IINHEC

Mixed Mode MPI / OpenMP Programming

L.A. Smith
Edinburgh Parallel Computing Centre, Edinburgh, EH9 3)Z

1 Introduction

Shared memory architectures are gradually becoming more prominent in the HPC market, as
advances in technology have allowed larger numbers of CPUs to have access to a single memory
space. In addition, manufacturers are increasingly clustering these SMP systems together to go
beyond the limits of a single system. As clustered SMPs become more prominent, it becomes
more important for applications to be portable and efficient on these systems.

Message passing codes written in MPI are obviously portable and should transfer easily to clus-
tered SMP systems. Whilst message passing is required to communicate between boxes, it is
not immediately clear that this is the most efficient parallelisation technique within an SMP box.
In theory a shared memory model such as OpenMP should offer a more efficient parallelisation
strategy within an SMP box. Hence a combination of shared memory and message passing par-
allelisation paradigms within the same application (mixed mode programming) may provide a
more efficient parallelisation strategy than pure MPI.

Whilst mixed mode codes may involve other programming languages such as High Performance
Fortran (HPF) and POSIX threads, this report will focus on mixed MPI and OpenMP codes. This
is because these are likely to represent the most widespread use of mixed mode programming
on SMP clusters due to their portability and the fact that they represent industry standards for
distributed and shared memory systems respectively.

Whilst SMP clusters offer the greatest reason for developing a mixed mode code, both the OpenMP
and MPI paradigms have different advantages and disadvantages and by developing such a
model these characteristics might even be exploited to give the best performance on a single SMP
systems.

This technology watch report will discuss the benefits of developing mixed mode MPI / OpenMP
applications on both single and clustered SMPs. Section 2 briefly describes SMP and SMP cluster
architectures whilst section 3 provides a comparison of the different characteristics of the OpenMP
and MPI paradigms. Section 4 discusses the implementation of mixed mode applications and sec-
tion 5 describes a number of situations where mixed mode programming is potentially beneficial.
Section 6 contains a short case study, describing the implementation of a mixed mode applica-
tion and comparing and contrasting the performance of the code with pure MPI and OpenMP
versions. Section 7 describes a real mixed mode application code and section 8 describes related
work on mixed mode programming.

2 Single and clustered SMP architectures

As mentioned above, there are a number of possible benefits to writing a mixed mode code,
whether the architecture be an SMP or an SMP cluster. In this section we describe briefly the
nature of these architectures.

2.1 Shared memory (SMP) systems

Shared Memory architectures involve a number of processors sharing a global memory space.
This will eventually constrain the scalability of the system because memory access becomes a
severe bottleneck as the number of processors is increased. Figure 1 shows a schematic represen-
tation of a shared memory system.

MEMORY

.=

BUS

P.E. P.E. P.E. P.E. P.E. P.E. P.E. P.E.

Figure 1: Schematic representation of a shared memory system.

2.2 Clustered SMP systems

Clustered SMP systems can be described as a hybrid of shared memory and distributed memory
systems. The cluster consists of a number of SMP nodes each containing a number of processors
sharing a global memory space. Nodes can communicate with each other over some form of fast
interconnection network. Figure 2 shows a schematic representation of a clustered SMP system.

Some systems have hardware and software support that will allows each processor direct access
to a remote node’s memory, giving a single address space across the entire system (e.g. the Origin
2000). However, most of the latest SMP clusters require explicit message passing to carry out
communication between nodes.

In theory a mixed mode code, with the MPI parallelisation occurring across the SMP boxes and
OpenMP parallelisation within the boxes, should be more efficient on an SMP cluster as the model
matches the architecture more closely than a pure MPI model.

MEMORY MEMORY MEMORY

‘ BUS ‘ ‘ BUS ‘ ‘ BUS ‘

Figure 2: Schematic representation of a clustered SMP system.

3 Programming model characteristics

As mentioned previously, as well as being potentially more effective on an SMP cluster, mixed
mode programming may be of use on a single SMP, allowing the advantages of both models
to be exploited. Before discussing the potential benefits of mixed mode programming we shall
first consider the advantages and disadvantages of the individual MPI and OpenMP paradigms.
Hence in this section we give a brief description of the characteristics of these paradigms and then
describe their advantages and disadvantages.

A number of talks and presentations have been given on comparing OpenMP and MPI and on
mixed mode programming styles. For further information see references [1, 2, 3, 4, 5, 6, 7].

3.1 MPI

The message passing programming model is a distributed memory model with explicit control
parallelism. This uses an SPMD model. Processes are only able to read and write to their re-
spective local memory. Data is copied across local memories by using the appropriate subroutine
calls. The message passing interface (MPI) standard [8] defines a set of functions and procedures
that implements the message passing model.

Characteristics:

1. MPI codes will run on both distributed and shared memory architectures.

2. Portable. Generic MPI implementations have been ported to almost all systems including
Unix and NT.

Particularly adaptable to course grain parallelism.
A large number of vendor optimised MPI libraries exist.

Each process has its own local memory.

o ok~ w

Data is copied between local memories via messages which are sent and received via explicit
subroutine calls.

Table 1 gives the advantages and disadvantages of MPI.

Advantages

Disadvantages

MPI allows static task scheduling.

Decomposition, development and
debugging of applications can be
a considerable overhead.

MPI involves explicit parallelism, which
often provides a better performance.

Communications can often create a large
overhead, which needs to be minimised.

A number of optimised collective
communication routines are available
for optimal efficiency.

The granularity often has to be large,
fine grain granularity can create
a large quantity of communications.

In principle, communications and
computation can be overlapped.

Global operations can be very expensive.

Data placement problems are
rarely observed.

Significant changes to the code are
often required, making transfer between

the serial and parallel code difficult.
Dynamic load balancing is
often difficult.

Communications often cause synchronisation
naturally, reducing overheads.

Table 1: Table of advantages and disadvantages of MPI.

3.2 OpenMP

OpenMP is an industry standard [9] for shared memory programming. Based on a combination
of compiler directives, library routines and environment variables it is used to specify parallelism
on shared memory machines. Directives are added to the code to tell the compiler of the presence
of a region to be executed in parallel, together with some instructions as to how the region is to
be parallelised. This uses a fork-join model.

Characteristics:

1. OpenMP codes will only run on shared memory machines.

Fairly portable.

