OpenMP

OpenMP

Table of Contents

1. Introduction

1.
2.
3.

What is OpenM P?

History
Goals of OpenM P

2. OpenMP Programming Model

3. OpenMP Directives

1.

a s oDn

10.
11.

Fortran Directive Format
C/C++ Directive Format
Directive Scoping
PARALLEL Construct
Work-Sharing Constructs
1. DO/ for Directive
2. SECTIONS Directive
3. SINGLE Directive
Combined Parallel Work-Sharing Constructs
1. PARALLEL DO/ parallé for Directive
2. PARALLEL SECTIONS Directive
Synchronization Constructs
1. MASTER Directive
CRITICAL Directive
BARRIER Directive
ATOMIC Directive
FLUSH Directive
6. ORDERED Directive
THREADPRIVATE Directive
Data Scope Attribute Clauses
1. PRIVATE Clause
SHARED Clause
DEFAULT Clause
FIRSTPRIVATE Clause
LASTPRIVATE Clause
COPYIN Clause
. REDUCTION Clause
Clauses/ Directives Summary
Directive Binding and Nesting Rules

ok wDN

N oMW

4. Run-Time Library Routines

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (1 of 59) [2003-11-4 8:59:46]

http://www.llnl.gov/computing/tutorials/openMP/#Introduction
http://www.llnl.gov/computing/tutorials/openMP/#Introduction
http://www.llnl.gov/computing/tutorials/openMP/#History
http://www.llnl.gov/computing/tutorials/openMP/#Goals
http://www.llnl.gov/computing/tutorials/openMP/#ProgrammingModel
http://www.llnl.gov/computing/tutorials/openMP/#Directives
http://www.llnl.gov/computing/tutorials/openMP/#Directives
http://www.llnl.gov/computing/tutorials/openMP/#CFormat
http://www.llnl.gov/computing/tutorials/openMP/#Scoping
http://www.llnl.gov/computing/tutorials/openMP/#ParallelRegion
http://www.llnl.gov/computing/tutorials/openMP/#WorkSharing
http://www.llnl.gov/computing/tutorials/openMP/#DO
http://www.llnl.gov/computing/tutorials/openMP/#SECTIONS
http://www.llnl.gov/computing/tutorials/openMP/#SINGLE
http://www.llnl.gov/computing/tutorials/openMP/#Combined
http://www.llnl.gov/computing/tutorials/openMP/#PARALLELDO
http://www.llnl.gov/computing/tutorials/openMP/#PARALLELSECTIONS
http://www.llnl.gov/computing/tutorials/openMP/#Synchronization
http://www.llnl.gov/computing/tutorials/openMP/#MASTER
http://www.llnl.gov/computing/tutorials/openMP/#CRITICAL
http://www.llnl.gov/computing/tutorials/openMP/#BARRIER
http://www.llnl.gov/computing/tutorials/openMP/#ATOMIC
http://www.llnl.gov/computing/tutorials/openMP/#FLUSH
http://www.llnl.gov/computing/tutorials/openMP/#ORDERED
http://www.llnl.gov/computing/tutorials/openMP/#THREADPRIVATE
http://www.llnl.gov/computing/tutorials/openMP/#Clauses
http://www.llnl.gov/computing/tutorials/openMP/#PRIVATE
http://www.llnl.gov/computing/tutorials/openMP/#SHARED
http://www.llnl.gov/computing/tutorials/openMP/#DEFAULT
http://www.llnl.gov/computing/tutorials/openMP/#FIRSTPRIVATE
http://www.llnl.gov/computing/tutorials/openMP/#LASTPRIVATE
http://www.llnl.gov/computing/tutorials/openMP/#COPYIN
http://www.llnl.gov/computing/tutorials/openMP/#REDUCTION
http://www.llnl.gov/computing/tutorials/openMP/#ClausesDirectives
http://www.llnl.gov/computing/tutorials/openMP/#BindingNesting
http://www.llnl.gov/computing/tutorials/openMP/#RunTimeLibrary

OpenMP

OMP SET NUM THREADS
OMP GET NUM THREADS
OMP GET MAX THREADS
OMP GET THREAD NUM
OMP GET NUM PROCS
OMP IN PARALLEL
OMP SET DYNAMIC
OMP GET DYNAMIC
OMP _SET NESTED
OMP GET NESTED
. OMP_INIT LOCK
. OMP DESTROY LOCK
OMP SET LOCK
OMP UNSET LOCK

15. OMP TEST LOCK
5. Environment Variables
6. LLNL Specific Information and Recommendations
7. References and More Information
8. Exercise

Introduction ‘

What is OpenMP?

©ooNOOr®®DNPRE

=
©

[EY
[EN

=
N

=
w

=
H

= OpenMP Is:

. An Application Program Interface (API) that may be used to explicitly direct multi-threaded, shared memory
parallelism

. Comprised of three primary APl components:
s Compiler Directives
o Runtime Library Routines
o Environment Variables

. Portable:
1 The APl is specified for C/C++ and Fortran
o Multiple platforms have been implemented including most Unix platforms and Windows NT

. Standardized:

o Jointly defined and endorsed by a group of major computer hardware and software vendors
1 Expected to become an ANS| standard later

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (2 of 59) [2003-11-4 8:59:46]

http://www.llnl.gov/computing/tutorials/openMP/#OMP_SET_NUM_THREADS
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_NUM_THREADS
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_MAX_THREADS
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_THREAD_NUM
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_NUM_PROCS
http://www.llnl.gov/computing/tutorials/openMP/#OMP_IN_PARALLEL
http://www.llnl.gov/computing/tutorials/openMP/#OMP_SET_DYNAMIC
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_DYNAMIC
http://www.llnl.gov/computing/tutorials/openMP/#OMP_SET_NESTED
http://www.llnl.gov/computing/tutorials/openMP/#OMP_GET_NESTED
http://www.llnl.gov/computing/tutorials/openMP/#OMP_INIT_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#OMP_DESTROY_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#OMP_SET_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#OMP_UNSET_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#OMP_TEST_LOCK
http://www.llnl.gov/computing/tutorials/openMP/#EnvironmentVariables
http://www.llnl.gov/computing/tutorials/openMP/#LLNL
http://www.llnl.gov/computing/tutorials/openMP/#References
http://www.llnl.gov/computing/tutorials/openMP/exercise.html

OpenMP

. What does OpenMP stand for?
Open specifications for Multi Processing via collaborative work with interested parties from the
hardware and software industry, government and academia

- OpenMP Is Not:
. Meant for distributed memory parallel systems (by itself)
. Necessarily implemented identically by all vendors

. Guaranteed to make the most efficient use of shared memory (currently there are no datalocality constructs)

History
= Ancient History

. Intheearly 90's, vendors of shared-memory machines supplied similar, directive-based, Fortran programming
extensions:

o The user would augment a serial Fortran program with directives specifying which loops were to be
parallelized

o The compiler would be responsible for automatically parallelizing such loops across the SMP
Processors

. Implementations were all functionally similar, but were diverging (as usual)

. First attempt at a standard was the draft for ANSI X3H5 in 1994. It was never adopted, largely due to waning
interest as distributed memory machines became popular.

= Recent History

. The OpenMP standard specification started in the spring of 1997, taking over where ANSI X3H5 had left off,
as newer shared memory machine architectures started to become prevalent.

. Partnersin the OpenMP standard specification included:
(Disclaimer: all partner names derived from the OpenMP web site)

OpenMP Architecture Review Board (open to new members)

Compag / Digital

Hewl ett-Packard Company

Intel Corporation

International Business Machines (IBM)
Kuck & Associates, Inc. (KAI)

a a O O O

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (3 of 59) [2003-11-4 8:59:46]

http://www.openmp.org/

OpenMP

1 Silicon Graphics, Inc.
o Sun Microsystems, Inc.
1 U.S. Department of Energy ASCI program

Endorsing software vendors:

Absoft Corporation

Edinburgh Portable Compilers
GENIAS Software GmBH

Myrias Computer Technologies, Inc.
The Portland Group, Inc. (PGI)

O a O O O

Endorsing application developers:

ADINA R&D, Inc.

ANSYS, Inc.

Dash Associates

Fluent, Inc.

ILOG CPLEX Division

Livermore Software Technology Corporation (LSTC)
MECALOG SARL

Oxford Molecular Group PLC

The Numerical Algorithms Group Ltd.(NAG)

a O O O O a O O O

- Release History
. October 1997: Fortran version 1.0
. Late1998: C/C++ version 1.0
. June 2000: Fortran version 2.0

« April 2002: C/C++ version 2.0

OpenMP

. Visit the OpenM P website at http://www.openmp.org/ for more information, including APl specifications,
FAQ, presentations, discussions, media releases, calendar and membership application.

