeeCreating Communicators.
 MPI Primer / Developing with LAM

45

that
 con-
rgv
The

cess
pro-
ror

ifica-
s to
ven-
 a
r to
er
nt.
L.

ea-

uar-

e
 of
e

e

Portable
Resource

Specification
The maxprocs parameter is the number of copies of the single program
will be created. Each process will be passed command line arguments
sisting of the program name followed by the arguments specified in the a
parameter. (The argv parameter should not contain the program name.)
program name, maxprocs and argv are only significant in the parent pro
whose rank is given by the root parameter. The result of each individual
cess spawn is returned through the errs parameter, an array of MPI er
codes.

New processes require resources, beginning with a processor. The spec
tion of resources is a natural area where the MPI abstraction succumb
the underlying operating system and all its domestic customs and con
tions. It is thus difficult if not impossible for an MPI application to make
detailed resource specification and remain portable. The info paramete
MPI_Spawn is an opportunity for the programmer to choose control ov
portability. MPI implementations are not required to interpret this argume
Thus the only portable value for the info parameter is MPI_INFO_NUL

Consult each MPI implementation’s documentation for (non-portable) f
tures within the info parameter and for the default behaviour with
MPI_INFO_NULL.

A common and fairly abstract resource requirement is simply to fill the
available processors with processes. MPI makes an attempt, with no g
antees of accuracy, to supply that information through a pre-defined
attribute called MPI_UNIVERSE_SIZE, which is cached on
MPI_COMM_WORLD. In typical usage, the application would subtract th
value associated with MPI_UNIVERSE_SIZE from the current number
processes, often the size of MPI_COMM_WORLD. The difference is th
recommended value for the maxprocs parameter of MPI_Spawn(). Se
Miscellaneous MPI Features on how to retrieve the value for
MPI_UNIVERSE_SIZE.
 MPI Primer / Developing with LAM

46

urs
uni-
en
uni-

or.

or

ple-
ism.

error

Mi scellaneous
MPI Features

Error Handling
MPI_Errhandler_create Create custom error handler.
MPI_Errhandler_set Set error handler for communicator.
MPI_Error_string Get description of error code.
MPI_Error_class Get class of error code.
MPI_Abort Abnormally terminate application.
MPI_Attr_get Get cached attribute value.
MPI_Wtime Get wall clock time.

MPI_Errhandler_get Get error handler from communicator.
MPI_Errhandler_free Release custom error handler.
MPI_Get_processor_name Get the caller’s processor name.
MPI_Wtick Get wall clock timer resolution.
MPI_Get_version Get the MPI version numbers.

MPI_Keyval_create Create a new attribute key.
MPI_Keyval_free Release an attribute key.
MPI_Attr_put Cache an attribute in a communicator.
MPI_Attr_delete Remove cached attribute.

An error handler is a software routine which is called when a error occ
during some MPI operation. One handler is associated with each comm
cator and is inherited by created communicators which derive from it. Wh
an error occurs in an MPI routine that uses a communicator, that comm
cator’s error handler is called. An application’s initial communicator,
MPI_COMM_WORLD, gets a default built-in handler,
MPI_ERRORS_ARE_FATAL, which aborts all tasks in the communicat

An application may supply an error handler by first creating an MPI err
handler object from a user routine.

MPI_Errhandler_create (void (*function)(),
MPI_Errhandler *errhandler);

Error handler routines have two pre-defined parameters followed by im
mentation dependent parameters using the ANSI C <stdargs.h> mechan
The first parameter is the handler’s communicator and the second is the
code describing the problem.

void function (MPI_Comm *comm, int *code, ...);

The error handler object is then associated with a communicator by
MPI_Errhandler_set().
 MPI Primer / Developing with LAM

47

s
rou-
turn
 an

().

f

t can
ror
dard
ne of
error

g)
r-

u-
d is
asso-
D.

Attr ibute
Caching
MPI_Errhandler_set (MPI_Comm comm,
MPI_Errhandler errhandler);

A second built-in error handler is MPI_ERRORS_RETURN, which doe
nothing and allows the error code to be returned by the offending MPI
tine where it can be tested and acted upon. In C the error code is the re
value of the MPI function. In Fortran the error code is returned through
error parameter to the MPI subroutine.

MPI_Error_string (int code, char *errstring,
int *resultlen);

Error codes are converted into descriptive strings by MPI_Error_string
The user provides space for the string that is a minimum of
MPI_MAX_ERROR_STRING characters in length. The actual length o
the returned string is returned through the resultlen argument.