Permits both course grain and fine grain parallelism.

Uses directives which help the compiler parallelise the code.

Each thread sees the same global memory, but has its own private memory.

Implicit messaging.

N o o ~ w Db

High level of abstraction (higher than MPI).

Table 2 gives the advantages and disadvantages of OpenMP.

3.3 Mixed mode programming

By utilising a mixed mode programming model we should be able to take advantage of the bene-
fits of both models. For example a mixed mode program may allow us to make use of the explicit
control data placement policies of MPI with the finer grain parallelism of OpenMP. The majority
of mixed mode applications involve a hierarchical model, MPI parallelisation occurring at the
top level, and OpenMP parallelisation occurring below For example, Figure 3 shows a 2D grid

Advantages |

Disadvantages

OpenMP applications are relatively The placement policy of data
easy to implement. often causes problems.
OpenMP makes better use of the Overheads can become
shared memory architecture. an issue when the size of the
parallel loop is too small.
OpenMP allows run time scheduling. Course grain parallelism often

requires a parallelisation strategy
similar to an MPI strategy, making the
implementation more complicated.

Both fine and course grain parallelism Threads are executed in a
are effective. non-deterministic order.
Transferring from the serial code to the Explicit synchronisation is required.

parallel code and visa versa is relatively
easy - no significant code changes are required.

Table 2: Table of advantages and disadvantages of OpenMP.

which has been divided geometrically between four MPI processes. These sub-arrays have then
been further divided between three OpenMP threads. This model closely maps to the architec-
ture of an SMP cluster, the MPI parallelisation occurring between the SMP boxes and the OpenMP
parallelisation within the boxes.

This technology watch report primarily focuses on this type of mixed model model. However a
number of authors have described non hierarchical models (see section 8). For example, message
passing could be used within a code when this is relatively simple to implement and shared
memory parallelism used where message passing is difficult [10].

4 Implementing a mixed mode application

Figure 4 shows a simple mixed mode Hello World code, to demonstrate how a mixed mode
code is implemented. MPI is initialised and finalised in the usual way, using the MPLINIT and
MPI_FINALIZE calls. An OpenMP PARALLEL region occurs between these calls, spawning a
number of threads on each process. If, for example the code was run using four MPI processes
and three OpenMP threads the flow of execution in Figure 5 would be observed.

Although a large number of MPI implementations are thread-safe, this cannot be guaranteed. To
ensure the code is portable all MPI calls should be made within thread sequential regions of the
code. This often creates little problem as the majority of codes involve the OpenMP parallelisation
occurring beneath the MPI parallelisation and hence the majority of MPI calls occur outside the
OpenMP parallel regions. When MPI calls occur within an OpenMP parallel region the calls
should be placed inside a CRITICAL, MASTER or SINGLE region, depending on the nature of
the code. Care should be taken with SINGLE regions, as different threads can execute the code.

Ideally, the number of threads should be set from within each MPI process using
omp_set_num_threads(n) as this is more portable than the OMP_NUM_THREADS environment
variable. Although the two models are mixed within the code, the experience of this author [15]
and others [3] suggests debugging and performance optimisation is most effectively carried out
by treating the MPI and OpenMP separately.

When writing a mixed mode application it is important to consider how each paradigm carries out

‘ MPI
process 0 process 1 process 2 process 3
N AN N N
threed 0 | threed 0 | thread 0 | thread 0 |
thread 1 | thread 1 | thread 1 | thread 1 |
thread 2 thread 2 thread 2 thread 2

Figure 3: Schematic representation of a hierarchical mixed mode programming model for a 2D

array.

program mixed
implicit none
include 'mpif.h’
integer ierror, rank

integer OMP_GET_THREAD_NUM, thread

call MPL_INIT (ierror)
call MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierror)

ISOMP PARALLEL

write(*,*) 'hello world’, rank, OMP_GET_THREAD_NUM()
ISOMP END PARALLEL

call MPI_FINALIZE (ierror)

end

Figure 4: A simple mixed mode Hello World code.

MPI_Init

I$OMP PARALLEL

I$OMP END PARALLEL

MPI_Finadlize Y

Figure 5: The flow of execution of a simple mixed mode Hello World code when run with four

MPI processes and three OpenMP threads.

parallelisation, and whether combining the two mechanisms provides an optimal parallelisation
strategy. For example, a two dimensional grid problem may involve an MPI decomposition in one
dimension and an OpenMP decomposition in one dimension. As two dimensional decomposition
strategies are often more efficient than a one dimensional strategy it is important to ensure that
both decompositions occur in different dimensions.

5 Benefits of mixed mode programming

This section discusses various situations where a mixed mode code may be more efficient than a
corresponding MPI implementation, whether on an SMP cluster or single SMP system.

5.1 Codes which scale poorly with MPI

One of the largest areas of potential benefit from mixed mode programming is with codes which
scale poorly with increasing MPI processes. If for example the corresponding OpenMP version
scales well then an improvement in performance may be expected for a mixed mode code. If
however the equivalent OpenMP implementation scales poorly, it is important to consider the
reasons behind the poor scaling and whether these reasons are different for the OpenMP and
MPI implementations. If both versions scale poorly for different reasons, for example the MPI
implementation involves too many communications and the OpenMP version suffers from cache
misses due to data placement problems, then a mixed version may allow the code to scale to a
larger number of processors before either of these problems become apparent. If however both
the MPI and OpenMP codes scale poorly for the same reason, developing a mixed mode version

of the algorithms may be of little use.

5.1.1 Load balance problems

To run on a clustered SMP system we could simple use a pure MPI implementation to communi-
cate between SMP boxes. However a number of applications do not scale well with MPI process.
These are often applications which involve difficult load balance problems. For example irregu-
lar applications such as adaptive mesh refinement codes suffer from load balance problems when
parallelised using MPI. By developing a mixed mode code for a clustered SMP system, MPI need
only be used for communication between nodes creating a courser grain granularity problem.
The OpenMP implementation does not suffer from load imbalance and hence the performance of
the code would be improved [11].

5.1.2 Fine grain parallelism problems

OpenMP generally gives better performance on fine grain problems, where an MPI application
may become communication dominated. Hence when an application requires good scaling with
a fine grain level of parallelism a mixed mode program may be more efficient. Obviously a pure
OpenMP implementation would give better performance still, however on SMP clusters MPI
parallelism is still required for communication between nodes. By reducing the number of MPI
processes required the scaling of the code should be improved.