Goals of OpenMP

= Standardization:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (4 of 59) [2003-11-4 8:59:46]

http://www.openmp.org/

OpenMP
. Provide a standard among a variety of shared memory architectures/platforms

= Lean and Mean:

. Establish asimple and limited set of directives for programming shared memory machines. Significant
parallelism can be implemented by using just 3 or 4 directives.

- Ease of Use:

. Provide capability to incrementally parallelize a serial program, unlike message-passing libraries which
typically require an al or nothing approach

. Provide the capability to implement both coarse-grain and fine-grain parallelism
= Portability:
. Supports Fortran (77, 90, and 95), C, and C++

. Public forum for APl and membership

OpenMP Programming Model

= Thread Based Parallelism:

. A shared memory process can consist of multiple threads. OpenMP is based upon the existence of multiple
threads in the shared memory programming paradigm.

= Explicit Parallelism:

. OpenMP s an explicit (not automatic) programming model, offering the programmer full control over
parallelization.

- Fork - Join Model:

. OpenMP uses the fork-join model of parallel execution:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (5 of 59) [2003-11-4 8:59:46]

OpenMP

—

master
thread

=

{ parallel region } { parallel region }

. All OpenMP programs begin as a single process: the master thread. The master thread executes sequentially
until thefirst parallel region construct is encountered.

. FORK: the master thread then creates ateam of parallel threads

. The statementsin the program that are enclosed by the parallel region construct are then executed in parallel
among the various team threads

. JOIN: When the team threads compl ete the statementsin the parallel region construct, they synchronize and
terminate, leaving only the master thread

= Compiler Directive Based:

. Virtudly all of OpenMP parallelism is specified through the use of compiler directives which are imbedded in
C/C++ or Fortran source code.

= Nested Parallelism Support:
. The APl provides for the placement of parallel constructsinside of other parallel constructs.
 Implementations may or may not support this feature.

= Dynamic Threads:

. The API provides for dynamically altering the number of threads which may used to execute different parallel
regions.

« Implementations may or may not support this feature.

Example OpenMP Code Structure

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (6 of 59) [2003-11-4 8:59:46]

OpenMP

Fortran - General Code Structure

PROGRAM HELLO
I NTEGER VAR, VAR2, VAR3

Serial code

Begi nning of parallel section. Fork a team of threads.
Speci fy vari abl e scopi ng

I $OVWP PARALLEL PRI VATE(VARL, VAR2) SHARED(VAR3)

Paral | el section executed by all threads

All threads join master thread and di sband
I $OVP END PARALLEL

Resune serial code

END

C / C++ - General Code Structure

#i ncl ude <onp. h>
main () {
int varl, var2, var3;

Serial code

Begi nni ng of parallel section. Fork a team of threads.
Speci fy vari abl e scopi ng

#pragma onp parallel private(varl, var2) shared(var3)

{

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (7 of 59) [2003-11-4 8:59:46]

OpenMP

Paral | el section executed by all threads

Al'l threads join master thread and di sband

}

Resune serial code

OpenMP Directives

Fortran Directives Format

- Format:
sentinel directive-name [clause ...]
All Fortran OpenMP directives A valid OpenMP directive. | Optional. Clauses can bein
must begin with asentinel. The Must appear after the any order, and repeated as
accepted sentinels depend upon the | sentinel and before any necessary unless otherwise
type of Fortran source. Possible clauses. restricted.
sentinels are:
' $OvP
csowr
*$OWP
= Example:

' $OVP PARALLEL DEFAULT(SHARED) PRI VATE(BETA, PI)

- Fixed Form Source:

. '$OW C3OWP * $OVP are accepted sentinels and must start in column 1

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (8 of 59) [2003-11-4 8:59:46]

OpenMP

. All Fortran fixed form rules for line length, white space, continuation and comment columns apply for the
entire directive line

. Initial directive lines must have a space/zero in column 6.
. Continuation lines must have a non-space/zero in column 6.
- Free Form Source:
. ' $OWP isthe only accepted sentinel. Can appear in any column, but must be preceded by white space only.

. All Fortran free form rules for line length, white space, continuation and comment columns apply for the
entire directive line

. Initia directive lines must have a space after the sentinel.

. Continuation lines must have an ampersand as the last non-blank character in aline. The following line must
begin with a sentinel and then the continuation directives.

- General Rules:
. Comments can not appear on the same line as adirective

. Fortran compilers which are OpenM P enabled generally include a command line option which instructs the
compiler to activate and interpret all OpenMP directives.

. Severa Fortran OpenMP directives comein pairs and have the form:

'$OW directive
[structured bl ock of code]

I $OWP end directive

OpenMP Directives ‘

C / C++ Directives Format

= Format:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (9 of 59) [2003-11-4 8:59:46]

OpenMP

#pragma onp

directive-name

[clauss, ...]

newline

Required for al OpenMP A valid OpenMP Optional. Clauses | Required. Proceeds
C/C++ directives. directive. Must can bein any the structured
appear after the order, and repeated | block whichis
pragma and before | as necessary unless | enclosed by this
any clauses. otherwise directive.
restricted.

= Example:

#pragnma onp parall el default(shared) private(beta,pi)

= General Rules:
. Directivesfollow conventions of the C/C++ standards for compiler directives
. Casesensitive
. Only one directive-name may be specified per directive (true with Fortran also)
. Each directive appliesto at most one succeeding statement, which must be a structured block.

. Long directive lines can be "continued" on succeeding lines by escaping the newline character with a
backslash ("\") at the end of adirectiveline.

OpenMP Directives

Directive Scoping

= Static (Lexical) Extent:
. The code textually enclosed between the beginning and the end of a structured block following a directive.
. The static extent of a directives does not span multiple routines or code files

= Orphaned Directive:

. An OpenMP directive that appears independently from another enclosing directive is said to be an orphaned

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (10 of 59) [2003-11-4 8:59:46]

OpenMP

directive. It exists outside of another directive's static (lexical) extent.
« Will span routines and possibly code files
= Dynamic Extent:

. Thedynamic extent of a directive includes both its static (Iexical) extent and the extents of its orphaned

directives.
- Example:
PROGRAM TEST SUBROUTI NE SUB1
I SOVP PARALLEL I $OVP CRI Tl CAL
I $OWP DO I $OVP END CRI Tl CAL
DO I=. .. END
CALL SuBl
o SUBROUTI NE SUB2
ENDDO o
o | SOVP SECTI ONS
CALL SuB2

I $OVP END SECTI ONS

I $OVP END PARALLEL END

STATIC EXTENT ORPHANED DIRECTIVES
The DOdirective occurs within an enclosing The CRI Tl CAL and SECTI ONS directives
paralel region occur outside an enclosing parallel region

DYNAMIC EXTENT

= Why Is This Important?

. OpenMP specifies a number of scoping rules on how directives may associate (bind) and nest within each
other

. lllegal and/or incorrect programs may result if the OpenMP binding and nesting rules are ignored

. See Directive Binding and Nesting Rules for specific details

OpenMP Directives

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (11 of 59) [2003-11-4 8:59:46]

http://www.llnl.gov/computing/tutorials/openMP/#BindingNesting

OpenMP

PARALLEL Region Construct

= Purpose:

. A paralel regionisablock of code that will be executed by multiple threads. Thisis the fundamental
OpenMP parallel construct.

- Format:

I $OVP PARALLEL [cl ause ...]
| F (scal ar _| ogi cal _expression)
PRI VATE (Ii st)
SHARED (i st)
DEFAULT (PRI VATE | SHARED | NONE)
FI RSTPRI VATE (i st)
REDUCTI ON (operator: 1list)

e COPYI N (1ist)

bl ock

I $OVP END PARALLEL

#pragma onp parallel [clause ...] newine
i f (scal ar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: |ist)
copyin (list)

C/C++

struct ured_bl ock

= Notes:

. When athread reaches aPARALLEL directive, it creates ateam of threads and becomes the master of the
team. The master is amember of that team and has thread number 0 within that team.

. Starting from the beginning of this parallel region, the code is duplicated and all threads will execute that
code.

. Thereisanimplied barrier at the end of a parallel section. Only the master thread continues execution past
this point.

= How Many Threads?

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (12 of 59) [2003-11-4 8:59:46]

OpenMP
« The number of threadsin a parallel region is determined by the following factors, in order of precedence:

1. Useof theonp_set _num t hreads() library function

2. Setting of the OMP_NUM_THREADS environment variable

3. Implementation default

. Threads are numbered from O (master thread) to N-1

= Dynamic Threads:
. By default, a program with multiple parallel regions will use the same number of threads to execute each

region. This behavior can be changed to allow the run-time system to dynamically adjust the number of
threads that are created for agiven parallel section. The two methods available for enabling dynamic threads

are:
1. Useof theonp_set dynam c() library function

2. Setting of the OMP_DYNAMIC environment variable

= Nested Parallel Regions:

. A paralel region nested within another parallel region results in the creation of a new team, consisting of one
thread, by default.