MPI defines a list of standard error codes (also called error classes) tha
be examined and acted upon by portable applications. All additional er
codes, specific to the implementation, can be mapped to one of the stan
error codes. The idea is that additional error codes are variations on o
the standard codes, or members of the same error class. Two standard
codes catch any additional error code that does not fit this intent:
MPI_ERR_OTHER (doesn’t fit but convert to string and learn somethin
and MPI_ERR_UNKNOWN (no clue). Again, the goal of this design is po
table, intelligent applications.

The mapping of error code to standard error code (class) is done by
MPI_Error_class().

MPI_Error_class (int code, int class);

MPI provides a mechanism for storing arbitrary information with a comm
nicator. A registered key is associated with each piece of information an
used, like a database record, for storage and retrieval. Several keys and
ciated values are pre-defined by MPI and stored in MPI_COMM_WORL

MPI_TAG_UB maximum message tag value
MPI_HOST process rank on user’s local processor
MPI_IO process rank that can fully accomplish I/O
MPI_WTIME_IS_GLOBAL Are clocks synchronized?
MPI_UNIVERSE_SIZE #processes to fill machine
 MPI Primer / Developing with LAM

48

fy-

red

anTiming
All cached information is retrieved by calling MPI_Attr_get() and speci
ing the desired key.

MPI_Attr_get (MPI_Comm comm, int keyval,
void *attr_val, int *flag);

The flag parameter is set to true by MPI_Attr_get() if a value has been sto
the specified key, as will be the case for all the pre-defined keys.

Performance measurement is assisted by MPI_Wtime() which returns
elapsed wall clock time from some fixed point in the past.

double MPI_Wtime (void);
 MPI Primer / Developing with LAM

	MPI Programming Primer
	Basic Concepts
	MPI_Init Initialize MPI state. MPI_Finalize Clean up MPI state. MPI_Abort Abnormally terminate. M...
	MPI_Initialized Has MPI been initialized?
	Initialization

	MPI_Send Send a message in standard mode. MPI_Recv Receive a message. MPI_Get_count Count the ele...
	MPI_Bsend Send a message in buffered mode. MPI_Ssend Send a message in synchronous mode. MPI_Rsen...
	Blocking Point-to-Point

	MPI_Isend Begin to send a standard message. MPI_Irecv Begin to receive a message. MPI_Wait Comple...
	MPI_Ibsend Begin to send a buffered message. MPI_Issend Begin to send a synchronous message. MPI_...
	Nonblocking Point-to-Point

	MPI_Type_vector Create a strided homogeneous vector. MPI_Type_struct Create a heterogeneous struc...
	MPI_Type_continuous Create contiguous homogeneous array. MPI_Type_hvector Create vector with byte...
	Message Datatypes

	MPI_Bcast Send one message to all group members. MPI_Gather Receive and concatenate from all memb...
	MPI_Barrier Wait until all group members reach this point. MPI_Gatherv Vary counts and buffer dis...
	Collective Message- Passing

	MPI_Comm_dup Duplicate communicator with new context. MPI_Comm_split Split into categorized sub-g...
	MPI_Comm_compare Compare two communicators. MPI_Comm_create Create a communicator with a given gr...
	MPI_Group_size Get number of processes in group. MPI_Group_rank Get rank of calling process. MPI_...
	A communicator could be described simply as a process group. Its creation is synchronized and its...
	Creating Communicators

	Communicators carry a hidden synchronization variable called the context. If two processes agree ...
	Applications may wish to split into many subgroups, sometimes for data parallel convenience (i.e....
	The color and key arguments guide the group splitting. There will be one new communicator for eac...
	A communicator is released by MPI_Comm_free(). Underlying system resources may be conserved by re...
	An intercommunicator contains two groups: a local group in which the owning process is a member a...
	The number of members in the remote group of an intercommunicator is obtained by MPI_Comm_remote_...
	MPI_Cart_create Create cartesian topology communicator. MPI_Dims_create Suggest balanced dimensio...
	Process Topologies

	MPI_Spawn Start copies of one program.
	Process Creation

	MPI_Errhandler_create Create custom error handler. MPI_Errhandler_set Set error handler for commu...
	MPI_Errhandler_get Get error handler from communicator. MPI_Errhandler_free Release custom error ...
	Miscellaneous MPI Features