For example, Henty et al [14] have developed an MPI version of a discrete element model (DEM)
code using a domain decomposition strategy and a block-cyclic distribution. In order to load bal-
ance certain problems a fine granularity is required, however this results in an increase in parallel
overheads. The equivalent OpenMP implementation involves a simple block distribution of the
force loop, which effectively makes the calculation load balanced. In theory therefore, the per-
formance of a pure MPI implementation should be poorer than a pure OpenMP implementation
for these fine granularity situations. A mixed mode code could, with MPI between the nodes
and OpenMP within each node provides a better performance, as load balance would only be an
issue between SMPs which may be achieved with courser granularity. This specific example is
more complicated with other factors affecting the OpenMP scaling. See reference [14] for further
details.

5.2 Replicated data

Codes written using a replicated data strategy often suffer from memory limitations and from
poor scaling due to global communications. By using a mixed mode programming style on an
SMP cluster, with the MPI parallelisation occurring across the nodes and the OpenMP parallelisa-
tion inside the nodes, the problem will be limited to the memory of an SMP node rather than the
memory of a processor (or to be accurate the memory of an SMP node divided by the number of
processors), as is the case for a pure MPI implementation. This has obvious advantages, allowing
more realistic problem sizes to be studied.

5.3 Ease of implementation

Implementing an OpenMP application is almost always regarded as simpler and quicker than
implementing an MPI application. Based on this the overhead in creating a mixed mode code over
an MPI code is relatively small. In general no significant advantage in implementation time can be
gained by writing a mixed mode code over an MPI code, as the MPI implementation still requires
writing. There are however exceptions where this is not the case. In a number of situations it is
more efficient to carry out a parallel decomposition in multiple dimensions rather than in one, as
the ratio of computation to communication increases with increasing dimension. It is however
simpler to carry out a one dimensional parallel decomposition rather than a three dimensional
decomposition using MPI. By writing a mixed mode version, the code would not need to scale
well to as many MPI processes, as some MPI processes would be replaced by OpenMP threads.
Hence, in some cases writing a mixed mode program may be easier than writing a pure MPI
application, as the MPI implementation could be simpler and less scalable.

5.4 Restricted MPI process applications

A number of MPI applications require a specific number of processes to run. For example one
code which uses a time dependent quantum approach to scattering processes distributes the work
by assigning the tasks propagating the wavepacket at different vibrational and rotational num-
bers to different processes [16]. Whilst a natural and efficient implementation, this limits the
number of MPI processes to certain combinations. In addition, a large number of codes only scale
to the power of 2, again limiting the number of processors. This can create a problem in two
ways. Firstly the number of processes required may not equal the machine size, either being too
large, making running impossible, or more commonly too small and hence making the utilisation
of the machine inefficient. In addition, a number of MPP services only allow jobs of certain sizes
to be run in an attempt to maximise the resource usage of the system. If the restricted number
of processors does not match the size of one of the batch queues this can create real problems for
running the code. By developing a mixed mode MP1/0OpenMP code the natural MPI decompo-
sition strategy can be used, running the desired humber of MPI processes, and OpenMP threads
used to further distribute the work between threads allowing all the available processes to be
used effectively.

5.5 Poorly optimised intra-node MPI

Although a number of vendors have spent considerable amounts of time optimising their MPI
implementations within a shared memory architecture, this may not always be the case. On a
clustered SMP system, if the MPI implementation has not been optimised, the performance of a
pure MPI application across the system may be poorer than a mixed MPI / OpenMP code. This
is obviously vendor specific, however in certain cases a mixed mode code could offer significant
performance improvement, e.g. a Beowulf system.

5.6 Poor scaling of the MPI implementation

Clustered SMPs open the way for systems to be built with ever increasing numbers of processors.
In certain situations the scaling of the MPI implementation may not match these ever increas-
ing processor numbers or may indeed be restricted to a certain maximum number [13]. In this

situation developing a mixed mode code may be of benefit (or required), as the number of MPI
processes needed will be reduced and replaced with OpenMP threads.

5.7 Computational power balancing

A technique developed by D. Tafti and W. Huang [11, 12], computational power balancing dy-
namically adjusts the number of processors working on a particular calculation. The application
is written as a mixed mode code with the OpenMP directives embedded under the MPI processes.
Initially the work is distributed between the MPI processes, however when the load on a proces-
sor doubles the code uses the OpenMP directives to spawn a new thread on another processor.
Hence when an MPI process becomes overloaded the work can be redistributed. Tafti et al have
used this technique with irregular applications such as adaptive mesh refinement (AMR) codes
which suffer from load balance problems. When load imbalance occurs for an MPI application
either repartition of the mesh, or mesh migration is used to improve the load balance. This is
often time consuming and costly. By using computational power balancing these procedures can
be avoided.

The advantages of this technique are limited by the operating policy of the system. Most systems
allocate a fixed number of processors for one job and do not allow applications to grab more
processors during execution. This is to ensure the most effective utilisation of the system by
multiple users and it is difficult to see these policies changing. The exception is obviously free for
all SMPs which would accommodate such a model.

6 Case study

Having discussed the possible benefits of writing a mixed mode application, this section looks at
an example code which is implemented in OpenMP, MPI and as a mixed MP1/OpenMP code.

6.1 The code

The code used here is a Game of Life code, a simple grid-based problem which demonstrates
complex behaviour. It is a cellular automaton where the world is a 2D grid of cells which have
two states, alive or dead. At each iteration the new state of the cell is determined entirely by the
state of its eight nearest neighbours at the previous iteration. Figure 6 shows the game of life cell
and its neighbours.

The basic structure of the code is:

1. Initialise the 2D cell.
Carry out boundary swaps (for periodic boundary conditions).

Loop over the 2D grid, to determine the number of alive neighbours.

> v

Up-date the 2D grid, based on the number of alive neighbours and calculate the number of
alive cells.

5. Iterate steps 2—4 for the required number of iterations.

10

Figure 6: A game of life cell and its nearest neighbours.

6. Write out the final 2D grid.

The majority of the computational time is spent carrying out steps 2—4.