. Implementations may allow more than one thread in nested parallel regions

= Clauses:

. |F clause: If present, it must evaluate to .TRUE. (Fortran) or non-zero (C/C++) in order for ateam of threads
to be created. Otherwise, the region is executed serially by the master thread.

. Theremaining clauses are described in detail later, in the Data Scope Attribute Clauses section.
- Restrictions:

. A pardlel region must be a structured block that does not span multiple routines or code files

. Unsynchronized Fortran 1/0 to the same unit by multiple threads has unspecified behavior

. Itisillegal to branch into or out of a parallel region

. Only asingle IF clause is permitted

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (13 of 59) [2003-11-4 8:59:46]

http://www.llnl.gov/computing/tutorials/openMP/#Clauses

OpenMP

Example: Parallel Region

. Simple"Hello World" program
o Every thread executes all code enclosed in the parallel section
o OpenMP library routines are used to obtain thread identifiers and total number of threads

Fortran - Parallel Region Example

I $OVP

C
I $OVP

PROGRAM HELLO

| NTEGER NTHREADS, TID, OWP_GET_NUM THREADS,
OVP_GET_THREAD NUM

Fork a team of threads giving themtheir own copies of variables
PARALLEL PRI VATE(NTHREADS, TI D)

Cbtain and print thread id
TID = OW_GET_THREAD _NUM)
PRINT *, "Hello World fromthread ="', TID

Only master thread does this
IF (TID .EQ 0) THEN

NTHREADS = OVP_CGET_NUM THREADS()

PRINT *, ' Number of threads = ', NTHREADS
END | F

Al'l threads join master thread and di sband
END PARALLEL

END

C / C++ - Parallel Region Example

#i ncl ude <onp. h>

main () {

int nthreads, tid;

/* Fork a team of threads giving themtheir own copies of variables */
#pragma onp parallel private(nthreads, tid)

{

[* Qbtain and print thread id */

tid

= onp_get _t hread_nun();

printf("Hello World fromthread = %\ n", tid);

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (14 of 59) [2003-11-4 8:59:46]

OpenMP

/* Only master thread does this */

if (tid == 0)
{
nt hreads = onp_get num t hreads();
printf("Nunber of threads = %\ n", nthreads);

}

} /* Al threads join master thread and terninate */

OpenMP Directives ‘

Work-Sharing Constructs

. A work-sharing construct divides the execution of the enclosed code region among the members of the team
that encounter it.

. Work-sharing constructs do not launch new threads

. Thereisnoimplied barrier upon entry to a work-sharing construct, however thereisan implied barrier at the
end of awork sharing construct.

= Types of Work-Sharing Constructs:

DO/ for - sharesiterations of a SECTIONS - breaks work into SINGLE - serializes a section of
loop across the team. Representsa separate, discrete sections. Each code
type of "data parallelism". section is executed by athread.

Can be used to implement atype

of "functional parallelism".

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (15 of 59) [2003-11-4 8:59:46]

OpenMP

l master thread l master thread l master thread

FORK FORK FORK

% feam SE+ID feam Sl'iE feam

JOIN

JOIN

JOIN

l master thread l master thread l master thread

= Restrictions:

. A work-sharing construct must be enclosed dynamically within a parallel region in order for the directive to
execute in paralld.

. Work-sharing constructs must be encountered by al members of ateam or none at all

. Successive work-sharing constructs must be encountered in the same order by all members of ateam

OpenMP Directives

Work-Sharing Constructs
DO / for Directive

- Purpose:

. The DO/ for directive specifies that the iterations of the loop immediately following it must be executed in

parallel by the team. This assumes a parallel region has already been initiated, otherwise it executesin serial
on asingle processor.

= Format:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (16 of 59) [2003-11-4 8:59:46]

OpenMP

I$OWP DO [cl ause ...]
SCHEDULE (type [, chunk])
ORDERED
PRI VATE (i st)
FI RSTPRI VATE (i st)
LASTPRI VATE (li st)
SHARED (i st)

Fortr : o :
2ilicl REDUCTI ON (operator | intrinsic : list)

do_| oop

I$OVP END DO [NOWAI T]

#pragma onp for [clause ...] newine
schedul e (type [, chunk])
or der ed
private (list)
firstprivate (list)
| astprivate (list)

C/C++ shared (list)
reducti on (operator: list)
nowai t

for_| oop

- Clauses:

. SCHEDULE clause: Describes how iterations of the loop are divided among the threads in the team. For
both C/C++ and Fortran:

STATIC:
Loop iterations are divided into pieces of size chunk and then staticly assigned to threads. If chunk is
not specified, the iterations are evenly (if possible) divided contiguously among the threads.

DYNAMIC:
Loop iterations are divided into pieces of size chunk, and dynamically scheduled among the threads;
when a thread finishes one chunk, it is dynamically assigned another. The default chunk sizeis 1.

GUIDED:
The chunk size is exponentially reduced with each dispatched piece of the iteration space. The chunk
Size specifies the minimum number of iterations to dispatch each time.. The default chunk sizeis 1.

RUNTIME:

The scheduling decision is deferred until runtime by the environment variable OMP_SCHEDULE. It
isillegal to specify a chunk size for this clause.

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (17 of 59) [2003-11-4 8:59:47]

OpenMP
The default schedule isimplementation dependent. Implementation may also vary dlightly in the way
the various schedules are implemented.

. ORDERED clause: Must be present when ORDERED directives are enclosed within the DO/for directive.
See Ordered Directive.

. NO WAIT (Fortran) / nowait (C/C++) clause: if specified, then threads do not synchronize at the end of the
parallel loop. Threads proceed directly to the next statements after the loop. For Fortran, the END DO
directiveis optional with NO WAIT being the default.

. Other clauses are described in detail later, in the Data Scope Attribute Clauses section.

= Restrictions:

« The DO loop can not be a DO WHILE loop, or aloop without loop control. Also, the loop iteration variable
must be an integer and the loop control parameters must be the same for all threads.

.« Program correctness must not depend upon which thread executes a particular iteration.
. Itisillega to branch out of aloop associated with a DO/for directive.

. The chunk size must be specified as aloop invarient integer expression, as there is no synchronization during
its evaluation by different threads.

. The C/C++f or directive requires that the for-loop must have canonical shape. See the OpenMP API
specification for details.

. ORDERED and SCHEDULE clauses may appear once each.

Example: DO / for Directive

. Simple vector-add program
o ArraysA, B, C, and variable N will be shared by all threads.
1 Variable | will be private to each thread; each thread will have its own unique copy.
o Theiterations of the loop will be distributed dynamically in CHUNK sized pieces.
s Threads will not synchronize upon completing their individual pieces of work (NOWAIT).

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (18 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#ORDERED
http://www.llnl.gov/computing/tutorials/openMP/#Clauses
http://www.openmp.org/
http://www.openmp.org/

OpenMP

Fortran - DO Directive Example

PROGRAM VEC_ADD_DO

| NTEGER N, CHUNKSI ZE, CHUNK, |
PARAVETER (N=1000)
PARAMETER (CHUNKSI ZE=100)

REAL A(N), B(N), N

! Sonme initializations

DOl =1, N
A(l) =1 * 1.0
B(1) = A(l)

ENDDO

CHUNK = CHUNKSI ZE
' $OVWP PARALLEL SHARED(A, B, C, CHUNK) PRI VATE(I)

I $OVP DO SCHEDULE(DYNAM C, CHUNK)
DOl =1, N
(1) = A(l) + B(I)
ENDDO
I $OVP END DO NOWAI T

I $OVP END PARALLEL

END

C / C++ - for Directive Example

#i ncl ude <onp. h>
#def i ne CHUNKSI ZE 100
#define N 1000

main ()

{

int i, chunk;

float a[N], b[N, c[N;

/* Sone initializations */
for (i=0; i <N i++)

a[i] =b[i] =i * 1.0;
chunk = CHUNKSI ZE;

#pragnma onp paral l el shared(a, b, c,chunk) private(i)

{
#pragma onp for schedul e(dynamn c, chunk) nowait
for (i=0; i < N, i++4)

c[i] =a[i] + b[i];

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (19 of 59) [2003-11-4 8:59:47]

OpenMP

} [/* end of parallel section */

OpenMP Directives

Work-Sharing Constructs
SECTIONS Directive

= Purpose:

. The SECTIONS directive is a non-iterative work-sharing construct. It specifies that the enclosed section(s) of
code are to be divided among the threads in the team.