6.2 Parallelisation

The aim of developing a mixed mode MPI /OpenMP code is to attempt to gain a performance
improvement over a pure MPI code, allowing for the most efficient use of a cluster of SMPs. In
general, this will only be achieved if a pure OpenMP version of the code gives better performance
on an SMP system than a pure MPI version of the code (see Section 5.1). Hence a number of pure
OpenMP and MPI versions of the code have been developed and their performance compared.

6.2.1 MPI parallelisation

The MPI implementation involves a domain decomposition strategy. The 2D grid of cells is di-
vided between each process, each process being responsible for updating the elements of its sec-
tion of the array. Before the states of neighbouring cells can be determined copies of edge data
must be swapped between neighbouring processors. Hence halo-swaps are carried out for each
iteration. On completion, all the data is sent to the master process, which writes out the data.
This implementation involves a number of MPI calls to create virtual topologies and derived data
types, and to determine and send data to neighbouring processes. This has resulted in consider-
able code modification, with around 100 extra lines of code.

6.2.2 OpenMP parallelisation

The most natural OpenMP parallelisation strategy is to place a number of PARALLEL DO direc-
tives around the computationally intense loops of the code and an OpenMP version of the code

1

has been implemented with PARALLEL DO directives around the outer loops of the three com-
putationally intense components of the iterative loop (steps 2-4). This has resulted in minimal
code changes, with only 15 extra lines of code.

The code has also been written using an SPMD model and the same domain decomposition strat-
egy as the MPI code to provide a more direct comparison. The code is placed within a PARALLEL
region. An extra index has been added to the main array of cells, based on the thread number.
This array is shared and each thread is responsible for updating its own section of the array
based on the thread index. Halo swaps are carried out between different sections of the array.
Synchronisation is only required between nearest neighbour threads and, rather than force ex-
tra synchronisation between all threads using a BARRIER, a separate routine, using the FLUSH
directive, has been written to carry this out.

The primary difference between this code and the MPI code is in the way in which the halo swaps
are carried out. The MPI code carries out explicit message passing whilst the OpenMP code uses
direct reads and writes to memory.

6.3 Performance

The performance of the two OpenMP codes and the MPI code has been measured with two dif-
ferent array sizes. Table 3 shows the timings of the main loop of the code (steps 2-4) and Figures 7
and 8 show the scaling of the code on array sizes 100 x 100 and 700 x 700 respectively for 10000
iterations.

3
25 | /
2 .
o
?
D 15
(]
Q.
n
1 .
—— OpenMP (SPMD)
05 | —= MPI
' —+— OpenMP (Loop)
o T T T T T T T T
0 1 2 3 4 5 6 7 8 9

No of threads/processes

Figure 7: Scaling of the Game of Life code for array size 100.

These results show a small difference between the timing of the OpenMP loop based code and
the other codes on one processor. This is due to differences in compiler optimisation for the
three codes which proved difficult to eliminate. This however has not influenced the overall
conclusions of this section.

12

6 .
5 .
24
°©
[}
e
n 3
2 o
—— OpenMP (SPMD)
14 -=— MPI
—— OpenMP (Loop)
O T T T T T T T T

0 1 2 3 4 5 6 7 8 9
No of threads/processes

Figure 8: Scaling of the Game of Life code for array size 700.

array size 100 array size 700
OpenMP | MPI | OpenMP || OpenMP | MPI | OpenMP
(SPMD) (Loop) (SPMD) (Loop)
1 5.59 5.80 4.82 264.82 | 264.20 | 219.67
2 4.33 4.00 3.39 146.20 | 139.89 | 120.34
4 2.98 2.93 231 72.57 71.38 64.20
6 2.28 3.02 1.98 52.23 51.33 45.22
8 2.09 3.35 1.97 44.53 46.21 37.64

Table 3: Timings of the main loop of the Game of Life codes with array sizes 100 x 100 and 700 x
700 for 10000 iterations.

13

Comparison of the two OpenMP codes with the MPIl implementation reveals a better performance
for the OpenMP codes on both problem sizes on eight processors. It is also clear from these results
that the performance difference is more extreme on the finer grain problem size. This observation
concurs with Sections 3.2 and 5.1 which suggest that OpenMP implementations perform more
effectively on fine grain problems. The SPMD OpenMP code gives the best overall speed-up, no
matter what the problem size.

The poorer scaling of the MPI code for both problem sizes is due to the communication involved
in the halo swaps, becoming more pronounced for the smaller problem size.

Both the SPMD OpenMP and MPI codes benefit from a minimum of synchronisation, which is
only required between nearest neighbour threads/processes for each iteration of the loop. The
loop based OpenMP implementation however involves synchronisation at the end of each PAR-
ALLEL DO region, forcing all the threads to synchronise three times within each iteration. The
poorer scaling of this code in comparison to the SPMD OpenMP code is due to this added syn-
chronisation.

These timing results demonstrate that both the OpenMP codes gives better performance than the
MPI code on both problem sizes. Hence developing a mixed mode MPI/OpenMP code may give
better performance than the pure MPI code, and would therefore be of benefit on an SMP cluster.

6.4 Mixed mode parallelisation and performance

Three mixed mode versions of the code have been developed. The simplest of these involves
a combination of the MPI domain decomposition parallelisation and the OpenMP loop based
parallelisation. The MPI domain decomposition is carried out as before with the 2D grid divided
between each process with each process responsible for updating the elements of its section of
the array. Halo-swaps are carried out for each iteration. In addition OpenMP PARALLEL DO
directives have been placed around the relevant loops, creating further parallelisation beneath the
MPI parallelisation. Hence the work is firstly distributed by dividing the 2D grid between the MPI
processes geometrically and then parallelised further using OpenMP loop based parallelisation.

The performance of this code has been measured and scaling curves determined for increasing
MPI processes and OpenMP threads. The results have again been measured with two different
array sizes. Table 4 shows the timings of the main loop of the code for 10000 iterations. Figure 9
shows the scaling of the code on array sizes 100 x 100 and 700 x 700.

It is clear that the scaling with OpenMP threads is similar to the scaling with MPI processes,
for the larger problem size. However when compared to the performance of the pure MPI code
the speed-up is very similar and no significant advantage has been obtained over the pure MPI
implementation.

The scaling is slightly better for the smaller problem size, again demonstrating OpenMP’s advan-
tage on finer grain problem sizes.

Further analysis reveals that the poor scaling of the code is due to the same reasons as the pure
MPI and OpenMP codes. The scaling with MPI processes is less than ideal due to the additional
time spent carrying out halo swaps and the scaling with OpenMP threads is reduced because of
the additional synchronisation creating a load balance issue.

In an attempt to improve the load balance and reduce the amount of synchronisation involved
the code has been modified. Rather than using OpenMP PARALLEL DO directives around the
two principal OpenMP loops (the loop to determine the number of neighbours and the loop to
up-date the board based on the number of neighbours) these have been placed within a parallel
region and the work divided between the threads in a geometric manner. Hence, in a similar

14

—— Threads (700)
-=— Processes (700)
——Threads (100)
—< Processes (100)

Speed-up

Figure 9: Scaling of the loop based OpenMP / MPI Game of Life code for array sizes 100 and 700.

3 4

5

6 7

No of threads/processes

Loop based mixed mode code

Threads | Processes | Threads | Processes
(700) (700) (100) (100)
1| 229.18 229.18 5.46 5.46
2| 121.59 121.77 3.92 3.76
4 66.21 62.25 3.01 2.70
6 47.91 45.58 2.66 2.94
8 39.87 39.21 2.65 3.19

2D mixed mode code

Threads | Processes | Threads | Processes
(700) (700) (100) (100)
1| 30241 302.41 5.22 5.22
2| 17243 161.79 3.92 3.58
4 92.69 81.77 3.86 2.52
6 68.76 59.32 3.52 2.80
8 58.51 50.00 3.56 3.09

SPMD mixed mode code

Threads | Processes | Threads | Processes
(700) (700) (100) (100)
1 251.84 251.84 5.25 5.25
2| 13542 133.18 3.79 3.59
4 68.22 68.92 2.00 2.61
6 48.37 49.87 1.59 2.73
8 39.63 43.11 1.60 3.19

Table 4: Timings of the main loop of the mixed mode Game of Life codes with array sizes 100 x

100 and 700 x 700 for 10000 iterations.

15

manner to the SPMD OpenMP implementation mentioned above, the 2D grid has been divided
between the threads in a geometric manner and each thread is responsible for its own section of
the 2D grid. The 2D arrays are still shared between the threads. This has had two effects: firstly
the amount of synchronisation has been reduced, as no synchronisation is required between each
of the two loops. Secondly, the parallelisation now occurs in two dimensions, whereas previously
parallelisation was in one (across the outer DO loops). This could have an effect on the load
balance if the problem is relatively small. Figure 10 shows the performance of this code, with
scaling curves determined for increasing MPI processes and OpenMP processes.

-
6 —— Threads (700)
-=— Processes (700)
5 | ——Threads (100)
—< Processes (100)
54
°©
[}
e
o 3
2 -
1 .
O T T T T T T T T
0 1 2 3 4 5 6 7 8 9

No of threads/processes

Figure 10: Scaling of the 2D OpenMP / MPI Game of Life code for array sizes 100 and 700.

This figure demonstrates that the scaling of the code with OpenMP threads has decreased, and
the scaling with MPI processes remained similar. Further analysis reveals that the poor scaling is
still in part due to the barrier synchronisation creating load imbalance. Although the number of
barriers has been decreased, synchronisation between all threads is still necessary before the MPI
halo swaps can occur for each iteration. When running with increasing MPI processes (and only
one OpenMP thread), synchronisation only occurs between nearest neighbour processes, and not
across the entire communicator. In addition, the 2D decomposition has had a detrimental effect
on the performance. This may be due to the increased number of cache lines which must be read
from remote processors.

In order to eliminate this extra communication, the code has been re-written so that the OpenMP
parallelisation no longer occurs underneath the MPI parallelisation.

The threads and processes have each been given a global identifier and divided into a global
2D topology. From this the nearest neighbour threads / processes have been determined and
the nearest neighbour (MPI) rank has been stored. The 2D grid has been divided geometrically
between the threads and processes based on the 2D topology. Halo swaps are carried out for
each iteration of the code. If a thread/process is sending to a neighbour located on the same MPI
processes (i.e. with the same rank), halo swaps are carried out using simple read and writes (as
with the pure OpenMP SPMD model). If, however, the nearest neighbour is located on a different
process, MPI send and receive calls are used to exchange the information. This has the effect of

16

allowing only nearest neighbour synchronisation to be carried out, no matter how many processes
or threads are available. Figure 11 shows a schematic of the halo swaps.

0 |<=| 4| +-=] 8 |==| 12

message
————— R RS SR bt SECEh = :
! : ! ! passing
T V T W -~ read / write
- =1 | 2 == 6 |+ |10 |==| 14| | =---- =
- =1 | 3 |==| 7 doond ~ |11 |<=| 15 - =

process = 1

Figure 11: Halo swaps within the mixed SPMD OpenMP / MPI code.

This does however highlight another issue. Section 4 mentioned that a thread-safe MPI imple-
mentation cannot be guaranteed, and MPI calls should be carried out within thread serial regions
of the code. This is still the case, however the SUN MPI 4.0 implementation being utilised has a
thread safe MPI implementation and therefore allows this procedure to be carried out. Although
this makes the code less portable, it allows the demonstration of the performance improvement
gained by using OpenMP and MPI at the same level.

The performance of this code has been measured and scaling curves determined for increasing
MPI processes and OpenMP processes. The results have again been measured with two different
array sizes. Figure 12 shows the scaling of the code on array sizes 100 x 100 and 700 x 700
respectively.

The scaling of the code with increasing OpenMP threads is greater than the scaling of the code
with MPI processes. In this situation the amount of synchronisation required is the same for MPI
processes as it is for OpenMP threads, i.e. only nearest neighbour. Hence the difference is only
with the halo swaps, thread to thread halo swaps involving simple read and writes, whilst process
to process halo swaps involving explicit message passing. Timing runs for various combinations
of threads and processes, using the same total number of processors, demonstrate that as the
number of threads increases and the number of processes decreases the time decreases linearly.

The aim of developing a mixed mode MPI /7OpenMP code was to attempt to gain a performance
improvement over a pure MPI code, allowing for the most efficient use of a cluster of SMPs.
Comparison of this mixed code with the pure MPI implementation reveals a performance im-
provement has been obtained: the overall timings have reduced and the scaling of the code with
increasing thread number is better.