. Independent SECTION directives are nested within a SECTIONS directive Each SECTION is executed once
by athread in the team. Different sections will be executed by different threads.

= Format:

' $OVP SECTI ONS [cl ause ...]
PRI VATE (i st)
FI RSTPRI VATE (1i st)
LASTPRI VATE (i st)
REDUCTI ON (operator | intrinsic : list)

' $OVP SECTI ON

Fortran bl ock

| $OVP SECTI ON
bl ock

'$OVP END SECTIONS [NOMAIT]

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (20 of 59) [2003-11-4 8:59:47]

OpenMP

#pragma onp sections [clause ...] newine
private (list)
firstprivate (list)
| astprivate (list)

reduction (operator: |ist)
nowai t
{
C/C++ #pragma onp section new i ne

struct ured_bl ock
#pragma onp section new i ne

structured_bl ock

- Clauses:

. Thereisanimplied barrier at the end of a SECTIONS directive, unlessthe nowai t (C/C++) or NOWAIT
(Fortran) clause is used.

. Clauses are described in detail later, in the Data Scope Attribute Clauses section.

= Questions:

-? What happens if the number of threads and the number of SECTIONSs are different? More threads than
SECTIONS? Less threads than SECTIONS?

Answer

-? Which thread executes which SECTION?

Answer

- Restrictions:
. Itisillegal to branch into or out of section blocks.

. SECTION directives must occur within the lexical extent of an enclosing SECTIONS directive

Example: SECTIONS Directive

. Simple vector-add program - similar to example used previously for the DO/ for directive.
o Thefirst n/2 iterations of the DO loop will be distributed to the first thread, and the rest will be
distributed to the second thread

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (21 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#Clauses

OpenMP

o When each thread finishesits block of iterations, it proceeds with whatever code comes next
(NOWAIT)

Fortran - SECTIONS Directive Example

PROGRAM VEC_ADD_SECTI ONS

| NTEGER N, |
PARAVETER (N=1000)

REAL A(N), B(N), N

! Sonme initializations

DOl =1, N
A(l) =1 * 1.0
B(1) = A(l)

ENDDO

| $OVP PARALLEL SHARED(A, B, C), PRI VATE(I)

' $OVP SECTI ONS

| $OVP SECTI ON
DOI =1, N2
(1) = A1) + B(1)
ENDDO
| $OVP SECTI ON
DO = 1+N 2, N
(1) = A1) + B(1)
ENDDO

I $OVP END SECTI ONS NOWAI T
' $OVP END PARALLEL

END

C / C++ - sections Directive Example

#i ncl ude <onp. h>
#define N 1000

main ()
{
int i;

float a[N], b[N, c[N;

/* Sonme initializations */
for (i=0; i < N, i++)

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (22 of 59) [2003-11-4 8:59:47]

OpenMP

a[i] = Db[i] =1 * 1.0;
#pragma onp parall el shared(a,b,c) private(i)
{
#pragnma onp sections nowait
{

#pragma onp section
for (i=0; i < N2 i++)
c[i] =a[i] + b[i];

#pragma onp section
for (i=N2; i < N i++)
cli] =a[i] + b[i];

} /* end of sections */

} /* end of parallel section */

OpenMP Directives

Work-Sharing Constructs
SINGLE Directive

- Purpose:

. The SINGLE directive specifies that the enclosed code is to be executed by only one thread in the team.

. May be useful when dealing with sections of code that are not thread safe (such as 1/0)

- Format:
' $OVP SI NGLE [cl ause ...]
PRI VATE (Iist)
FI RSTPRI VATE (i st)
Fortran bl ock

I $OVP END SINGLE [NOWAI T]

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (23 of 59) [2003-11-4 8:59:47]

OpenMP

#pragma onp single [clause ...] newine
private (list)
firstprivate (list)

C/C++ nowai t

struct ured_bl ock

- Clauses:

. Threadsin the team that do not execute the SINGLE directive, wait at the end of the enclosed code block,
unlessanowai t (C/C++) or NOWAIT (Fortran) clauseis specified.

. Clauses are described in detail later, in the Data Scope Attribute Clauses section.

- Restrictions:

. Itisillegal to branch into or out of a SINGLE block.

OpenMP Directives ‘

Combined Parallel Work-Sharing Constructs
PARALLEL DO / parallel for Directive

. Iterations of the DO/for loop will be distributed in equal sized blocks to each thread in the team (SCHEDULE
STATIC)

Fortran - PARALLEL DO Directive Example

PROGRAM VECTCR_ADD

INTEGER N, |, CHUNKSI ZE, CHUNK
PARAMVETER (N=1000)
PARAVETER (CHUNKSI ZE=100)

REAL A(N), B(N), C(N

! Sone initializations
DOl =1, N
A(l) | * 1.0
B(1) A(l)
ENDDO
CHUNK = CHUNKSI ZE

I Imn =

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (24 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#Clauses

OpenMP

| $OVP PARALLEL DO
| $OMP& SHARED(A, B, C, CHUNK) PRI VATE(I)
| $OVP& SCHEDULE(STATI C, CHUNK)

DOI =1, N
(1) = A(l) + B(1)
ENDDO
| $OMP END PARALLEL DO

END

C / C++ - parallel for Directive Example

#i ncl ude <onp. h>
#defi ne N 1000
#defi ne CHUNKSI ZE 100

main () A

int i, chunk;

float a[N], b[N, c[N;

/* Sone initializations */
for (i=0; i <N, i++)

a[i] = b[i] =1 * 1.0;
chunk = CHUNKSI ZE;

#pragma onp parallel for \
shared(a, b, c, chunk) private(i) \
schedul e(stati c, chunk)

for (i=0; i < n; i++4)
c[i] =a[i] + b[i];

OpenMP Directives

Combined Parallel Work-Sharing Constructs
PARALLEL SECTIONS Directive

- Purpose:

. The PARALLEL SECTIONS directive specifies a parallel region containing asingle SECTIONS directive.
The single SECTIONS directive must follow immediately as the very next statement.

file:///D])/hp/HPC/OPEN%20MP/OpenMP.htm (25 of 59) [2003-11-4 8:59:47]

OpenMP

- Format:

I $OVP PARALLEL SECTIONS [clause ...]
DEFAULT (PRI VATE | SHARED | NONE)
SHARED (1i st)
PRI VATE (i st)
FI RSTPRI VATE (i st)
LASTPRI VATE (li st)
REDUCTI ON (operator | intrinsic : list)
Fortran COPYIN (list)
CORDERED

struct ured_bl ock

I $OVP END PARALLEL SECTI ONS

#pragma onp parallel sections [clause ...] newine
default (shared | none)
shared (1list)
private (list)
firstprivate (list)
| astprivate (list)

CIC++ reduction (operator: |ist)

copyin (list)

or der ed

structured_bl ock

- Clauses:

. The accepted clauses can be any of the clauses accepted by the PARALLEL and SECTIONS directives.
Clauses not previously discussed, are described in detail |ater, in the Data Scope Attribute Clauses section.

OpenMP Directives

Synchronization Constructs

. Consider asimple example where two threads on two different processors are both trying to increment a
variable x at the same time (assume x isinitially 0):

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (26 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#Clauses

OpenMP

THREAD 1: THREAD 2:
I ncrenment (x) i ncrenment (x)
{ {
X =x + 1 X = X + 1;
} }
THREAD 1: THREAD 2:
10 LOAD A, (x address) 10 LOAD A, (x address)
20 ADD A 1 20 ADD A 1
30 STORE A, (x address) 30 STORE A, (x address)

. One possible execution sequence:

Thread 1 |oads the value of x into register A.
Thread 2 |oads the value of x into register A.
Thread 1 adds 1 to register A

Thread 2 adds 1 to register A

Thread 1 stores register A at location x
Thread 2 storesregister A at location x

Soukrwbdr

The resultant value of x will be 1, not 2 asit should be.

. Toavoid asituation like this, the incrementation of x must be synchronized between the two threads to insure
that the correct result is produced.

. OpenMP provides avariety of Synchronization Constructs that control how the execution of each thread
proceeds relative to other team threads.

OpenMP Directives

Synchronization Constructs
MASTER Directive

= Purpose:

. The MASTER directive specifies aregion that is to be executed only by the master thread of the team. All
other threads on the team skip this section of code

. Thereisno implied barrier associated with this directive

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (27 of 59) [2003-11-4 8:59:47]

OpenMP

- Format:
1 $OVP MASTER
bl ock
Fortran
I $OVWP END MASTER
#pragma onp naster newine
C/IC++ structured_bl ock

= Restrictions:

. Itisillegal to branch into or out of MASTER block.

OpenMP Directives

Synchronization Constructs
CRITICAL Directive

- Purpose:

. The CRITICAL directive specifies aregion of code that must be executed by only one thread at atime.