17

6 | |——Threads (700)
-=— Processes (700)
——Threads (100)
51 |>Processes (100)
4]
e]
[}
a
» 3
2 .
1 .
O T T T T T T T T
0 1 2 3 4 5 6 7 8 9

No of threads/processes
Figure 12: Scaling of the mixed SPMD OpenMP / MPI Game of Life code for array sizes 100 and

700.

6.5 Summary

This case study has highlighted a number of interesting points. Firstly, the OpenMP code per-
forms better on finer grain problem sizes and therefore offers the potential for mixed MPI /
OpenMP codes to give a better performance over a pure MPI implementation on these problems.

Secondly, even when a pure OpenMP implementation gives better performance over a pure MPI
implementation, this does not always mean that a mixed MPI / OpenMP code will give better
performance than a pure MPI implementation. For example, by implementing the mixed mode
code with the MPI parallelisation above the OpenMP parallelisation, as is often the recommended
case due to the lack of a guaranteed thread-safe MPI implementation, extra synchronisation is
often introduced, which can reduce the performance.

Finally, for this particular example the mixed code needed to be written with MPI and OpenMP
at the same level, rather than using the more common hierarchical model. This creates issues with
portability, relying on a thread-safe MPI implementation, and adds to the code complexity, but
increases performance.

7 Real applications

In this section we will look at the performance of a mixed mode implementation of a real ap-
plication code. This application is a mixed mode Quantum Monte-Carlo code [15]. The origi-
nal parallel MPI version of the QMC code was developed by the Electronic Structure of Solids
HPCI consortium in collaboration with EPCC. This code has been highly successful, and has re-
sulted in numerous publications based on results generated on the National Cray MPP systems

18

(e.g.[17, 18, 19]). Interest in developing a mixed MPI / OpenMP version of the code has recently
increased with the advent of clustered SMP systems. Hence the code has been re-written to allow
for an arbitrary mix of OpenMP and MPI parallelism. In this section we will briefly discuss the
various issues which arose during the parallelisation and compare and contrast the performance
with the original MPI version. Further details were presented at EWOMP99 and can be obtained
from the paper [15].

7.1 The code

The ability to study and predict theoretically the electronic properties of atoms, molecules and
solids has brought about a deeper understanding of the nature and properties of real materials.
The methodology used here is based on Quantum Monte Carlo (QMC) techniques, which pro-
vide an accurate description of the many-body physics which is so important in most systems.
The code carries out diffusion Monte Carlo (DMC) calculations. These calculations are computa-
tionally intensive and require high performance computing facilities to be able to study realistic
systems. These calculations involve a stochastic simulation where the configuration space is sam-
pled by many points, each of which undergoes a random walk.

The basic structure of the DMC algorithm is:

1. Initialise an ensemble of walkers distributed with an arbitrary probability distribution.

2. Update each walker in the ensemble.
For each electron in the walker:

(a) Move the electron.

(b) Calculate the local energy for the new walker position and other observables of interest.
(c) Calculate the new weight for this walker.

(d) Accumulate the local energy contribution for this walker.

(e) Breed new walkers or kill the walker based on the energy.

3. Once all walkers in the current generation have been updated, evaluate the new generation
averages.

4. After N generations (a block), calculate the new averages.

5. Iterate steps 2-4 until equilibrium is reached; then reset all cumulative averages and iterate
steps 2-4 until the variance in the average is as small as required.

7.2 MPI parallelisation

A master-slave model is used where the master delegates work to the other processors. The mas-
ter processor sends work to the slave processors who complete the required work and return the
results back to the master. The master processor divides the ensemble of configurations amongst
the slaves. Each of the slaves evaluates various quantities dependent on its subset of configu-
rations. These are returned to the master which determines new values of the parameters. The
procedure is repeated until convergence.

DMC calculations involve the creation and annihilation of electron configurations depending on
global properties of the ensemble configurations. Before each block, or set of iterations, each pro-
cessor is assigned the same fixed number of electron configurations. After each block, however,

19

the number of electron configurations on each processor may change. To avoid poor load balanc-
ing, the electron configurations are redistributed between the processors after each block. This
involves a number of all-to-one communications and several point-to-point send operations.

7.3 Mixed mode parallelisation

The majority of the execution time is spent within the principal DMC loop, i.e. the loop over elec-
tron configurations carried out within each block. Compiler directives have been placed around
this loop allowing the work to be distributed between the threads. The principal storage arrays
are recomputed before the loop over electron configurations. Although considerably less time
consuming than the principle loop, this loop has an effect on the code scaling and has also been
parallelised.

At the start of each block, electron configurations are distributed evenly between the MPI pro-
cesses. The work is then further distributed by the OpenMP directives, resulting in each of the
loops being executed in parallel between the OpenMP threads. Hence in general the OpenMP
loop parallelisation occurs beneath the MPI parallelisation.

7.4 Discussion

Within the loop two principle shared arrays are present. At the start of the loop, sections of these
arrays, based on the loop index, are copied to temporary private arrays. On completion these
arrays are copied back to the principle shared arrays. As the number of electron configurations,
and hence the size of the temporary arrays, changes with each iteration, an ORDERED statement
is required to ensure the arrays are copied back in the same order as the sequential version of the
code. This is a potential source of poor scaling, but was unavoidable due to the dynamic nature
of the algorithm.

No major performance or implementation problems were encountered with mixing MPI and
OpenMP, and results were reproducible with a range of numbers of OpenMP threads and MPI
processes. As mentioned before, to ensure that the code is portable to systems without thread-
safe MPI implementations, MPI calls are only made from within serial regions of the code. In
general the OpenMP loop parallelisation occurs beneath the MPI parallelisation. There were two
exceptions to this. Firstly a number of calls to MPI_.WTIME occur within the OpenMP loops,
these have been modified to only allow the master thread to call them. Secondly, within the first
OpenMP loop a humber of MPI_LBCASTs are carried out. In the original MPI code, a number of
dynamically allocatable arrays are declared within a module. These are allocated the first time the
routine is called, then written to once on the master process. The master processes then broadcasts
the values to all the other processes. In the threaded code, OpenMP makes these arrays shared
by default, however as they are written to within a parallel region they require to be private.
Hence they have been returned to statically allocated arrays and placed in THREADPRIVATE
COMMON blocks. All the private thread copies are then written to on the master processes. The
MPI_BCASTS have been placed inside a CRITICAL section, to cause the MPI calls to only occur
within a serial region while ensuring every thread on every process has a copy of the data.

7.5 Results

The code has been run on an SGI Origin 2000 with 300MHz R12000 processors, with exclusive
access. Timing runs have been taken for a combination of OpenMP threads and MPI processes,

20

to give a total of 96. Table 5 reports these timings and Figure 13 shows the scaling of the code
with OpenMP thread number (with one MPI process) and with MPI process number (with one
OpenMP thread).

Processes x | Loop over | Processes x | Loop over
Threads Blocks Threads Blocks
1x1 965.64 1x1 965.64
1x4 243.52 4x1 241.40
1x8 123.25 8x1 120.30
1x16 61.98 16 x1 60.13
1x32 31.54 32x1 30.93
1x 64 17.17 64 x 1 15.69
1 x 96 14.65 9% x 1 11.04
1x96 14.65 12x 8 11.04
2 x 48 11.11 24 x 4 11.04
4 x 24 11.05 48 x 2 11.04
8 x 12 11.04 9% x 1 11.04

Table 5: Execution time (seconds) for various combinations of OpenMP threads and MPI pro-
cesses on the SGI Origin 2000. Loop times are average loop times, averaged over 20 iterations for
960 electron configurations.

120

100 A

80

‘E} ——OpenMP
§ 60 1 —=—MPI
& — ideal

40 -

20 A

0 T T T T
0 20 40 60 80 100 120

No of Processses/Threads

Figure 13: Speed-up vs OpenMP thread /7 MPI process number on the SGI Origin 2000

For this particular example the code scales well with increasing MPI process number to 96 proces-
sors. The results also demonstrate that the scaling of the code with OpenMP threads is reasonable
to 32 processors and only slightly lower than with MPI processes. Above 32 processors the scaling
is worse than with MPI processes, tailing off considerably above 64 threads. Table 5 shows the
execution time for the code for different thread/process combinations. This demonstrates that,
with the exception of the 1 process x 96 threads combination, comparable results are obtained for
various MPI process and OpenMP thread number.

Although the code scales well with increasing MPI process number, the scaling is not ideal. This

21

is due to the redistribution of electron configurations between processors after each block, which
involves a number of all-to-one communications and several point-to-point send operations. For
example, on 96 MPI processes the redistribution of electron configurations requires 0.92s, account-
ing for around 8 percent of the total loop iteration time. The equivalent example on 96 OpenMP
threads requires no redistribution. One possible reason for the poorer scaling of the code with
OpenMP threads is the architecture of the Origin 2000. This has a cc-NUMA architecture with
physically distributed memory and data will be stored on the node that initialised it. This has the
potential to create a bottleneck, with all data accesses being satisfied by one hub, hence limiting
the memory bandwidth. To address this problem, the data placement policy was changed to use
a round-robin allocation, where data is allocated in a round-robin fashion between processors.
This however had no effect on the scaling.

A further source of poor scaling is due to MPI calls made from within serial regions of the code.
To ensure the code is portable to systems without thread-safe MPI implementations, MPI calls are
only made from within serial regions of the code. As mentioned earlier, in general the OpenMP
loop parallelisation occurs beneath the MPI parallelisation, with only a few exceptions. For these
exceptions, the MPI calls have been placed within a CRITICAL section, to cause the MPI calls to
only occur within a serial region while ensuring every thread on every process has a copy of the
data. This is a potential source of poor scaling. However, the majority of these calls only occur
during the first iteration of the OpenMP loop, and therefore have little effect on the performance
of the code. Finally, poor scaling may be a result of the ORDERED statement within the loop over
electron configurations which forces the code to be executed in the order in which iterations are
executed in a sequential execution of the loop. The more dramatic tailing off above 64 processors
is probably due to the ORDERED statement, which can seriously affect the performance on small
problem sizes. In this case the problem size on 96 processors is relatively small and only involves
10 electron configurations per thread.

7.6 Summary

An OpenMP version of a large QMC application code has been developed. The original version
of the code was written in MPI and the new version has been written to explicitly allow for an
arbitrary mix of OpenMP and MPI parallelism. The code scales well with OpenMP threads to
32 processors and only slightly lower than with MPI processes. Above 32 processors the scaling
is worse than with MPI processes, tailing off considerably above 64 threads. It is interesting to
note that some of the poor scaling has been attributed to the ORDERED statement, which has
effectively reduced any benefit from using OpenMP on a fine grain problem size.

8 Related work

Previous sections have already mentioned the work of D. Henty [14] and D. Tafti et al [11, 12],
who developed mixed mode MPI /OpenMP codes for a discrete element model (DEM) and for
an adaptive mesh refinement code respectively.

In addition Lanucara et al [20] have developed mixed OpenMP / MPI versions of two Conjugate-
Gradients algorithms and compared their performance to pure MPI implementations.

The DoD High Performance Computing Modernisation Program (HPCMP) Waterways Exper-
iment Station (WES) have developed a mixed mode OpenMP / MPI version of the CGWAVE
code [21]. This code is used by the Navy for forecasting and analysis of harbour conditions. The
wave components are the parameter space and each wave component creates a separate partial

22

differential equation that is solved on the same finite element grid. MPI is used to distribute the
wave components using a simple boss-worker strategy resulting in a course grain parallelism.
Each wave component results in a large sparse linear system of equations that is parallelised us-
ing OpenMP. The development of mixed mode code has allowed these simulations to be carried
out on a grid of computers, in this case on two different computers at different locations simulta-
neously. This mixed mode code has been very successful and won the “most effective engineering
methodology” award at SC98.

Bova et al [22] have developed mixed mode versions of five separate codes. These are the CG-
WAVE code mentioned above, the ab initio quantum chemistry package GAMESS, a Linear al-
gebra study, a thin-layer Navier-Stokex solver (TLNS3D) and the seismic processing benchmark
SPECseis96. Each model was developed for different reasons however most used multiple lev-
els of parallelism, with distributed memory programming for the coarser grain parallelism and
shared memory programming for the finer-grained.