- Format:
'$OWP CRITICAL [nanre]
bl ock
Fortran
' $OWP END CRI Tl CAL
#pragma onp critical [name] newine
C/C++ structured_bl ock
= Notes:

file:///D|/hp/HPC/OPEN%20MP/OpenMP.htm (28 of 59) [2003-11-4 8:59:47]

OpenMP

. If athread is currently executing inside a CRITICAL region and another thread reaches that CRITICAL
region and attempts to execute it, it will block until the first thread exits that CRITICAL region.

. The optional name enables multiple different CRITICAL regionsto exist:
5 Names act as global identifiers. Different CRITICAL regions with the same name are treated as the
same region.
1 All CRITICAL sections which are unnamed, are treated as the same section.

- Restrictions:

. Itisillega to branchinto or out of a CRITICAL block.

Example: CRITICAL Construct

. All threadsin the team will attempt to execute in parallel, however, because of the CRITICAL construct
surrounding the increment of x, only one thread will be able to read/increment/write x at any time

Fortran - CRITICAL Directive Example

PROGRAM CRI Tl CAL

I NTEGER X
X=0

' $OVP PARALLEL SHARED(X)

' $OVP CRI Tl CAL
X=X+1

' $OVP END CRI Tl CAL

 $OVP END PARALLEL

END

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (29 of 59) [2003-11-4 8:59:47]

OpenMP

C / C++ - critical Directive Example

#i ncl ude <onp. h>

mai n()

{

int x;
X = 0;

#pragma onp paral l el shared(x)
{

#pragma onp critical
X = X + 1;

} [/* end of parallel section */

OpenMP Directives

Synchronization Constructs
BARRIER Directive

- Purpose:
. The BARRIER directive synchronizes all threads in the team.

. When aBARRIER directive is reached, athread will wait at that point until all other threads have reached
that barrier. All threads then resume executing in parallel the code that follows the barrier.

- Format:
| $OVP BARRI ER
Fortran
#pragma o barrier newine
C/C++ prag nm

- Restrictions:

. For C/C++, the smallest statement that contains a barrier must be a structured block. For example:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (30 of 59) [2003-11-4 8:59:47]

OpenMP

WRONG RIGHT
if (x == 0)
if (x == 0) {
#pragma onp barrier #pragma onp barrier
}

OpenMP Directives

Synchronization Constructs
ATOMIC Directive
- Purpose:

. The ATOMIC directive specifies that a specific memory location must be updated atomically, rather than
letting multiple threads attempt to write to it. In essence, this directive provides amini-CRITICAL section.

= Format:
I $OVWP ATOM C
Fortran st at ement _expr essi on
#pragma onp atomc newine
C/C++ st at enent _expr essi on

= Restrictions:

. Thedirective applies only to asingle, immediately following statement

. An atomic statement must have one of the following forms:

Fortran C/C++

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (31 of 59) [2003-11-4 8:59:47]

OpenMP

X = X operator expr X binop = expr

X = expr operator X X++

X = intrinsic(x, expr) ++X

X = intrinsic(expr, X) X--

--X

X isascalar variable X isascaar variable
expr isascalar expression that does not expr isascalar expression that does not
reference x reference x
intrinsicisone of MAX, MIN, IAND, IOR, or | binop is not overloaded, and isoneof +, *, -, /,
IEOR &, N, |, >>, or <<
operator isone of +,*, -, /, AND., .OR,,
EQV., or NEQV.

. Note: Only the load and store of x are atomic; the evaluation of the expression is not atomic.

OpenMP Directives

Synchronization Constructs
FLUSH Directive

= Purpose:

. The FLUSH directive identifies a synchronization point at which the implementation must provide a
consistent view of memory. Thread-visible variables are written back to memory at this point.

= Format:

Fortran 1 $OWP FLUSH (i st)

C/Cat #pragma onp flush (list) newine
= Notes:

. Thread-visible variables include:

o Globally visible variables (common blocks and modul es)

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (32 of 59) [2003-11-4 8:59:47]

OpenMP

o Local variables that do not have the SAVE attribute but have had their address used by another

subprogram

1 Local variables that do not have the SAVE attribute that are declared shared in a parallel region within

the subprogram
o Dummy arguments
o All pointer dereferences

. Theoptiona list contains alist of named variables that will be flushed in order to avoid flushing all variables.

For pointersin the list, note that the pointer itself is flushed, not the object it pointsto.

. Implementations must ensure any prior modifications to thread-visible variables are visible to all threads after
this point; ie. compilers must restore values from registers to memory, hardware might need to flush write

buffers, etc

. The FLUSH directiveisimplied for the directives shown in the table below. The directiveis not implied if a

NOWAIT clauseis present.

END PARALLEL

END SECTIONS

END SINGLE

ORDERED and END ORDERED

Fortran C/C++
BARRIER barri er
CRITICAL and END CRITICAL critical - uponentry and exit
END DO or der ed- upon entry and exit

par al | el - upon exit
f or - upon exit

sect i ons- upon exit
si ngl e- upon exit

OpenMP Directives

Synchronization Constructs
ORDERED Directive

- Purpose:

. The ORDERED directive specifies that iterations of the enclosed loop will be executed in the same order asif

they were executed on a serial processor.

= Format:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (33 of 59) [2003-11-4 8:59:47]

OpenMP

I $OVP ORDERED
(bl ock)
Fortran
I $OVP END ORDERED
#pragma onp ordered newine
C/C++ structured_bl ock

= Restrictions:

. An ORDERED directive can only appear in the dynamic extent of the following directives:
1 DO or PARALLEL DO (Fortran)
s for orparallel for (C/C++)

. Only onethread is alowed in an ordered section at any time
. Itisillegal to branchinto or out of an ORDERED block.

. Aniteration of aloop must not execute the same ORDERED directive more than once, and it must not
execute more than one ORDERED directive.

. A loop which contains an ORDERED directive, must be aloop with an ORDERED clause.

OpenMP Directives

THREADPRIVATE Directive

= Purpose:

. The THREADPRIVATE directive is used to make global file scope variables (C/C++) or common blocks
(Fortran) local and persistent to athread through the execution of multiple parallel regions.

- Format:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (34 of 59) [2003-11-4 8:59:47]

OpenMP

' $OVP THREADPRI VATE (/cb/, ...) <cb is the nane of a comon bl ock
Fortran
#pragma onp threadprivate (list)
C/C++
= Notes:

. Thedirective must appear after the declaration of listed variables/common blocks. Each thread then gets its
own copy of the variable/common block, so data written by one thread is not visible to other threads. For
example:

Fortran - THREADPRIVATE Directive Example

PROGRAM THREADPRI V

| NTEGER ALPHA(10), BETA(10), |
COWON / Al ALPHA

' $OVP THREADPRI VATE(/ Al')

© First parallel region
I $OVP PARALLEL PRI VATE(BETA, 1)
DO I =1, 10
ALPHA(L) = |
BETA(l) = |
END DO
I $OVP END PARALLEL

C Second paral l el region
I $OVP PARALLEL

PRI NT *, "ALPHA(3)=', ALPHA(3), ' BETA(3)=', BETA(3)
I $OVP END PARALLEL

END

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (35 of 59) [2003-11-4 8:59:47]

OpenMP

C/C++ - threadprivate Directive Example

i nt al pha[10], beta[10], i;
#pragnma onp threadprivat e(al pha)

main () {

/* First parallel region */
#pragnma onp parallel private(i, beta)
for (i=0; i < 10; i++)
al pha[i] = betal[i] =i;

/* Second parallel region */
#pragma onp parall el
printf("al pha[3]= %l and beta[3] = %\ n", al pha[3], beta[3]);

. Onfirst entry to aparallel region, datain THREADPRIVATE variables and common blocks should be
assumed undefined, unless a COPY IN clauseis specified in the PARALLEL directive

. THREADPRIVATE variables differ from PRIVATE variables (discussed later) because they are able to
persist between different parallel sections of a code.

- Restrictions:

. Datain THREADPRIVATE objectsis guaranteed to persist only if the dynamic threads mechanismis "turned
off" and the number of threads in different parallel regions remains constant. The default setting of dynamic
threads is undefined.

. The THREADPRIVATE directive must appear after every declaration of athread private variable/common
block.

. Fortran: only named common blocks can be made THREADPRIVATE.

OpenMP Directives

Data Scope Attribute Clauses

« Animportant consideration for OpenMP programming is the understanding and use of data scoping

. Because OpenMP is based upon the shared memory programming model, most variables are shared by
default

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (36 of 59) [2003-11-4 8:59:47]

OpenMP

. Global variablesinclude:
o Fortran: COMMON blocks, SAVE variables, MODULE variables
o C: File scope variables, static

. Private variables include:
s Loop index variables
o Stack variables in subroutines called from parallel regions
o Fortran: Automatic variables within a statement block

. The OpenMP Data Scope Attribute Clauses are used to explicitly define how variables should be scoped.
They include:

PRIVATE

FIRSTPRIVATE

LASTPRIVATE

SHARED

DEFAULT

REDUCTION

COPYIN

a a O O O O a

. Data Scope Attribute Clauses are used in conjunction with several directives (PARALLEL, DO/for, and
SECTIONS) to control the scoping of enclosed variables.

. These constructs provide the ability to control the data environment during execution of parallel constructs.

o They define how and which data variables in the serial section of the program are transferred to the
parallel sections of the program (and back)

o They define which variables will be visible to al threads in the parallel sections and which variables
will be privately allocated to all threads.

. Note: Data Scope Attribute Clauses are effective only within their |exical/static extent.

. Seethe Clauses/ Directives Summary Table for the associations between directives and clauses.

PRIVATE Clause

= Purpose:
. The PRIVATE clause declares variablesin itslist to be private to each thread.

= Format:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (37 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#ClausesDirectives

OpenMP

Fortran PRI VATE (1ist)

private (list)
C/C++

= Notes:
. PRIVATE variables behave as follows:
o A new object of the same type is declared once for each thread in the team
o All referencesto the original object are replaced with references to the new object
o Variables declared PRIVATE are uninitialized for each thread

. Comparison between PRIVATE and THREADPRIVATE:

PRIVATE THREADPRIVATE
Data Item C/C++: variable C/C++: variable
Fortran: variable or common Fortran: common block
block
Where Declared | At start of region or work-sharing | In declarations of each routine using
group block or global file scope
Persistent? No Yes
Extent Lexical only - unless passed as Dynamic
an argument to subroutine
Initialized Use FIRSTPRIVATE Use COPYIN
= Questions:

For the C/C++ and Fortran THREADPRIVATE example codes, what output would you expect for
apha[3] and beta[3]? Why?

Answer

SHARED Clause

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (38 of 59) [2003-11-4 8:59:47]

http://www.llnl.gov/computing/tutorials/openMP/#ThreadprivateExamples

OpenMP
- Purpose:

. The SHARED clause declares variablesin its list to be shared among all threads in the team.

= Format:
Fortran SHARED (i st)
shared (Ilist)
C/C++
= Notes:

. A shared variable exists in only one memory location and all threads can read or write to that address

. Itisthe programmer's responsibility to ensure that multiple threads properly access SHARED variables (such
asviaCRITICAL sections)

DEFAULT Clause

= Purpose:

. The DEFAULT clause allows the user to specify adefault PRIVATE, SHARED, or NONE scope for all
variablesin the lexical extent of any parallel region.

= Format:
Fortran DEFAULT (PRI VATE | SHARED | NONE)
default (shared | none)
C/C++
= Notes:

. Specific variables can be exempted from the default using the PRIVATE, SHARED, FIRSTPRIVATE,

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (39 of 59) [2003-11-4 8:59:47]

OpenMP

LASTPRIVATE, and REDUCTION clauses

. The C/C++ OpenMP specification does not include "private" as a possible default. However, actua
implementations may provide this option.

= Restrictions:

. Only one DEFAULT clause can be specified on aPARALLEL directive

FIRSTPRIVATE Clause

- Purpose:

. The FIRSTPRIVATE clause combines the behavior of the PRIVATE clause with automatic initialization of
the variablesinitslist.

= Format:
Fortran FI RSTPRI VATE (i st)
firstprivate (list)
C/C++
= Notes:

. Listed variables areinitialized according to the value of their original objects prior to entry into the parallel or
work-sharing construct.

LASTPRIVATE Clause

- Purpose:

. The LASTPRIVATE clause combines the behavior of the PRIVATE clause with a copy from the last loop
iteration or section to the original variable object.

= Format:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (40 of 59) [2003-11-4 8:59:47]

OpenMP

Fortran LASTPRI VATE (i st)

| astprivate (list)
C/IC++

= Notes:

. Thevalue copied back into the original variable object is obtained from the last (sequentialy) iteration or
section of the enclosing construct.

For example, the team member which executes the final iteration for a DO section, or the team member which
doesthe last SECTION of a SECTIONS context performs the copy with its own values

COPYIN Clause

- Purpose:

. The COPYIN clause provides a means for assigning the same value to THREADPRIVATE variables for all
threads in the team.

= Format:
Fortran SPYIN (1 5t)
C/C++ copyin (list)
= Notes:

. List contains the names of variablesto copy. In Fortran, the list can contain both the names of common blocks
and named variables.

. The master thread variable is used as the copy source. The team threads are initialized with its value upon
entry into the parallel construct.

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (41 of 59) [2003-11-4 8:59:47]

OpenMP

REDUCTION Clause

= Purpose:

. The REDUCTION clause performs areduction on the variables that appear initslist.

. A private copy for each list variable is created for each thread. At the end of the reduction, the reduction
variable is applied to all private copies of the shared variable, and the final result is written to the global
shared variable.

= Format:

Fortran

C/C++

REDUCTI ON (operator|intrinsic:

reduction (operator: |ist)

list)

= Example: REDUCTION - Vector Dot Product:

. lterations of the parallel loop will be distributed in equal sized blocks to each thread in the team (SCHEDULE

STATIC)

. At theend of the parallel loop construct, all threads will add their values of "result” to update the master
thread's global copy.

Fortran - REDUCTION Clause Example

PROGRAM DOT_PRODUCT

| NTEGER N, CHUNKSI ZE, CHUNK, |
PARAMVETER (N=100)

PARAVETER (CHUNKSI ZE=10)

REAL A(N), B(N), RESULT

Some initializations

DOl =1, N
A1) =1 * 1.0
B(I) =1 * 2.0

ENDDO

RESULT= 0.0

CHUNK = CHUNKSI ZE

'$OVP PARALLEL DO

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (42 of 59) [2003-11-4 8:59:47]

OpenMP

| $OVP& DEFAULT(SHARED) PRI VATE(I)
| $OVMP& SCHEDULE(STATI C, CHUNK)
| $OVMP& REDUCTI ON(+: RESULT)

DOl =1, N
RESULT = RESULT + (A(1) * B(1))
ENDDO
1 $OVP END DO NOWAI T

PRINT *, 'Final Result="', RESULT
END

C / C++ - reduction Clause Example

#i ncl ude <onp. h>
main () {

i nt i, n, chunk;
float a[100], b[100], result;

/[* Sonme initializations */

n = 100;

chunk = 10;

result = 0.0;

for (i=0; i < n; i++)
{
af[i] =i * 1.0;
b[i] =i * 2.0;
}

#pragma onp parallel for \
defaul t (shared) private(i) \
schedul e(stati ¢, chunk) \

reduction(+:result)

for (i=0; i < n; i++)
result =result + (a[i] * b[i]);

printf("Final result= %\n",result);

}

= Restrictions:

. Variablesinthe list must be named scalar variables. They can not be array or structure type variables. They
must also be declared SHARED in the enclosing context.

. Reduction operations may not be associative for real numbers.

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (43 of 59) [2003-11-4 8:59:47]

OpenMP

. The REDUCTION clause is intended to be used on aregion or work-sharing construct in which the reduction
variable is used only in statements which have one of following forms:

Fortran C/C++
X = X operator expr X =X 0op expr
X = expr operator x (except subtraction) X = expr op X (except subtraction)
X = intrinsic(x, expr) X binop = expr
X = intrinsic(expr, X) X++
++X
X__
--X
x isascalar variablein the list x isascalar variablein the list
expr isascalar expression that does not reference | expr isascalar expression that does not
X reference x
intrinsicisone of MAX, MIN, IAND, IOR, op is not overloaded, andisone of +, *, -, /,
I[EOR &, N |, &&, ||
operator isone of +, *, -, .AND., .OR., .EQV ., binop is not overloaded, and isone of +, *, -
NEQV. &N,

OpenMP Directives

Clauses / Directives Summary

« The table below summarizes which clauses are accepted by which OpenMP directives.

Directive
Clause

PARALLEL | DO/for | SECTIONS | SINGLE Egl;?:_LEL gég¢||6LNESI_
IF @ . e
PRIVATE @ @ b ° ° @
SHARED o ° @
DEFAULT o ° @
FIRSTPRIVATE ” @ ¢ @ @
LASTPRIVATE @ @ @ °

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (44 of 59) [2003-11-4 8:59:47]

OpenMP

REDUCTION @ - @ & &
COPYIN @ @ @
SCHEDULE - &

ORDERED @

NOWAIT - >]

. Thefollowing OpenMP directives do not accept clauses:
» MASTER

s CRITICAL

o BARRIER

» ATOMIC

o FLUSH

» ORDERED

o THREADPRIVATE

. Implementations may (and do) differ from the standard in which clauses are supported by each directive.