9 Conclusions

With the increasing prominence of clustered SMPs in the HPC market, the importance of writing
the most efficient and portable applications for these systems grows. Whilst message passing is
required between nodes, OpenMP offers an efficient, and often considerably easier, parallelisation
strategy within an SMP node. Hence a mixed mode programming model may provide the most
effective strategy for an SMP cluster. In addition, a mixed mode MPI / OpenMP code has the
potential to exploit the different characteristics of both paradigms to give the best performance
on a single SMP.

It has however become clear that this style of programming will not always be the most effec-
tive mechanism on SMP systems and cannot be regarded as the ideal programming model for
all codes. In practice, serious consideration must be given to the nature of the codes before em-
barking on a mixed mode implementation. In some situations however significant benefit may be
obtained from a mixed mode implementation. For example benefit may be obtained if the parallel
(MPI) code suffers from:

e poor scaling with MPI processes due to e.g. load imbalance or too fine a grain problem size;
o from memory limitations due to the use of a replicated data strategy;
e from a restriction on the number of MPI processes combinations.

In addition, if the system suffers from a poorly optimised or limited scaling MPI implementation
then a mixed mode code may increase the code performance.

References

[1] OpenMP en plus de MPI, Raphaél Couturier, Manifestations du Centre Charles Hermite, 1999.
http://cch.loria.fr/activites/manifestations/1999/
OpenMPMPI/sId001.htm

[2] MPI and OpenMP benchmarkers point of view, S. Andersson, T.J. Watson Research Center pre-
sentations, IBM 1999.

23

http://www.research.ibm.com/actc/Talks/StefanAndersson/
MPI_OpenMP/mpil.htm

[3] OpenMP programming with KAP/Pro toolset (Part 2), B. Magro, Kuck and Associates, Inc..
http://www.research.ibm.com/actc/Talks/KAl/Part1/sld001.htm

[4] Blended programming: MPI and OpenMP, Charles Grassel, T.J. Watson Research Center presen-
tations, IBM 1999.
http://www.research.ibm.com/actc/Talks/CharlesGrassl/
Blended/index.htm

[5] Mixed-mode programming, D. Klepacki, T.J. Watson Research Center presentations, IBM 1999.
http://www.research.ibm.com/actc/Talks/DavidKlepacki/
MixedMode/index.htm

[6] Experiences with mixed MPI and threaded programming models, J.M. May and B.R. de Supinski,
Center for Applied Scientific Computing, presentation at the IBM Advanced Computing Tech-
nology Center SP Scientific Applications and Optimization Meeting at the San Diego Super-
computer Center, March 18, 1999.
http://www.lInl.gov/casc/mixed _models/pubs.html

[7]1 A comparison of OpenMP and MPI for the parallel CFD test case, M. Resch and Bjorn Sander,
proceedings of the 1St European Workshop on OpenMP, Lund, Sweden, 1999, pp71-75.

[8] MPI, MPI: A Message-Passing Interface standard. Message Passing Interface Forum, June
1995,
http://www.mpi-forum.org/

[9] OpenMP, The OpenMP ARB.
http://www.openmp.org/

[10] A performance comparison of Fortran 90 with MPI and OpenMP on the Origin 2000, J. Hoeflinger,
Centre for Simulation of Advanced Rockets.
http://polaris.cs.uiuc.edu/ ~hoefling/Talks/
MPIvsOMP/sld001.htm

[11] A parallel computing framework for dynamic power balancing in adaptive mesh refinement applica-
tions, W. Huang and D.K. Tafti, proceedings of Parallel Computational Fluid Dynamics 1999,
Wiiliamsburg, VA, May 23-26, 1999.
http://www.ncsa.uiuc.edu/SCD/Consulting/

Tips/Load _Balancing.html

[12] Computational power balancing, Help for the overloaded processor, D.K. Tafti.
http://access.ncsa.uiuc.edu/Features/LoadBalancing/

[13] Hybrid MPI1/OpenMP programming for the SDSC teraflop system, Scientific Computing at
NPACI (SCAN).
http://www.npaci.edu/online/v3.14/SCAN.html

[14] Performance of hybrid message-passing and shared-memory parallelism for Discrete Element Mod-
elling, D.S. Henty, EPCC, The University of Edinburgh, submitted to Supercomputing 2000.

[15] Development and performance of a mixed OpenMP/MPI Quantum Monte Carlo code, L.A. Smith
and P. Kent, accepted for publication in Concurrency: Practice and Experience.

[16] Parallelism and granularity in time dependent approaches to reactive scattering calculations, V. Pier-
marini, A. Lagana, G. G. Balint-Kurti, R. J. Allan.

[17] Finite-size errors in quantum many-body simulations of extended systems, P.R.C. Kent, R.Q. Hood,
A.J. Williamson, R.J. Needs, W.M.C Foulkes, G. Rajagopal, Phys. Rev. B 59, pp 1917-1929, 1999.

24

[18] A Quantum Monte Carlo approach to the adiabatic connection method, M. Nekovee, W.M.C.
Foulkes, A.J. Williamson, G. Rajagopal, R.J. Needs, Adv. Quantum Chem. 33, pp 189-207,
1999.

[19] Quantum Monte Carlo investigation of exchange and correlation in Silicon, R.Q. Hood, M.Y. Chou,
A.J. Williamson, G. Rajagopal, R.J. Needs, W.M.C Foulkes, Phys. Rev. Lett. 78, pp 3350-3353,
1997.

[20] Conjugate-Gradient algortihms: An MPI-OpenMP implementation on distributed shared memory
systems, P. Lanucara and S. Rovida, proceeding of the 1st European Workshop on OpenMP,
Lund, Sweden, 1999, pp76 - 78.

[21] Dual-level parallel analysis of Harbour Wave response using MP1 and OpenMP, DoD High Perfor-
mance Computing Modernisation Program (HPCMP) Waterways Experiment Station (WES).
http://www.wes.hpc.mil/news/SC98/HPCchallengeda.htm and
http://www.wes.hpc.mil/news/SC98/awardpres.pdf

[22] Combining message-passing and directives in parallel applications, S. Bova, C. Breshears, R. Eigen-
mann, H. Gabb, G. Gaertner, B. Kuhn, B. Magro, S. Salvini, SIAM News, V 32, No 9.

25