OpenMP Directives ‘

Directive Binding and Nesting Rules

This section is provided mainly as a quick reference on rules which govern OpenMP directives and binding.
@ Users should consult their implementation documentation and the OpenM P standard for other rules and
restrictions.
.« Unlessindicated otherwise, rules apply to both Fortran and C/C++ OpenM P implementations.

. Note: the Fortran API also defines a number of Data Environment rules. Those have not been reproduced
here.

- Directive Binding:

. TheDO/for, SECTIONS, SINGLE, MASTER and BARRIER directives bind to the dynamically enclosing
PARALLEL, if one exists. If no parallel region is currently being executed, the directives have no effect.

. The ORDERED directive binds to the dynamically enclosing DO/for.

. The ATOMIC directive enforces exclusive access with respect to ATOMIC directivesin all threads, not just
the current team.

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (45 of 59) [2003-11-4 8:59:47]

OpenMP

. The CRITICAL directive enforces exclusive access with respect to CRITICAL directivesin al threads, not
just the current team.

. A directive can never bind to any directive outside the closest enclosing PARALLEL.
- Directive Nesting:

. A PARALLEL directive dynamically inside another PARALLEL directive logically establishes a new team,
which is composed of only the current thread unless nested parallelism is enabled.

. DOffor, SECTIONS, and SINGLE directives that bind to the same PARALLEL are not allowed to be nested
inside of each other.

. DO/for, SECTIONS, and SINGLE directives are not permitted in the dynamic extent of CRITICAL,
ORDERED and MASTER regions.

. CRITICAL directives with the same name are not permitted to be nested inside of each other.

. BARRIER directives are not permitted in the dynamic extent of DO/for, ORDERED, SECTIONS, SINGLE,
MASTER and CRITICAL regions.

. MASTER directives are not permitted in the dynamic extent of DO/for, SECTIONS and SINGLE directives.
. ORDERED directives are not permitted in the dynamic extent of CRITICAL regions.

. Any directive that is permitted when executed dynamically inside a PARALLEL region isalso legal when
executed outside a parallel region. When executed dynamically outside a user-specified parallel region, the
directive is executed with respect to ateam composed of only the master thread.

Run-Time Library Routines ‘

. The OpenMP standard defines an API for library calls that perform avariety of functions:

o Query the number of threads/processors, set number of threads to use

o General purpose locking routines (semaphores)

o Set execution environment functions: nested parallelism, dynamic adjustment of threads.
. For C/C++, it may be necessary to specify the include file "omp.h".

. For the Lock routines/functions;

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (46 of 59) [2003-11-4 8:59:47]

OpenMP

o Thelock variable must be accessed only through the locking routines
o For Fortran, the lock variable should be of type integer and of akind large enough to hold an address.

o For C/C++, the lock variable must havetypeonp | ock_t ortypeonp_nest | ock t, depending
on the function being used.

. Implementation notes:

Current OpenM P implementations for the SP (IBM and KAI) do not implement nested parallelism
routines. KAI does implement dynamic threads library routines.

OMP_SET_NUM_THREADS
= Purpose:

. Setsthe number of threads that will be used in the next parallel region.

= Format:
SUBROUTI NE OVP_SET_NUM THREADS(scal ar _i nt eger _expr essi on)
Fortran
voi d onp_set_num t hreads(int numthreads
C/C++ P_SEt_NHM (B)

= Notes & Restrictions:

. The dynamic threads mechanism modifies the effect of this routine.

1 Enabled: specifies the maximum number of threads that can be used for any parallel region by the
dynamic threads mechanism.

o Disabled: specifies exact number of threads to use until next call to this routine.
. Thisroutine can only be called from the serial portions of the code

. Thiscall has precedence over the OMP_NUM_THREADS environment variable

OMP_GET_NUM_THREADS

- Purpose:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (47 of 59) [2003-11-4 8:59:47]

OpenMP

. Returns the number of threads that are currently in the team executing the parallel region from whichitis

caled.
- Format:
| NTEGER FUNCTI ON OVP_GET_NUM THREADS()
Fortran
int o et num threads(void
C/C++ p_get _nhum. ()

- Notes & Restrictions:

. If thiscall ismade from a serial portion of the program, or a nested parallel region that is serialized, it will
return 1.

. Thedefault number of threads isimplementation dependent.

OMP_GET_MAX_THREADS

= Purpose:

. Returns the maximum value that can be returned by a call to the OMP_GET_NUM_THREADS function.

| NTEGER FUNCTI ON OVP_GET_MAX_THREADS()
Fortran

C/Cit int onp_get max_threads(void)

= Notes & Restrictions:

. Generdly reflects the number of threads as set by the OMP_NUM_THREADS environment variable or the
OMP_SET_NUM_THREADS() library routine.

. May be called from both serial and parallel regions of code.

OMP_GET_THREAD_NUM

= Purpose:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (48 of 59) [2003-11-4 8:59:47]

OpenMP

. Returns the thread number of the thread, within the team, making this call. This number will be between 0
and OMP_GET_NUM_THREADS-1. The master thread of the team isthread O

- Format:
| NTEGER FUNCTI ON OVP_GET_THREAD_NUM)
Fortran
int o et thread nunm(void
C/C++ mp_get _ _nun)

= Notes & Restrictions:
. If called from anested paralel region, or aserial region, this function will return O.
= Examples:

. Example 1 isthe correct way to determine the number of threadsin aparallel region.
. Example 2isincorrect - the TID variable must be PRIVATE
. Example 3isincorrect - the OMP_GET_THREAD_NUM call is outside the parallel region

Fortran - determining the number of threads in a parallel region

Example 1: Correct

PROGRAM HELLO
| NTEGER TI D, OWP_GET_THREAD NUM
I $OVP PARALLEL PRI VATE(TI D)

TID = OVWP_GET_THREAD NUM)
PRINT *, "Hello World fromthread ="', TID

I $OVP END PARALLEL

END

Example 2: Incorrect

PROGRAM HELLO
| NTEGER TI D, OVP_GET_THREAD_ NUM

I $OVP PARALLEL

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (49 of 59) [2003-11-4 8:59:47]

OpenMP

TID = OVW_GET_THREAD_NUM)
PRINT *, "Hello World fromthread ="', TID

I $OVP END PARALLEL

END

Example 3: Incorrect

PROGRAM HELLO
| NTEGER TI D, OWP_GET_THREAD NUM

TID = OVW_GET_THREAD_NUM)
PRINT *, "Hello World fromthread ="', TID

I $OVP PARALLEL

I $OVP END PARALLEL

END

OMP_GET NUM_PROCS
- Purpose:

. Returns the number of processors that are available to the program.

= Format:
| NTEGER FUNCTI ON OVP_GET_NUM PROCS()
Fortran
int o et num procs(void
C/Ctt nmp_get _num_p ()

OMP_IN_PARALLEL

= Purpose:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (50 of 59) [2003-11-4 8:59:47]

OpenMP

. May be called to determine if the section of code which is executing is parallel or not.

= Format:
LOG CAL FUNCTI ON OVP_I N_PARALLEL()
Fortran
int o in parallel (void
C/IC++ mp_1Nn_p ()

= Notes & Restrictions:

. For Fortran, this function returns .TRUE. if it is called from the dynamic extent of aregion executing in
parallel, and .FALSE. otherwise. For C/C++, it will return anon-zero integer if paralel, and zero otherwise.

OMP_SET_DYNAMIC

= Purpose:

. Enables or disables dynamic adjustment (by the run time system) of the number of threads available for
execution of parallel regions.

- Format:
SUBROUTI NE OMP_SET_DYNAM C(scal ar _| ogi cal _expressi on)
Fortran
void o set dynanm c(int dynanic threads
C/Cit nmp_set _dy (y _)

= Notes & Restrictions:

. For Fortran, if called with .TRUE. then the number of threads available for subsequent parallel regions can be
adjusted automatically by the run-time environment. If called with .FALSE., dynamic adjustment is disabled.

. For C/C++, if dynamic_threads evaluates to non-zero, then the mechanism is enabled, otherwiseit is disabled.
. TheOMP_SET_DYNAMIC subroutine has precedence over the OMP_DYNAMIC environment variable.
« The default setting is implementation dependent.

. Must be called from a serial section of the program.

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (51 of 59) [2003-11-4 8:59:48]

OpenMP

OMP_GET_DYNAMIC
- Purpose:

. Used to determine if dynamic thread adjustment is enabled or not.

= Format:
LOG CAL FUNCTI ON OVP_GET_DYNAM C()
Fortran
int o et dynam c(void
C/Ctt nmp_get _dy ()

= Notes & Restrictions:
. For Fortran, this function returns .TRUE. if dynamic thread adjustment is enabled, and .FALSE. otherwise.

. For C/C++, non-zero will be returned if dynamic thread adjustment is enabled, and zero otherwise.

OMP_SET_NESTED
= Purpose:

. Used to enable or disable nested parallelism.

= Format:
SUBRQOUTI NE OVP_SET_NESTED(scal ar _| ogi cal _expressi on)
Fortran
void o set _nested(int nested
C/C++ P_SEt ()

= Notes & Restrictions:

. For Fortran, calling this function with .FALSE. will disable nested parallelism, and calling with .TRUE. will
enable it.

. For C/C++, if nested evaluates to non-zero, nested parallelism is enabled; otherwise it is disabled.

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (52 of 59) [2003-11-4 8:59:48]

OpenMP

. Thedefault isfor nested parallelism to be disabled.

. Thiscal has precedence over the OMP_NESTED environment variable

OMP_GET_NESTED
- Purpose:

. Used to determine if nested parallelism is enabled or not.

= Format:
LOG CAL FUNCTI ON OVP_GET_NESTED
Fortran
void o et nested
C/C++ nmp_get _

= Notes & Restrictions:
. For Fortran, this function returns .TRUE. if nested parallelism is enabled, and .FALSE. otherwise.

. For C/C++, non-zero will be returned if nested parallelism is enabled, and zero otherwise.

OMP_INIT_LOCK

= Purpose:

. Thissubroutineinitializes alock associated with the lock variable.

- Format:
SUBROUTI NE OVP_I NI T_LOCK(var)
Fortran SUBROUTI NE OVP_| NI T_NEST_LOCK(var)
void onp_init_lock(onp_lock t *Iock)
CIC++ void onp_init_nest | ock(onp_nest | ock t *Iock)

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (53 of 59) [2003-11-4 8:59:48]

OpenMP
- Notes & Restrictions:

. Theinitia stateis unlocked

OMP_DESTROY_LOCK

= Purpose:
. Thissubroutine disassociates the given lock variable from any locks.

= Format:

SUBROUTI NE OVP_DESTROY_LOCK(var)
Fortran | SUBROUTI NE OMP_DESTROY_NEST LOCK(var)

voi d onp_destroy_I| ock(onmp_l ock_t *I ock)
C/IC++ voi d onp_destroy_nest__| ock(onp_nest | ock_t *Iock)

= Notes & Restrictions:

. Itisillega to call thisroutine with alock variable that is not initialized.

OMP_SET_LOCK

= Purpose:

. Thissubroutine forces the executing thread to wait until the specified lock is available. A thread is granted
ownership of alock when it becomes available.

- Format:
SUBROUTI NE OVP_SET_LOCK(var)
Fortran SUBROUTI NE OMP_SET_NEST_LOCK(var)
voi d onp_set | ock(omp_|ock t *Iock)
C/C++ voi d onp_set _nest |l ock(onmp_nest | ock t *Iock)

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (54 of 59) [2003-11-4 8:59:48]

OpenMP

- Notes & Restrictions:

. Itisillegal to call thisroutine with alock variable that is not initialized.

OMP_UNSET_LOCK
= Purpose:
. Thissubroutine releases the lock from the executing subroutine.

- Format:

SUBROUTI NE OVP_UNSET_LOCK(var)
Fortran SUBROUTI NE OVP_UNSET_NEST_LOCK(var)

voi d onp_unset | ock(onp_lock t *Iock)
CIC++ voi d onp_unset _nest | ock(onp_nest | ock_t *I ock)

= Notes & Restrictions:

. Itisillega to call thisroutine with alock variable that is not initialized.

OMP_TEST_LOCK

- Purpose:

. This subroutine attempts to set alock, but does not block if the lock is unavailable.

- Format:
SUBROUTI NE OVP_TEST_LOCK(var)
Fortran SUBROUTI NE OMP_TEST_NEST LOCK(var)
void onp_test |ock(onp_ | ock t *Iock)
CIC++ voi d onp_test _nest__lock(onp_nest |ock t *Iock)

= Notes & Restrictions:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (55 of 59) [2003-11-4 8:59:48]

OpenMP
r

. For Fortran, . TRUE. isreturned if the lock was set successfully, otherwise .FALSE. is returned.
. For C/C++, non-zero isreturned if the lock was set successfully, otherwise zero is returned.

. Itisillegal to call thisroutine with alock variable that is not initialized.

. OpenMP provides four environment variables for controlling the execution of parallel code.

. All environment variable names are uppercase. The values assigned to them are not case sensitive.
OMP_SCHEDULE

Appliesonly to DO, PARALLEL DO (Fortran) andf or, paral |l el for (C/C++) directives
which have their schedule clause set to RUNTIME. The value of this variable determines how
iterations of the loop are scheduled on processors. For example:

setenv OVP_SCHEDULE "gui ded, 4"
setenv OWP_SCHEDULE "dynam c"

OMP_NUM_THREADS
Sets the maximum number of threads to use during execution. For example:
set env OVP_NUM THREADS 8

OMP_DYNAMIC

Enables or disables dynamic adjustment of the number of threads available for execution of parallel
regions. Valid values are TRUE or FAL SE. For example:

set env OVP_DYNAM C TRUE

OMP_NESTED
Enables or disables nested parallelism. Valid values are TRUE or FALSE. For example:
setenv OVP_NESTED TRUE

. Implementation notes:

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (56 of 59) [2003-11-4 8:59:48]

OpenMP

%The current IBM OpenMP implementations (IBM and KAL) for the SP do not implement nested
paralelism. The KAl implementation does implement dynamic threads.

= LC OpenMP Implementations:

« OpenMP isfully supported in the native compilers of all IBM, Intel and Compaqg systems. Additionally, the
KAI Guide products, which fully support OpenMP, are available on LC production machines.

. LC maintains different versions of compilers. For the most recent information, please see:
www.lInl.gov/asci/platf orms/bluepac/ CompsAvail s.html

= Compiling:

. For IBM systems, use theflag - gsnp=onp

. For Intel systems, usetheflag - opennp

. For Compaq systems, usethe flag - onp

. For KAI on any system, there is no special OpenMP flag required.
- Documentation:

. IBM compiler documentation:

Vendor: www-4.ibm.com/software/ad/fortran and www-4.ibm.com/software/ad/caix
Locally: see the /usr/local/doc/xIf* and /usr/local/doc/xIc* files

. Intel compiler documentation:
Vendor: www.intel.com/software/products/compilers/

Locally: see the /usr/local/doc/ia32_ref and /usr/local/doc/intel_compilersfiles

. Compag compiler documentation:

Vendor:
C (Developer's Toolkit): http://h30097.www3.hp.com/dtk

Fortran: http://h18009.www1.hp.com/fortran/docs
C++: http://h30097.www3.hp.com/cplus
Locally: see the relevant filesin /usr/local/docs

. KAI C/C++ and Fortran compilers documentation:
Vendor: http://www.kai.com/

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (57 of 59) [2003-11-4 8:59:48]

http://www.llnl.gov/asci/platforms/bluepac/CompsAvails.html
http://www-4.ibm.com/software/ad/fortran
http://www-4.ibm.com/software/ad/caix
http://www.intel.com/software/products/compilers/
http://h30097.www3.hp.com/dtk
http://h18009.www1.hp.com/fortran/docs
http://h30097.www3.hp.com/cplus
http://www.kai.com/

OpenMP

Locally: see the /usr/local/doc/Guide* files

References and More Information ‘

. The OpenMP web site.
http://www.openmp.org/

. "OpenMP C and C++ Application Program Interface, Version 1.0". OpenMP Architecture Review Board.
October 1998.

. "OpenMP Fortran Application Program Interface, Version 1.0". OpenMP Architecture Review Board.
October 1997.

. "OpenMP". Workshop presentation. John Engle, Lawrence Livermore National Laboratory. October, 1998.
. "OpenMP". Alliance 98 Tutorial. Faisel Saied, NCSA.

. "Introduction to OpenMP Using the KAP/PRO Toolset". Kuck & Associates, Inc.

. "Guide Reference Manual (C/C++ Edition, Version 3.6". Kuck & Associates, Inc.

. "Guide Reference Manual (Fortran Edition, Version 3.6". Kuck & Associates, Inc.

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (58 of 59) [2003-11-4 8:59:48]

http://www.openmp.org/

OpenMP

file:///D)/hp/HPC/OPEN%20MP/OpenMP.htm (59 of 59) [2003-11-4 8:59:48]

	Local Disk
	OpenMP

	BHJAJOLFLHCALCEBNKACJDDGIHILMNDF:
	form1:
	f1:
	f2:
	f3:

