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Introduction

The IMSL Fortran 90 MP Library
The IMSL Fortran 90 MP Library consists of numerical algorithms using Fortran
90 language constructs, including Fortran 90 array data types. One feature of the
design is that the default use is as simple as the problem statement. Complicated,
professional-quality mathematical software is hidden from the casual or beginning
user. The IMSL Fortran 90 MP Library draws upon subroutines in the IMSL
FORTRAN 77 Numerical Libraries products for software activities such as error
processing and additional functionality. We emphasize that users who have calls to
IMSL FORTRAN 77 Libraries routines will continue to have their codes function as
they did using earlier FORTRAN 77 compilers.

MPI REQUIRED

Users of the IMSL Fortran 90 MP Library benefit by a standard (MPI) Message
Passing Interface environment. This is needed to accomplish parallel computing
within parts of Chapter 6-9. Gray shading in the documentation cues the reader
when this is an issue. If parallel computing is not required, then the MP Library
suite of dummy MPI routines can be substituted for standard MPI routines. All
requested MPI routines called by the MP Library are in this dummy suite. Warning
messages will appear if a code or example requires more than one process to
execute. Typically users need not be aware of the parallel codes.

Note that a standard MPI environment is not part of the IMSL Fortran 90 MP
Library. The standard includes a library of MPI Fortran and C routines, MPI
“include” files, usage documentation, and other run-time utilities.

The library routines, which begin on page 1, outline usage instructions for a suite
of mathematical software written in Fortran 90. These routines are used with
computer systems that support a standard Fortran 90 compiler. A basic library of
numerical routines is provided for common applications. Users with linear solver
application can turn directly to page 1. In addition, high-level operators and
functions are described in Chapter 6, “Operators and Generic Functions - The
Parallel Option.” For information on writing a more compact and readable code,
see Chapter 6. 1

                                                          
1 Important Note: Please refer to the “Table of Contents”  for locations of chapter references, example references, and
function references.
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User Background
To use this product you should be familiar with the Fortran 90 language as well as
the  FORTRAN 77 language, which is, in practice, a subset of Fortran 90. A
summary of the ISO and ANSI standard language is found in Metcalf and Reid
(1990). A more comprehensive illustration is given in Adams et al. (1992).

Those routines implemented in the IMSL Fortran 90 MP Library provide a
simpler, more reliable user interface than is possible with FORTRAN 77 IMSL
Numerical Libraries products.  Features of the IMSL Fortran 90 MP Library
include the use of descriptive names, short required argument lists, packaged
user-interface blocks for the Fortran 90 routines, interface blocks for the entire
FORTRAN 77 Numerical Libraries, a suite of testing and benchmark software, and
a collection of examples. Source code is provided for the benchmark software and
examples.

The IMSL Fortran 90 MP Library routines have lots of flexibility in their design.
On the other hand, the design includes the feature of being able to ignore these
extras if they are not needed.

Using Library Subprograms
Each routine in the IMSL Library has a generic root name that abbreviates its
function. For example, the name rand_gen is the suffix for the routine that
generates a Fortran 90 rank-1 array of random numbers. The routine name has the
prefix of the data type for the routine. These separate parts of the name are joined
with the underscore character “_”. Thus, the full prefix and suffix joined together
form the complete name of the single-precision version of the random number
generator, s_rand_gen. A generic name is also supported, in this case
rand_gen. In most cases, the strings “s_”, “d_”, “c_”, or “z_” can be
deleted. The documentation for the routines omits the prefix, and hence the
entire suite of routines for that subject is documented.

Examples that appear in the documentation use the generic name. To further
illustrate this principle, note the lin_sol_gen documentation (see Chapter 1),
for solving general systems of linear algebraic equations. A description is
provided for just one data type. There are four documented routines in this
subject area: s_lin_sol_gen, d_lin_sol_gen, c_lin_sol_gen, and
z_lin_sol_gen.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module
is required with the routines. The naming convention for modules joins the suffix
“_int” to the generic routine name. Thus, the line use “lin_sol_gen_int” is
inserted near the top of any routine that calls the subprogram “lin_sol_gen”.

These routines constitute single-precision, double-precision, complex, and
complex double-precision versions of the code. When dealing with a complex
matrix, all references to the transpose of a matrix, AT , are replaced by the adjoint
matrix
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A A AT H≡ =∗

where the overstrike denotes complex conjugation.  IMSL Fortran 90 MP Library
linear algebra software uses this convention to conserve the utility of generic
documentation for that code subject. References to orthogonal matrices are
replaced by their complex counterparts, unitary matrices. Thus, an n × n

orthogonal matrix Q satisfies the condition Q Q IT
n= . An n × n unitary matrix V

satisfies the analogous condition for complex matrices, V V In
* = .

Using Operators and Generic Functions
For users who are primarily interested in easy-to-use software for numerical linear
algebra, see Chapter 6, “Operators and Generic Functions - The Parallel Option.”
This compact notation for writing Fortran 90 programs, when it applies, results in
code that is easier to read and maintain than traditional subprogram usage.

Note that all of the examples in Chapters 1 and 2 have been rewritten using
operators and generic functions whenever appropriate. These examples are
renamed as shown in Chapter 6, Table A - “Examples and Corresponding
Operators.”  Less code is typically needed to compute equivalent results.

Users may begin their code development using operators and generic functions. If
a shorter executable code is required, a user may need to switch to equivalent
subroutine calls using IMSL Fortran 90 MP Library routines or mathematical
routines in the IMSL FORTRAN 77 Libraries.

Defined Array Operation Matrix Operation
A .x. B AB
.i. A A−1

.t. A, .h. A A AT , *

A .ix. B A B−1

B .xi. A BA−1

A .tx. B, or (.t. A) .x. B

A .hx. B, or (.h. A) .x. B
A B A BT , *

B .xt. A, or B .x. (.t. A)

B .xh. A, or B .x. (.h. A)
BA BAT , *

Defined Array Functions Matrix Operation
S=SVD(A [,U=U, V=V]) A USV T=
E=EIG(A [[,B=B, D=D],

V=V, W=W])

(AV = VE), AVD = BVE

(AW = WE), AWD = BWE
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Defined Array Functions Matrix Operation
R=CHOL(A) A R RT=
Q=ORTH(A [,R=R]) A QR Q Q IT= =0 5,
U=UNIT(A) u a a1 1 1, / ,K K=

F=DET(A) det(A) = determinant

K=RANK(A) rank(A) = rank

P=NORM(A[,[type=]i])
p A a

p A s

p A a

j ij

i

m

huge i ij

j

n

= =

= = =

= =

=

∞↔

∑

∑

1
1

2 1

1

max ( )

max ( )

 largest singular value

=1
0 5

C=COND(A) s srank A1 / 0 5
Z=EYE(N) Z IN=
A=DIAG(X) A diag x= 1,K1 6
X=DIAGONALS(A) x a= 11,K1 6
W=FFT(Z); Z=IFFT(W) Discrete Fourier Transform, Inverse

A=RAND(A) random numbers, 0 < A < 1

L=isNaN(A) test for NaN, if (l) then…

Getting Started
It is strongly suggested that users force all program variables to be explicitly
typed. This is done by including the line “IMPLICIT NONE” as close to the first
line as possible. Study some of the examples accompanying an IMSL Fortran 90
MP Library routine early on. These examples are available online as part of the
product.

Each subject routine called or otherwise referenced requires the “use” statement
for an interface block designed for that subject routine. The contents of this
interface block are the interfaces to the separate routines for that subject and the
packaged descriptive names for option numbers that modify documented optional
data or internal parameters. Although this seems like an additional complication,
many typographical errors are avoided at an early stage in development. The
“use” statement is required for each routine called. As illustrated in Examples 3
and 4 in routine lin_geig_gen, the “use” statement is required for defining
the secondary option flags.

The function subprogram for s_NaN() or d_NaN() does not require an
interface block because it has only a “required” dummy argument.
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Error Processing and the Testing Suite
A design principle of the IMSL Fortran 90 MP Library subroutines is that error
messages are, by default, printed in the routines. Information to print the error
messages can be returned to the calling program unit. No printing in the routine
itself needs to occur. This happens when the argument “epack=” is included in
the call to the routine. The argument is an array of derived type s_error or
d_error, see Chapter 5.

The reasons for this design are described more fully in Hanson (1992). Primarily
the use of separate arrays for each parallel call to routines will allow the user to
summarize errors using the routine error_post in a non-parallel part of an
application. This allows any number of parallel calls to be made without danger
of “jumbling” or mixing error messages.

Most users call IMSL Fortran 90 MP Library routines, but not in parallel. If they
do not include the “epack=” argument, error messages will print within the
routines. This is the same principle as for the Numerical Libraries.

When an error occurs with the argument “epack=” used, but the array has an
inadequate size to hold the information describing the error, output is flooded or
blocked with a NaN (Not a Number) (ANSI/IEEE, 1985). Further computational
use of the output may result in an unhandled exception from the processor. To
test for NaN output, the calling program unit can execute the following logical
condition:

isNan(floating_point_output) == .TRUE.

See the isNaN() function, Chapter 6.

The symbol floating_point_output will be any scalar or array output of the
routine.

For complete information on errors, include the argument “epack=” in your
program. This argument is used to pass message numbers, error severity level,
and associated data to the error post-processing routine, error_post. Every
call to a separate routine that includes the  argument “epack=” may increase the
number of pending error messages. When several fatal or terminal error messages
are pending, reset the level of PRINT and STOP associated with error message
printing and stopping, see Chapter 9.

The value of s_error (1) %idummy, or d_error (1) %idummy, indicates the
size of the list containing error message numbers and data. Call error_post,
see Chapter 5, any time the array value s_error (1) %idummy or (d_error
(1) %idummy) is positive. You may follow calls to any IMSL Library routine
with a call to the error post-processor.
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Optional Subprogram Arguments
IMSL Fortran 90 MP Library routines have required and optional arguments. All
arguments are documented for each routine. For example, consider the routine
lin_sol_gen that solves the linear algebraic matrix equation Ax = b. The
required arguments are three rank-2 Fortran 90 arrays: A, b, and x. The input data
for the problem are the A and b arrays; the solution output is the x array. Often
there are other arguments for this linear solver that are closely connected with the
computation but are not as compelling as the primary problem. The inverse
matrix A−1 may be needed as part of a larger application. To output this
parameter, use the optional argument given by the “ainv=” keyword. The rank-2
output array argument used on the right-hand side of the equal sign contains the
inverse matrix. See Example 2 in Chapter 1, “Linear Solvers” of lin_sol_gen
for an example of computing the inverse matrix.

Each of the primary routines have arguments “epack=” and “iopt=”. As noted
the “epack=” argument is of derived type s_error or d_error. The prefix
“s_” or “d_” is chosen depending on the precision of the data type for that
routine. The optional argument “iopt=” is part of the interface to each routine,
and its use is to modify internal algorithm choices or other parameters.

Optional Data
This additional optional argument is further distinguished—a derived type array
that contains a number of parameters to modify the internal algorithm of a
routine. This derived type has the name ?_options, where “?_” is either “s_”
or “d_”. The choice depends on the precision of the data type. The declaration of
this derived type is packaged within the modules for each generic suite of codes.

The definition of the derived types is:
type ?_options

        integer idummy; real(kind(?)) rdummy
end type

where the “?_” is either “s_” or “d_”,  and the kind value matches the
desired data type indicated by the choice of “s” or “d”.

Example 3 in Chapter 1, “Linear Solvers” of lin_sol_gen illustrates the use of
iterative refinement to compute a double-precision solution based on a single-
precision factorization of the matrix. This is communicated to the routine using an
optional argument with optional data. For efficiency of iterative refinement,
perform the factorization step once, then save the factored matrix in the array A
and the pivoting information in the rank-1 integer array, ipivots. By default,
the factorization is normally discarded. To enable the routine to be re-entered
with a previously computed factorization of the matrix, optional data are used as
array entries in the “iopt=” optional argument. The packaging of
lin_sol_gen includes the definitions of the self-documenting integer
parameters lin_sol_gen_save_LU and lin_sol_gen_solve_A. These
parameters have the values 2 and 3, but the programmer usually does not need to
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be aware of it.
The following rules apply to the “iopt=iopt” optional argument:

1. Define a relative index, for example IO, for placing option numbers and
data into the array argument iopt. Initially, set IO = 1. Before a call to the
IMSL Library routine, follow Steps 2 through 4.

2. The data structure for the optional data array has the following form:
iopt (IO) = ?_options (Option_number, Optional_data)
[iopt (IO + 1) =?_options (Option_number, Optional_data)]

The length of the data set is specified by the documentation for an individual
routine. (The Optional_data is output in some cases and may be not used in
other cases.) The square braces [. . .] denote optional items.

Illustration: Example 3 in Chapter 2, “Singular Value and Eigenvalue
Decomposition” of lin_eig_self, a new definition for a small diagonal
term is passed to lin_sol_self. There is one line of code required for the
change and the new tolerance:

iopt (1) = d_options(d_lin_sol_self_set_small,
epsilon(one) *abs (d(i)))

3. The internal processing of option numbers stops when Option_number == 0
or when IO > size(iopt). This sends a signal to each routine having this
optional argument that all desired changes to default values of internal
parameters have been made. This implies that the last option number is the
value zero or the value of size (iopt) matches the last optional value
changed.

4. To add more options, replace IO with IO + n, where n is the number of items
required for the previous option. Go to Step 2.

Option numbers can be written in any order, and any selected set of options can
be chosen to be changed from the defaults. They may be repeated. Example 3 in
Chapter 1, “Linear Solvers” of lin_sol_self uses three and then four option
numbers for purposes of computing an eigenvector associated with a known
eigenvalue.

Combining Fortran 90 and FORTRAN 77
Routines

Users will often want to combine FORTRAN 77 application software with
IMSL Fortran 90 MP Library routines. This section deals with the rules that a
programmer must follow to accomplish this. Fortran 90 arrays are no longer
required to be stored in a specified manner as was required in FORTRAN 77.
However, much software exists in FORTRAN 77 that relies on this previous
memory model of computation.
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Example 4 in Chapter 1, “Linear Solvers” of lin_sol_gen illustrates how the
various libraries work together. In this example, which evaluates the matrix
exponential to solve a linear, constant matrix system of ordinary differential
equations, routines from both libraries are used.

The interface for EVCRG and other routines in the FORTRAN 77 IMSL
MATH/LIBRARY and STAT/LIBRARY products are provided by use of the
IMSL Fortran 90 MP Library module Numerical_Libraries. This module is
invoked with the statement “Use Numerical_Libraries” near the first line of
the program unit. Even for users who choose to continue with just the FORTRAN

77 IMSL routines, we strongly recommend the use of this module. It can show
type mismatches, missing arguments, and other “silly” mistakes before they
become dangerously hidden in an application. Interface blocks for the Fortran 90
codes are individually provided. The interface for this FORTRAN 77 routine shows
that the arrays A, EVAL and EVEC, containing input and output for EVCRG, are
“assumed-size”. The alternate arrays in this example are “assumed-shape”.
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Chapter:1 Linear Solvers

Introduction
This chapter describes routines for solving systems of linear algebraic equations
by direct matrix factorization methods, for computing only the matrix
factorizations, and for computing linear least-squares solutions.

Contents
lin_sol_gen .............................................................................................. 2
Example 1: Solving a Linear System of Equations..................................... 2
Example 2: Matrix Inversion and Determinant ........................................... 5
Example 3: Solving a System with Iterative Refinement............................ 6
Example 4: Evaluating the Matrix Exponential........................................... 7
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Example 1: Solving a Linear Least-squares System.................................. 9
Example 2: System Solving with Cholesky Method ................................. 13
Example 3: Using Inverse Iteration for an Eigenvector ............................ 14
Example 4: Accurate Least-squares Solution with Iterative Refinement.. 16
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Example 1: Solving a Linear Least-squares System................................ 18
Example 2: System Solving with the Generalized Inverse....................... 22
Example 3: Two-Dimensional Data Fitting ............................................... 23
Example 4: Least-squares with an Equality Constraint............................ 25
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Example 1: Least-squares solution of a Rectangular System.................. 26
Example 2: Polar Decomposition of a Square Matrix............................... 29
Example 3: Reduction of an Array of Black and White ............................ 30
Example 4: Laplace Transform Solution .................................................. 31
lin_sol_tri ............................................................................................ 34
Example 1: Solution of Multiple Tridiagonal Systems .............................. 34
Example 2: Iterative Refinement and Use of Partial Pivoting................... 37
Example 3: Selected Eigenvectors of Tridiagonal Matrices ..................... 39
Example 4: Tridiagonal Matrix Solving within Diffusion Equations........... 41
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lin_sol_gen
Solves a general system of linear equations Ax = b. Using optional arguments, any
of several related computations can be performed. These extra tasks include
computing the LU factorization of A using partial pivoting, representing the

determinant of A, computing the inverse matrix A��, and solving A x bT =  or
Ax = b given the LU factorization of A.

Required Arguments

A   (Input [/Output])
Array of size n × n containing the matrix.

b   (Input [/Output])
Array of size n × nb containing the right-hand side matrix.

x   (Output)
Array of size n × nb containing the solution matrix.

Example 1: Solving a Linear System of Equations

This example solves a linear system of equations. This is the simplest use of
lin_sol_gen. The equations are generated using a matrix of random numbers,
and a solution is obtained corresponding to a random right-hand side matrix.
Also, see operator_ex01, Chapter 6, for this example using the operator
notation.

      use lin_sol_gen_int
      use rand_gen_int
      use error_option_packet

      implicit none

! This is Example 1 for LIN_SOL_GEN.

      integer, parameter :: n=32
      real(kind(1e0)), parameter :: one=1e0
      real(kind(1e0)) err
      real(kind(1e0)) A(n,n), b(n,n), x(n,n), res(n,n), y(n**2)

! Generate a random matrix.
      call rand_gen(y)
      A = reshape(y,(/n,n/))

! Generate random right-hand sides.
      call rand_gen(y)
      b = reshape(y,(/n,n/))

! Compute the solution matrix of Ax=b.
      call lin_sol_gen(A, b, x)

! Check the results for small residuals.
      res = b - matmul(A,x)
      err = maxval(abs(res))/sum(abs(A)+abs(b))
      if (err <= sqrt(epsilon(one))) then
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         write (*,*) ’Example 1 for LIN_SOL_GEN is correct.’
      end if

      end

Optional Arguments

NROWS = n   (Input)
Uses array A(1:n, 1:n) for the input matrix.
Default: n = size (A, 1)

NRHS = nb   (Input)
Uses array b(1:n, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:)   (Output [/Input])
Integer array of size n that contains the individual row interchanges. To
construct the permuted order so that no pivoting is required, define an
integer array ip(n). Initialize ip(i) = i, i = 1, n and then execute the
loop, after calling lin_sol_gen,

k=pivots(i)

interchange ip(i) and ip(k), i=1,n

The matrix defined by the array assignment that permutes the rows,
A(1:n, 1:n) = A(ip(1:n), 1:n), requires no pivoting for maintaining
numerical stability. Now, the optional argument “iopt=” and the
packaged option number ?_lin_sol_gen_no_pivoting can be
safely used for increased efficiency during the LU factorization of A.

det = det(1:2)   (Output)
Array of size 2 of the same type and kind as A for representing the
determinant of the input matrix. The determinant is represented by two
numbers. The first is the base with the sign or complex angle of the
result. The second is the exponent. When det(2) is within exponent
range, the value of this expression is given by abs(det(1))**det(2) *
(det(1))/abs(det(1)). If the matrix is not singular, abs(det(1)) =
radix(det); otherwise, det(1) = 0., and det(2) = − huge(abs(det(1))).

ainv = ainv(:,:)   (Output)
Array of the same type and kind as A(1:n, 1:n). It contains the inverse

matrix, A��, when the input matrix is nonsingular.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix; used for
passing optional data to the routine. The options are as follows:
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Packaged Options for lin_sol_gen

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_gen_set_small 1

s_, d_, c_, z_ lin_sol_gen_save_LU 2

s_, d_, c_, z_ lin_sol_gen_solve_A 3

s_, d_, c_, z_ lin_sol_gen_solve_ADJ 4

s_, d_, c_, z_ lin_sol_gen_no_pivoting 5

s_, d_, c_, z_ lin_sol_gen_scan_for_NaN 6

s_, d_, c_, z_ lin_sol_gen_no_sing_mess 7

s_, d_, c_, z_ lin_sol_gen_A_is_sparse 8

iopt(IO) = ?_options(?_lin_sol_gen_set_small, Small)
Replaces a diagonal term of the matrix U if it is smaller in magnitude
than the value Small using the same sign or complex direction as the
diagonal. The system is declared singular. A solution is approximated
based on this replacement if no overflow results.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_sol_gen_set_save_LU, ?_dummy)

Saves the LU factorization of A. Requires the optional argument
“pivots=” if the routine will be used later for solving systems with the
same matrix. This is the only case where the input arrays A and b are not
saved. For solving efficiency, the diagonal reciprocals of the matrix U
are saved in the diagonal entries of A.

iopt(IO) = ?_options(?_lin_sol_gen_solve_A, ?_dummy)

Uses the LU factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_gen_solve_ADJ, ?_dummy)

Uses the LU factorization of A computed and saved to solve A7x = b.

iopt(IO) = ?_options(?_lin_sol_gen_no_pivoting, ?_dummy)

Does no row pivoting. The array pivots (:), if present, are output as
pivots (i) = i, for i = 1, …, n.

iopt(IO) = ?_options(?_lin_sol_gen_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_lin_sol_gen_no_sing_mess,?_dummy)

Do not point an error message when the matrix A is singular.

iopt(IO) = ?_options(?_lin_sol_gen_A_is_sparse,?_dummy)

Uses an indirect updating loop for the LU factorization that is efficient
for sparse matrices where all matrix entries are stored.
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Description

The lin_sol_gen routine solves a system of linear algebraic equations with a
nonsingular coefficient matrix A. It first computes the LU factorization of A with
partial pivoting such that LU A= .  The matrix U is upper triangular, while the
following is true:

L A L P L P  L P A Un n n  n
−

− −≡ ≡1
1 1 1 1L

The factors PL and LL are defined by the partial pivoting. Each PL is an interchange

of row i with row j ≥ i. Thus, PL is defined by that value of j. Every

L I m ei i i
T= +

is an elementary elimination matrix. The vector mi  is zero in entries 1, ..., i. This
vector is stored as column i in the strictly lower-triangular part of the working
array containing the decomposition information. The reciprocals of the diagonals
of the matrix U are saved in the diagonal of the working array. The solution of the
linear system Ax = b is found by solving two simpler systems,

y L b= −1 and x U y= −1

more mathematical details are found in Golub and Van Loan (1989, Chapter 3).

Example 2: Matrix Inversion and Determinant

This example computes the inverse and determinant of A, a random matrix. Tests
are made on the conditions

AA I− =1

and

det detA A− −=1 13 8 0 5
Also, see operator_ex02.

      use lin_sol_gen_int
      use rand_gen_int

      implicit none

! This is Example 2 for LIN_SOL_GEN.

      integer i
      integer, parameter :: n=32
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
      real(kind(1e0)) err
      real(kind(1e0)) A(n,n), b(n,0), inv(n,n), x(n,0), res(n,n), &
           y(n**2), determinant(2), inv_determinant(2)

! Generate a random matrix.

      call rand_gen(y)
      A = reshape(y,(/n,n/))
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! Compute the matrix inverse and its determinant.

      call lin_sol_gen(A, b, x, nrhs=0, &
                ainv=inv, det=determinant)

! Compute the determinant for the inverse matrix.

      call lin_sol_gen(inv, b, x, nrhs=0, &
                det=inv_determinant)

! Check residuals, A times inverse = Identity.

      res = matmul(A,inv)
      do i=1, n
         res(i,i) = res(i,i) - one
      end do
!           <= sqrt(epsilon(one)))*abs(determinant(2))) then

      err = sum(abs(res)) / sum(abs(a))
      if (err <= sqrt(epsilon(one))) then
         if (determinant(1) == inv_determinant(1) .and. &
            (abs(determinant(2)+inv_determinant(2)) &
            <= abs(determinant(2))*sqrt(epsilon(one)))) then
            write (*,*) ’Example 2 for LIN_SOL_GEN is correct.’
         end if
      end if

      end

Example 3: Solving a System with Iterative Refinement

This example computes a factorization of a random matrix using single-precision
arithmetic. The double-precision solution is corrected using iterative refinement.
The corrections are added to the developing solution until they are no longer
decreasing in size. The initialization of the derived type array iopti(1:2) =
s_option(0,0.0e0) leaves the integer part of the second element of
iopti(:) at the value zero. This stops the internal processing of options inside
lin_sol_gen. It results in the LU factorization being saved after exit. The next
time the routine is entered the integer entry of the second element of iopt(:)
results in a solve step only. Since the LU factorization is saved in arrays A(:,:)
and ipivots(:), at the final step, solve only steps can occur in subsequent
entries to lin_sol_gen. Also, see operator_ex03,Chapter 6.

      use lin_sol_gen_int
      use rand_gen_int

      implicit none

! This is Example 3 for LIN_SOL_GEN.

      integer, parameter :: n=32
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
      real(kind(1d0)), parameter :: d_zero=0.0d0
      integer ipivots(n)
      real(kind(1e0)) a(n,n), b(n,1), x(n,1), w(n**2)
      real(kind(1e0)) change_new, change_old
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      real(kind(1d0)) c(n,1), d(n,n), y(n,1)
      type(s_options) ::  iopti(2)=s_options(0,zero)

! Generate a random matrix.

      call rand_gen(w)
      a = reshape(w, (/n,n/))

! Generate a random right hand side.

      call rand_gen(b(1:n,1))

! Save double precision copies of the matrix and right hand side.

      d = a
      c = b

! Start solution at zero.

      y = d_zero
      change_old = huge(one)

! Use packaged option to save the factorization.

      iopti(1) = s_options(s_lin_sol_gen_save_LU,zero)

      iterative_refinement: do
         b = c - matmul(d,y)
         call lin_sol_gen(a, b, x, &
                   pivots=ipivots, iopt=iopti)
         y = x + y
         change_new = sum(abs(x))

! Exit when changes are no longer decreasing.

         if (change_new >= change_old) &
             exit iterative_refinement
         change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
         iopti(2) = s_options(s_lin_sol_gen_solve_A,zero)
      end do iterative_refinement
      write (*,*) ’Example 3 for LIN_SOL_GEN is correct.’
      end

Example 4: Evaluating the Matrix Exponential

This example computes the solution of the ordinary differential equation problem

dy

dt
Ay=

with initial values y(0) = y�. For this example, the matrix A is real and constant

with respect to &t . The unique solution is given by the matrix exponential:

y t e yAt1 6 = 0
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This method of solution uses an eigenvalue-eigenvector decomposition of the
matrix

A XDX= −1

to evaluate the solution with the equivalent formula

y t Xe zDt1 6 = 0

where

z X y0
1

0= −

is computed using the complex arithmetic version of lin_sol_gen. The results
for y(t) are real quantities, but the evaluation uses intermediate complex-valued
calculations. Note that the computation of the complex matrix X and the diagonal
matrix D is performed using the IMSL MATH/LIBRARY FORTRAN 77 routine
EVCRG. This is an illustration of combining parts of FORTRAN 77 and Fortran 90
code. The information is made available to the Fortran 90 compiler by using the
FORTRAN 77 interface for EVCRG. Also, see operator_ex04, Chapter 6, where
the Fortran 90 function EIG() has replaced the call to EVCRG.

      use lin_sol_gen_int
      use rand_gen_int
      use Numerical_Libraries

      implicit none

! This is Example 4 for LIN_SOL_GEN.

      integer, parameter :: n=32, k=128
      real(kind(1e0)), parameter :: one=1.0e0, t_max=1, delta_t=t_max/(k-1)
      real(kind(1e0)) err, A(n,n), atemp(n,n), ytemp(n**2)
      real(kind(1e0)) t(k), y(n,k), y_prime(n,k)
      complex(kind(1e0)) EVAL(n), EVEC(n,n)
      complex(kind(1e0)) x(n,n), z_0(n,1), y_0(n,1), d(n)
      integer i

! Generate a random matrix in an F90 array.

      call rand_gen(ytemp)
      atemp = reshape(ytemp,(/n,n/))

! Assign data to an F77 array.
      A = atemp

! Use IMSL Numerical Libraries F77 subroutine for the
! eigenvalue-eigenvector calculation.
      CALL EVCRG(N, A, N, EVAL, EVEC, N)

! Generate a random initial value for the ODE system.
      call rand_gen(ytemp(1:n))
      y_0(1:n,1) = ytemp(1:n)

! Assign the eigenvalue-eigenvector data to F90 arrays.
      d = EVAL; x = EVEC
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! Solve complex data system that transforms the initial values, Xz_0=y_0.
      call lin_sol_gen(x, y_0, z_0)
      t = (/(i*delta_t,i=0,k-1)/)

! Compute y and y’ at the values t(1:k).
      y = matmul(x, exp(spread(d,2,k)*spread(t,1,n))* &
                   spread(z_0(1:n,1),2,k))
      y_prime  = matmul(x, spread(d,2,k)* &
                      exp(spread(d,2,k)*spread(t,1,n))* &
                      spread(z_0(1:n,1),2,k))

! Check results. Is  y’ - Ay = 0?
      err = sum(abs(y_prime-matmul(atemp,y))) / &
           (sum(abs(atemp))*sum(abs(y)))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for LIN_SOL_GEN is correct.’
      end if

      end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for lin_sol_gen. The messages are
numbered 161−175; 181−195; 201−215; 221−235.

lin_sol_self
Solves a system of linear equations Ax = b, where A is a self-adjoint matrix. Using
optional arguments, any of several related computations can be performed. These
extra tasks include computing and saving the factorization of A using symmetric

pivoting, representing the determinant of A, computing the inverse matrix A��, or
computing the solution of Ax = b given the factorization of A. An optional
argument is provided indicating that A is positive definite so that the Cholesky
decomposition can be used.

Required Arguments

A   (Input [/Output])
Array of size n × n containing the self-adjoint matrix.

b   (Input [/Output])
Array of size n × nb containing the right-hand side matrix.

x   (Output)
Array of size n × nb containing the solution matrix.

Example 1: Solving a Linear Least-squares System

This example solves a linear least-squares system Cx ≅ d, where CP[Q is a real

matrix with m ≥ n. The least-squares solution is computed using the self-adjoint
matrix

A C CT=
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and the right-hand side

b A dT=

The n × n self-adjoint system Ax = b is solved for x. This solution method is not
as satisfactory, in terms of numerical accuracy, as solving the system Cx ≅ d
directly by using the routine lin_sol_lsq. Also, see operator_ex05, 
Cha pter 6.

      use lin_sol_self_int
use rand_gen_int

      implicit none

! This is Example 1 for LIN_SOL_SELF.

      integer, parameter :: m=64, n=32
      real(kind(1e0)), parameter :: one=1e0
      real(kind(1e0)) err
      real(kind(1e0)), dimension(n,n) :: A, b, x, res, y(m*n),&
             C(m,n), d(m,n)

! Generate two rectangular random matrices.
      call rand_gen(y)
      C = reshape(y,(/m,n/))

      call rand_gen(y)
      d = reshape(y,(/m,n/))

! Form the normal equations for the rectangular system.
      A = matmul(transpose(C),C)
      b = matmul(transpose(C),d)

! Compute the solution for Ax = b.
      call lin_sol_self(A, b, x)

! Check the results for small residuals.
      res = b - matmul(A,x)
      err = maxval(abs(res))/sum(abs(A)+abs(b))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_SOL_SELF is correct.’
      end if

      end

Optional Arguments

NROWS = n   (Input)
Uses array A(1:n, 1:n) for the input matrix.
Default: n = size(A, 1)

NRHS = nb   (Input)
Uses the array b(1:n, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.
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pivots = pivots(:)   (Output [/Input])
Integer array of size n + 1 that contains the individual row interchanges
in the first n locations. Applied in order, these yield the permutation
matrix P. Location n + 1 contains the number of the first diagonal term
no larger than Small, which is defined on the next page of this chapter.

det = det(1:2)   (Output)
Array of size 2 of the same type and kind as A for representing the
determinant of the input matrix. The determinant is represented by two
numbers. The first is the base with the sign or complex angle of the
result. The second is the exponent. When det(2) is within exponent
range, the value of the determinant is given by the expression
abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not
singular, abs(det(1)) = radix(det); otherwise, det(1) = 0., and
det(2) = −huge(abs(det(1))).

ainv = ainv(:,:)   (Output)
Array of the same type and kind as A(1:n, 1:n). It contains the inverse

matrix, A�� when the input matrix is nonsingular.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix; used for
passing optional data to the routine. The options are as follows:

Packaged Options for lin_sol_self

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_self_set_small 1

s_, d_, c_, z_ lin_sol_self_save_factors 2

s_, d_, c_, z_ lin_sol_self_no_pivoting 3

s_, d_, c_, z_ lin_sol_self_use_Cholesky 4

s_, d_, c_, z_ lin_sol_self_solve_A 5

s_, d_, c_, z_ lin_sol_self_scan_for_NaN 6

s_, d_, c_, z_ lin_sol_self_no_sing_mess 7

iopt(IO) = ?_options(?_lin_sol_self_set_small, Small)
When Aasen’s method is used, the tridiagonal system Tu = v is solved
using LU factorization with partial pivoting. If a diagonal term of the
matrix U is smaller in magnitude than the value Small, it is replaced by
Small. The system is declared singular. When the Cholesky method is
used, the upper-triangular matrix R, (see “Description”), is obtained. If a
diagonal term of the matrix R is smaller in magnitude than the value
Small, it is replaced by Small. A solution is approximated based on this
replacement in either case.
Default: the smallest number that can be reciprocated safely
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iopt(IO) = ?_options(?_lin_sol_self_save_factors, ?_dummy)

Saves the factorization of A. Requires the optional argument “pivots=”
if the routine will be used for solving further systems with the same
matrix. This is the only case where the input arrays A and b are not
saved. For solving efficiency, the diagonal reciprocals of the matrix R
are saved in the diagonal entries of A when the Cholesky method is
used.

iopt(IO) = ?_options(?_lin_sol_self_no_pivoting, ?_dummy)

Does no row pivoting. The array pivots(:), if present, satisfies
pivots(i) = i + 1 for i = 1, …, n − 1 when using Aasen’s method. When
using the Cholesky method, pivots(i) = i for i = 1, …, n.

iopt(IO) = ?_options(?_lin_sol_self_use_Cholesky, ?_dummy)

The Cholesky decomposition PAP7 = R7R is used instead of the Aasen
method.

iopt(IO) = ?_options(?_lin_sol_self_solve_A, ?_dummy)

Uses the factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_self_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs

iopt(IO) = ?_options(?_lin_sol_self_no_sing_mess,?_dummy)

Do not print an error message when the natrix A is singular.

Description

The lin_sol_self routine solves a system of linear algebraic equations with a
nonsingular coefficient matrix A. By default, the routine computes the
factorization of A using Aasen’s method. This decomposition has the form

PAP LTLT T=
where P is a permutation matrix, L is a unit lower-triangular matrix, and T is a
tridiagonal self-adjoint matrix. The solution of the linear system Ax = b is found
by solving simpler systems,

u L Pb= −1

 Tv = u

and

x P L vT T= −

More mathematical details for real matrices are found in Golub and Van Loan
(1989, Chapter 4).

When the optional Cholesky algorithm is used with a positive definite, self-
adjoint matrix, the factorization has the alternate form

PAP R RT T=
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 where P is a permutation matrix and R is an upper-triangular matrix. The solution
of the linear system Ax = b is computed by solving the systems

u R PbT= −

and

x P R uT= −1

The permutation is chosen so that the diagonal term is maximized at each step of
the decomposition. The individual interchanges are optionally available in the
argument “pivots”.

Example 2: System Solving with Cholesky Method

This example solves the same form of the system as Example 1. The optional
argument “iopt=” is used to note that the Cholesky algorithm is used since the
matrix A is positive definite and self-adjoint. In addition, the sample covariance
matrix

Γ = −σ 2 1A

is computed, where

σ2
2

=
−

−

d Cx

m n

the inverse matrix is returned as the “ainv=” optional argument. The scale factor
σ 2  and Γ are computed after returning from the routine. Also, see
operator_ex06, Chapter 6.

      use lin_sol_self_int
      use rand_gen_int
      use error_option_packet

      implicit none

! This is Example 2 for LIN_SOL_SELF.

      integer, parameter :: m=64, n=32
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
      real(kind(1e0)) err
      real(kind(1e0)) a(n,n), b(n,1), c(m,n), d(m,1), cov(n,n), x(n,1), &
           res(n,1), y(m*n)
      type(s_options) :: iopti(1)=s_options(0,zero)

! Generate a random rectangular matrix and a random right hand side.

      call rand_gen(y)
      c = reshape(y,(/m,n/))

      call rand_gen(d(1:n,1))

! Form the normal equations for the rectangular system.
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      a = matmul(transpose(c),c)
      b = matmul(transpose(c),d)

! Use packaged option to use Cholesky decomposition.

      iopti(1) = s_options(s_lin_sol_self_Use_Cholesky,zero)

! Compute the solution of Ax=b with optional inverse obtained.

      call lin_sol_self(a, b, x, ainv=cov, &
                               iopt=iopti)

! Compute residuals, x - (inverse)*b, for consistency check.

      res = x - matmul(cov,b)

! Scale the inverse to obtain the covariance matrix.

      cov = (sum((d-matmul(c,x))**2)/(m-n)) * cov

! Check the results.

      err = sum(abs(res))/sum(abs(cov))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_SOL_SELF is correct.’
      end if

      end

Example 3: Using Inverse Iteration for an Eigenvector

This example illustrates the use of the optional argument “iopt=” to reset the
value of a Small diagonal term encountered during the factorization. Eigenvalues
of the self-adjoint matrix

A C CT=

are computed using the routine lin_eig_self. An eigenvector, corresponding
to one of these eigenvalues, λ, is computed using inverse iteration. This solves the
near singular system (A − λI)x = b for an eigenvector, x. Following the
computation of a normalized eigenvector

y
x

x
=

the consistency condition

λ = y AyT

is checked. Since a singular system is expected, suppress the fatal error message
that normally prints when the error post-processor routine error_post is called
within the routine lin_sol_self. Also, see operator_ex07, Chapter 6.

      use lin_sol_self_int
      use lin_eig_self_int
      use rand_gen_int
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      use error_option_packet

      implicit none

! This is Example 3 for LIN_SOL_SELF.

      integer i, tries
      integer, parameter :: m=8, n=4, k=2
      integer ipivots(n+1)
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
      real(kind(1d0)) err
      real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), y(m*n), &
             e(n), atemp(n,n)
      type(d_options) :: iopti(4)

! Generate a random rectangular matrix.

      call rand_gen(y)
      c = reshape(y,(/m,n/))

! Generate a random right hand side for use in the inverse
! iteration.

      call rand_gen(y(1:n))
      b = reshape(y,(/n,1/))

! Compute the positive definite matrix.

      a = matmul(transpose(c),c)

! Obtain just the eigenvalues.

      call lin_eig_self(a, e)

! Use packaged option to reset the value of a small diagonal.
      iopti =    d_options(0,zero)
      iopti(1) = d_options(d_lin_sol_self_set_small,&
                 epsilon(one) * abs(e(1)))
! Use packaged option to save the factorization.
      iopti(2) = d_options(d_lin_sol_self_save_factors,zero)
! Suppress error messages and stopping due to singularity
! of the matrix, which is expected.
      iopti(3) = d_options(d_lin_sol_self_no_sing_mess,zero)
      atemp = a
      do i=1, n
         a(i,i) = a(i,i) - e(k)
      end do

! Compute A-eigenvalue*I as the coefficient matrix.
      do tries=1, 2
         call lin_sol_self(a, b, x, &
                     pivots=ipivots, iopt=iopti)
! When code is re-entered, the already computed factorization
! is used.
         iopti(4) = d_options(d_lin_sol_self_solve_A,zero)
! Reset right-hand side nearly in the direction of the eigenvector.
         b = x/sqrt(sum(x**2))
      end do
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! Normalize the eigenvector.
      x = x/sqrt(sum(x**2))

! Check the results.
      err =  dot_product(x(1:n,1),matmul(atemp(1:n,1:n),x(1:n,1))) - &
              e(k)

! If any result is not accurate, quit with no summary printing.
      if (abs(err) <= sqrt(epsilon(one))*e(1)) then
        write (*,*) ’Example 3 for LIN_SOL_SELF is correct.’
      end if

      end

Example 4: Accurate Least-squares Solution with Iterative
Refinement

This example illustrates the accurate solution of the self-adjoint linear system

I A

A

r

x

b
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�
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!
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computed using iterative refinement. This solution method is appropriate for
least-squares problems when an accurate solution is required. The solution and
residuals are accumulated in double precision, while the decomposition is
computed in single precision. Also, see operator_ex08, Chapter 6.

      use lin_sol_self_int
      use rand_gen_int

      implicit none

! This is Example 4 for LIN_SOL_SELF.

      integer i
      integer, parameter :: m=8, n=4
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
      real(kind(1d0)), parameter :: d_zero=0.0d0
      integer ipivots((n+m)+1)
      real(kind(1e0)) a(m,n), b(m,1), w(m*n), f(n+m,n+m), &
            g(n+m,1), h(n+m,1)
      real(kind(1e0)) change_new, change_old
      real(kind(1d0)) c(m,1), d(m,n), y(n+m,1)
      type(s_options) ::  iopti(2)=s_options(0,zero)

! Generate a random matrix.

      call rand_gen(w)

      a = reshape(w, (/m,n/))

! Generate a random right hand side.

      call rand_gen(b(1:m,1))

! Save double precision copies of the matrix and right hand side.
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      d = a
      c = b

! Fill in augmented system for accurately solving the least-squares
! problem.

      f = zero
      do i=1, m
         f(i,i) = one
      end do
      f(1:m,m+1:) = a
      f(m+1:,1:m) = transpose(a)

! Start solution at zero.

      y = d_zero
      change_old = huge(one)

! Use packaged option to save the factorization.

      iopti(1) = s_options(s_lin_sol_self_save_factors,zero)

      iterative_refinement: do
         g(1:m,1) = c(1:m,1) - y(1:m,1) - matmul(d,y(m+1:m+n,1))
         g(m+1:m+n,1) = - matmul(transpose(d),y(1:m,1))
         call lin_sol_self(f, g, h, &
                   pivots=ipivots, iopt=iopti)
         y = h + y
         change_new = sum(abs(h))

! Exit when changes are no longer decreasing.

         if (change_new >= change_old) &
             exit iterative_refinement
         change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
         iopti(2) = s_options(s_lin_sol_self_solve_A,zero)
      end do iterative_refinement
      write (*,*) ’Example 4 for LIN_SOL_SELF is correct.’
      end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for lin_sol_self. These error
messages are numbered 321−336; 341−356; 361−376; 381−396.

lin_sol_lsq
Solves a rectangular system of linear equations Ax ≅ b, in a least-squares sense.
Using optional arguments, any of several related computations can be performed.
These extra tasks include computing and saving the factorization of A using
column and row pivoting, representing the determinant of A, computing the
generalized inverse matrix A†, or computing the least-squares solution of
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Ax ≅ b

or

A7y ≅ b,

given the factorization of A.  An optional argument is provided for computing the
following unscaled covariance matrix

C A AT=
−3 8 1

Least-squares solutions, where the unknowns are non-negative or have simple
bounds, can be computed with PARALLEL_Nonegative_LSQ and
PARALLEL_Bounded_LSQ, Chapter 7.  These codes can be restricted to execute
without MPI.

Required Arguments

A   (Input [/Output])
Array of size m × n containing the matrix.

b   (Input [/Output])
Array of size m × nb containing the right-hand side matrix. When using

the option to solve adjoint systems A7x ≅ b, the size of b is n × nb.

x   (Output)
Array of size n × nb containing the solution matrix. When using the

option to solve adjoint systems A7x ≅ b, the size of x is m × nb.

Example 1: Solving a Linear Least-squares System

This example solves a linear least-squares system Cx ≅ d, where

Cm n×

is a real matrix with m > n. The least-squares problem is derived from polynomial
data fitting to the function

y x e
xx1 6 = + cos( )π
2

using a discrete set of values in the interval −1 ≤ x ≤ 1. The polynomial is
represented as the series

u x  c T xi

i

N

i1 6  1 6=
=
∑

0

where the T xi 0 5  are Chebyshev polynomials. It is natural for the problem matrix
and solution to have a column or entry corresponding to the subscript zero, which
is used in this code. Also, see operator_ex09, Chapter 6.
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      use lin_sol_lsq_int
      use rand_gen_int
      use error_option_packet

      implicit none

! This is Example 1 for LIN_SOL_LSQ.

      integer i
      integer, parameter :: m=128, n=8
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) A(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &
             u(m), v(m), w(m), delta_x

! Generate a random grid of points.
      call rand_gen(x)

! Transform points to the interval -1,1.
      x = x*2 - one

! Compute the constant ’PI/2’.
      pi_over_2 = atan(one)*2

! Generate known function data on the grid.
      y(1:m,1) = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
      A(:,0) = one; A(:,1) = x

      do i=2, n
         A(:,i) = 2*x*A(:,i-1) - A(:,i-2)
      end do

! Solve for the series coefficients.
      call lin_sol_lsq(A, y, c)

! Generate an equally spaced grid on the interval.
      delta_x = 2/real(m-1,kind(one))
      do i=1, m
         x(i) = -one + (i-1)*delta_x
      end do

! Evaluate residuals using backward recurrence formulas.
      u = zero
      v = zero
      do i=n, 0, -1
         w = 2*x*u - v + c(i,1)
         v = u
         u = w
      end do

      y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+1 sign changes in the residual curve occur.
      x = one
      x = sign(x,y(1:m,1))

      if (count(x(1:m-1) /= x(2:m)) >= n+1) then
         write (*,*) ’Example 1 for LIN_SOL_LSQ is correct.’
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      end if

      end

Optional Arguments

MROWS = m   (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size(A, 1)

NCOLS = n   (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(A, 2)

NRHS = nb   (Input)
Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:)   (Output [/Input])
Integer array of size 2 * min(m, n) + 1 that contains the individual row
followed by the column interchanges. The last array entry contains the
approximate rank of A.

trans = trans(:)   (Output [/Input])
Array of size 2 * min(m, n) that contains data for the construction of the
orthogonal decomposition.

det = det(1:2)   (Output)
Array of size 2 of the same type and kind as A for representing the
products of the determinants of the matrices Q, P, and R. The
determinant is represented by two numbers. The first is the base with the
sign or complex angle of the result. The second is the exponent. When
det(2) is within exponent range, the value of this expression is given by
abs (det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not
singular, abs(det(1)) = radix(det); otherwise, det(1) = 0., and
det(2) = − huge(abs(det(1))).

ainv = ainv(:,:)   (Output)
Array with size n × m of the same type and kind as A(1:m, 1:n). It
contains the generalized inverse matrix, A†.

cov = cov(:,:)   (Output)
Array with size n × n of the same type and kind as A(1:m, 1:n). It

contains the unscaled covariance matrix, C = (A7A)��.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix; used for
passing optional data to the routine. The options are as follows:



IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers • 21

Packaged Options for lin_sol_lsq

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_lsq_set_small 1

s_, d_, c_, z_ lin_sol_lsq_save_QR 2

s_, d_, c_, z_ lin_sol_lsq_solve_A 3

s_, d_, c_, z_ lin_sol_lsq_solve_ADJ 4

s_, d_, c_, z_ lin_sol_lsq_no_row_pivoting 5

s_, d_, c_, z_ lin_sol_lsq_no_col_pivoting 6

s_, d_, c_, z_ lin_sol_lsq_scan_for_NaN 7

s_, d_, c_, z_ lin_sol_lsq_no_sing_mess 8

iopt(IO) = ?_options(?_lin_sol_lsq_set_small, Small)
Replaces with Small if a diagonal term of the matrix R is smaller in
magnitude than the value Small. A solution is approximated based on
this replacement in either case.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_sol_lsq_save_QR, ?_dummy)

Saves the factorization of A. Requires the optional arguments
“pivots=” and “trans=” if the routine is used for solving further
systems with the same matrix. This is the only case where the input
arrays A and b are not saved. For efficiency, the diagonal reciprocals of
the matrix R are saved in the diagonal entries of A.

iopt(IO) = ?_options(?_lin_sol_lsq_solve_A, ?_dummy)

Uses the factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_lsq_solve_ADJ, ?_dummy)

Uses the factorization of A computed and saved to solve A7x = b.

iopt(IO) = ?_options(?_lin_sol_lsq_no_row_pivoting, ?_dummy)
Does no row pivoting. The array pivots(:), if present, satisfies
pivots(i) = i for i = 1, …, min (m, n).

iopt(IO) = ?_options(?_lin_sol_lsq_no_col_pivoting, ?_dummy)

Does no column pivoting. The array pivots(:), if present, satisfies
pivots(i + min (m, n)) = i for i = 1, …, min (m, n).

iopt(IO) = ?_options(?_lin_sol_lsq_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs

iopt(IO) = ?_options(?_lin_sol_lsq_no_sing_mess,?_dummy)

Do not print an error message when A is singular or k < min(m, n).
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Description

The routine lin_sol_lsq solves a rectangular system of linear algebraic
equations in a least-squares sense. It computes the decomposition of A using an
orthogonal factorization. This decomposition has the form

QAP
Rk k=

�
!
  

"
$
##

× 0

0 0

where the matrices Q and P are products of elementary orthogonal and
permutation matrices. The matrix R is k × k, where k is the approximate rank of A.
This value is determined by the value of the parameter Small. See Golub and Van
Loan (1989, Chapter 5.4) for further details. Note that the use of both row and
column pivoting is nonstandard, but the routine defaults to this choice for en-
hanced reliability.

Example 2: System Solving with the Generalized Inverse

This example solves the same form of the system as Example 1. In this case, the
grid of evaluation points is equally spaced. The coefficients are computed using
the “smoothing formulas” by rows of the generalized inverse matrix, A†,
computed using the optional argument “ainv=”. Thus, the coefficients are given
by the matrix-vector product c = (A†) y, where y is the vector of values of the
function y(x) evaluated at the grid of points. Also, see operator_ex10, 
Chapter 6.

      use lin_sol_lsq_int

      implicit none

! This is Example 2 for LIN_SOL_LSQ.

      integer i
      integer, parameter :: m=128, n=8
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
      real(kind(1d0)) a(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &
             u(m), v(m), w(m), delta_x, inv(0:n, m)

! Generate an array of equally spaced points on the interval -1,1.

      delta_x = 2/real(m-1,kind(one))
      do i=1, m
         x(i) = -one + (i-1)*delta_x
      end do

! Compute the constant ’PI/2’.

      pi_over_2 = atan(one)*2

! Compute data values on the grid.

      y(1:m,1) = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.



IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers • 23

      a(:,0) = one
      a(:,1) = x

      do i=2, n
         a(:,i) = 2*x*a(:,i-1) - a(:,i-2)
      end do

! Compute the generalized inverse of the least-squares matrix.

      call lin_sol_lsq(a, y, c, nrhs=0, ainv=inv)

! Compute the series coefficients using the generalized inverse
! as ’smoothing formulas.’

      c(0:n,1) = matmul(inv(0:n,1:m),y(1:m,1))

! Evaluate residuals using backward recurrence formulas.

      u = zero
      v = zero
      do i=n, 0, -1
         w = 2*x*u - v + c(i,1)
         v = u
         u = w
      end do

      y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.
! (This test will fail when n is larger.)

      x = one
      x = sign(x,y(1:m,1))

      if (count(x(1:m-1) /= x(2:m)) == n+2) then
         write (*,*) ’Example 2 for LIN_SOL_LSQ is correct.’
      end if

      end

Example 3: Two-Dimensional Data Fitting

This example illustrates the use of radial-basis functions to least-squares fit
arbitrarily spaced data points. Let m data values {yL} be given at points in the unit
square, {pL}. Each pL is a pair of real values. Then, n points {qM} are chosen on the
unit square. A series of radial-basis functions is used to represent the data,

f p c p qj

j

n

j1 6 = − +
=

∑
1

2 2 1 2
( )

/
δ

where δ� is a parameter. This example uses δ� = 1, but either larger or smaller
values can give a better approximation for user problems. The coefficients {cM}
are obtained by solving the following m × n linear least-squares problem:

f p yj j4 9 =
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This example illustrates an effective use of Fortran 90 array operations to
eliminate many details required to build the matrix and right-hand side for the
{cM} .  For this example, the two sets of points {pL} and {qM} are chosen randomly.
The values {yM}  are computed from the following formula:

y ej
p j= −|| ||2

The residual function

r p e  f pp1 6  1 6= −−|| ||2

is computed at an N × N square grid of equally spaced points on the unit square.
The magnitude of r(p) may be larger at certain points on this grid than the
residuals at the given points, pi; @. Also, see operator_ex11, Chapter 6.

      use lin_sol_lsq_int
      use rand_gen_int

      implicit none

! This is Example 3 for LIN_SOL_LSQ.

      integer i, j
      integer, parameter :: m=128, n=32, k=2, n_eval=16
      real(kind(1d0)), parameter :: one=1.0d0, delta_sqr=1.0d0
      real(kind(1d0)) a(m,n), b(m,1), c(n,1), p(k,m), q(k,n), &
              x(k*m), y(k*n), t(k,m,n), res(n_eval,n_eval), &
              w(n_eval), delta

! Generate a random set of data points in k=2 space.

      call rand_gen(x)
      p = reshape(x,(/k,m/))

! Generate a random set of center points in k-space.

      call rand_gen(y)
      q = reshape(y,(/k,n/))

! Compute the coefficient matrix for the least-squares system.

      t = spread(p,3,n)
      do j=1, n
        t(1:,:,j) = t(1:,:,j) - spread(q(1:,j),2,m)
      end do

      a = sqrt(sum(t**2,dim=1) + delta_sqr)

! Compute the right hand side of data values.

      b(1:,1) = exp(-sum(p**2,dim=1))

! Compute the solution.

      call lin_sol_lsq(a, b, c)
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! Check the results.

      if (sum(abs(matmul(transpose(a),b-matmul(a,c))))/sum(abs(a)) &
          <= sqrt(epsilon(one))) then
         write (*,*) ’Example 3 for LIN_SOL_LSQ is correct.’
      end if

! Evaluate residuals, known function - approximation at a square
! grid of points.  (This evaluation is only for k=2.)

      delta = one/real(n_eval-1,kind(one))
      do i=1, n_eval
         w(i) = (i-1)*delta
      end do
      res = exp(-(spread(w,1,n_eval)**2 + spread(w,2,n_eval)**2))
      do j=1, n
         res = res - c(j,1)*sqrt((spread(w,1,n_eval) - q(1,j))**2 + &
                    (spread(w,2,n_eval) - q(2,j))**2 + delta_sqr)
      end do

      end

Example 4: Least-squares with an Equality Constraint

This example solves a least-squares system Ax ≅ b with the constraint that the
solution values have a sum equal to the value 1. To solve this system, one heavily
weighted row vector and right-hand side component is added to the system
corresponding to this constraint. Note that the weight used is

ε−1 2/

where ε is the machine precision, but any larger value can be used. The fact that
lin_sol_lsq performs row pivoting in this case is critical for obtaining an
accurate solution to the constrained problem solved using weighting. See Golub
and Van Loan (1989, Chapter 12) for more information about this method. Also,
see operator_ex12, Chapter 6.

      use lin_sol_lsq_int
      use rand_gen_int

      implicit none

! This is Example 4 for LIN_SOL_LSQ.

      integer, parameter :: m=64, n=32
      real(kind(1e0)), parameter :: one=1.0e0
      real(kind(1e0)) :: a(m+1,n), b(m+1,1), x(n,1), y(m*n)

! Generate a random matrix.

      call rand_gen(y)
      a(1:m,1:n) = reshape(y,(/m,n/))

! Generate a random right hand side.
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      call rand_gen(b(1:m,1))

! Heavily weight desired constraint.  All variables sum to one.

      a(m+1,1:n) = one/sqrt(epsilon(one))

      b(m+1,1) = one/sqrt(epsilon(one))

      call lin_sol_lsq(a, b, x)

      if (abs(sum(x) - one)/sum(abs(x)) <= &
                  sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for LIN_SOL_LSQ is correct.’
      end if

      end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for lin_sol_lsq. These error
messages are numbered 241−256; 261−276; 281−296; 301−316.

lin_sol_svd
Solves a rectangular least-squares system of linear equations Ax ≅ b using
singular value decomposition

A USV T=

With optional arguments, any of several related computations can be performed.
These extra tasks include computing the rank of A, the orthogonal m × m and n × n
matrices U and V, and the m × n diagonal matrix of singular values, S.

Required Arguments

A   (Input [/Output])
Array of size m × n containing the matrix.

b   (Input [/Output])
Array of size m × nb containing the right-hand side matrix.

x   (Output)
Array of size n × nb containing the solution matrix.

Example 1: Least-squares solution of a Rectangular System

The least-squares solution of a rectangular m × n system Ax ≅ b is obtained. The
use of lin_sol_lsq is more efficient in this case since the matrix is of full
rank. This example anticipates a problem where the matrix A is poorly
conditioned or not of full rank; thus, lin_sol_svd is the appropriate routine.
Also, see operator_ex13, Chapter 6.
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      use lin_sol_svd_int
      use rand_gen_int

      implicit none

! This is Example 1 for LIN_SOL_SVD.

      integer, parameter :: m=128, n=32
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) A(m,n), b(m,1), x(n,1), y(m*n), err

! Generate a random matrix and right-hand side.
      call rand_gen(y)
      A = reshape(y,(/m,n/))
      call rand_gen(b(1:m,1))

! Compute the least-squares solution matrix of Ax=b.
      call lin_sol_svd(A, b, x)

! Check that the residuals are orthogonal to the
! column vectors of A.
      err = sum(abs(matmul(transpose(A),b-matmul(A,x))))/sum(abs(A))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_SOL_SVD is correct.’
      end if

      end

Optional Arguments

MROWS = m   (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size (A, 1)

NCOLS = n   (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(A, 2)

NRHS = nb   (Input)
Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

RANK = k   (Output)
Number of singular values that are at least as large as the value Small. It
will satisfy k <= min(m, n).

u = u(:,:)   (Output)
Array of the same type and kind as A(1:m, 1:n). It contains the m × m
orthogonal matrix U of the singular value decomposition.

s = s(:)   (Output)
Array of the same precision as A(1:m, 1:n). This array is real even when
the matrix data is complex. It contains the m × n diagonal matrix S in a
rank-1 array. The singular values are nonnegative and ordered non-
increasing.
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v = v(:,:)   (Output)
Array of the same type and kind as A(1:m, 1:n). It contains the n × n
orthogonal matrix V.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional data to the routine. The options are as follows:

Packaged Options for lin_sol_svd

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_svd_set_small 1

s_, d_, c_, z_ lin_sol_svd_overwrite_input 2

s_, d_, c_, z_ lin_sol_svd_safe_reciprocal 3

s_, d_, c_, z_ lin_sol_svd_scan_for_NaN 4

iopt(IO) = ?_options(?_lin_sol_svd_set_small, Small)
Replaces with zero a diagonal term of the matrix S if it is smaller in
magnitude than the value Small. This determines the approximate rank
of the matrix, which is returned as the “rank=” optional argument. A
solution is approximated based on this replacement.
Default: the smallest number that can be safely reciprocated

iopt(IO) = ?_options(?_lin_sol_svd_overwrite_input,?_dummy)

Does not save the input arrays A(:,:) and b(:,:).

iopt(IO) = ?_options(?_lin_sol_svd_safe_reciprocal, safe)
Replaces a denominator term with safe if it is smaller in magnitude than
the value safe.
Default: the smallest number that can be safely reciprocated

iopt(IO) = ?_options(?_lin_sol_svd_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs

Description

The lin_sol_svd routine solves a rectangular system of linear algebraic
equations in a least-squares sense. It computes the factorization of A known as the
singular value decomposition. This decomposition has the following form:

A = USV7

The matrices U and V are orthogonal. The matrix S is diagonal with the diagonal
terms non-increasing. See Golub and Van Loan (1989, Chapters 5.4 and 5.5) for
further details.
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Example 2: Polar Decomposition of a Square Matrix

A polar decomposition of an n × n random matrix is obtained. This
decomposition satisfies A = PQ, where P is orthogonal and Q is self-adjoint and
positive definite.

Given the singular value decomposition

A USV T=
the polar decomposition follows from the matrix products

P UV Q VSVT T= = and 

This example uses the optional arguments “u=”, “ s=”, and “v=”, then array
intrinsic functions to calculate P and Q. Also, see operator_ex14, Chapter 6.

      use lin_sol_svd_int
      use rand_gen_int

      implicit none

! This is Example 2 for LIN_SOL_SVD.

      integer i
      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
      real(kind(1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), q(n,n), &
             s_d(n), u_d(n,n), v_d(n,n), x(n,0), y(n*n)

! Generate a random matrix.

      call rand_gen(y)
      a = reshape(y,(/n,n/))

! Compute the singular value decomposition.

      call lin_sol_svd(a, b, x, nrhs=0, s=s_d, &
                u=u_d, v=v_d)

! Compute the (left) orthogonal factor.

      p = matmul(u_d,transpose(v_d))

! Compute the (right) self-adjoint factor.

      q = matmul(v_d*spread(s_d,1,n),transpose(v_d))

      ident=zero
      do i=1, n
         ident(i,i) = one
      end do

! Check the results.

      if (sum(abs(matmul(p,transpose(p)) - ident))/sum(abs(p)) &
               <= sqrt(epsilon(one))) then
         if (sum(abs(a - matmul(p,q)))/sum(abs(a)) &
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               <= sqrt(epsilon(one))) then
            write (*,*) ’Example 2 for LIN_SOL_SVD is correct.’
         end if
      end if

      end

Example 3: Reduction of an Array of Black and White

An n × n array A contains entries that are either 0 or 1. The entry is chosen so that
as a two-dimensional object with origin at the point (1, 1), the array appears as a
black circle of radius n/4 centered at the point (n/2, n/2).

A singular value decomposition

A USV T=

is computed, where S is of low rank. Approximations using fewer of these
nonzero singular values and vectors suffice to reconstruct A. Also, see
operator_ex15, Chapter 6.

      use lin_sol_svd_int
      use rand_gen_int
      use error_option_packet

      implicit none

! This is Example 3 for LIN_SOL_SVD.

      integer i, j, k
      integer, parameter :: n=32
      real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0
      real(kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &
             v(n,n), c(n,n)

! Fill in value one for points inside the circle.
      a = zero
      do i=1, n
         do j=1, n
            if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one
         end do
      end do

! Compute the singular value decomposition.
      call lin_sol_svd(a, b, x, nrhs=0,&
            s=s, u=u, v=v)

! How many terms, to the nearest integer, exactly
! match the circle?
           c = zero; k = count(s > half)
      do i=1, k
        c = c + spread(u(1:n,i),2,n)*spread(v(1:n,i),1,n)*s(i)
        if (count(int(c-a) /= 0) == 0) exit
      end do

      if (i < k) then
         write (*,*) ’Example 3 for LIN_SOL_SVD is correct.’
      end if
      end
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Example 4: Laplace Transform Solution

This example illustrates the solution of a linear least-squares system where the
matrix is poorly conditioned. The problem comes from solving the integral
equation:

e f t dt s e g sst s− − −I = − =
0

1
1 11 6 4 9 1 6

The unknown function f(t) = 1 is computed. This problem is equivalent to the
numerical inversion of the Laplace Transform of the function g(s) using real
values of t and s, solving for a function that is nonzero only on the unit interval.
The evaluation of the integral uses the following approximate integration rule:

f t e dt f t e dtst
j

j
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t

t

j
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The points t j= B  are chosen equally spaced by using the following:

t
j

n
j =

−1

The points s j= B  are computed so that the range of g(s) is uniformly sampled. This

requires the solution of m equations

g s g
i

m
i i2 7 = =

+1

for j = 1, …, n and i = 1, …, m. Fortran 90 array operations are used to solve for
the collocation points si; @  as a single series of steps. Newton’s method,

s s
h

h
← −

′

is applied to the array function

h s e sgs0 5 = + −− 1

where the following is true:

g g gm

T= 1, ,K

Note the coefficient matrix for the solution values

f f t f tn
T

= 11 6 1 6, ,K

whose entry at the intersection of row i and column j is equal to the value
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e dt
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is explicitly integrated and evaluated as an array operation. The solution analysis
of the resulting linear least-squares system

Af g≅

 is obtained by computing the singular value decomposition

A USV T=

An approximate solution is computed with the transformed right-hand side

b U gT=

followed by using as few of the largest singular values as possible to minimize the
following squared error residual:
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This determines an optimal value k to use in the approximate solution

f b
v

s
j

j

k
j

j

=
=

∑
1

Also, see operator_ex16, Chapter 6.

      use lin_sol_svd_int
      use rand_gen_int
      use error_option_packet

      implicit none

! This is Example 4 for LIN_SOL_SVD.

      integer i, j, k
      integer, parameter :: m=64, n=16
      real(kind(1e0)), parameter :: one=1e0, zero=0.0e0
      real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), b(m,1), &
               f(n,1), U_S(m,m), V_S(n,n), S_S(n), &
               rms, oldrms
      real(kind(1e0)) :: delta_g, delta_t

      delta_g = one/real(m+1,kind(one))

! Compute which collocation equations to solve.
      do i=1,m
        g(i)=i*delta_g
      end do

! Compute equally spaced quadrature points.
      delta_t =one/real(n,kind(one))
      do j=1,n+1
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        t(j)=(j-1)*delta_t
      end do

! Compute collocation points.
      s=m
      solve_equations: do
        s=s-(exp(-s)-(one-s*g))/(g-exp(-s))
        if (sum(abs((one-exp(-s))/s - g)) <= &
                 epsilon(one)*sum(g)) &
            exit solve_equations
      end do solve_equations

! Evaluate the integrals over the quadrature points.
      a = (exp(-spread(t(1:n),1,m)*spread(s,2,n)) &
        - exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &
          spread(s,2,n)

      b(1:,1)=g

! Compute the singular value decomposition.

      call lin_sol_svd(a, b, f, nrhs=0, &
              rank=k, u=U_S, v=V_S, s=S_S)

! Singular values that are larger than epsilon determine
! the rank=k.
      k = count(S_S > epsilon(one))
      oldrms = huge(one)
      g = matmul(transpose(U_S), b(1:m,1))

! Find the minimum number of singular values that gives a good
! approximation to f(t) = 1.

      do i=1,k
         f(1:n,1) = matmul(V_S(1:,1:i), g(1:i)/S_S(1:i))
         f = f - one
         rms = sum(f**2)/n
         if (rms > oldrms) exit
         oldrms = rms
      end do

      write (*,"( ’ Using this number of singular values, ’, &
          &i4 / ’ the approximate R.M.S. error is ’, 1pe12.4)") &
      i-1, oldrms

      if (sqrt(oldrms) <= delta_t**2) then
         write (*,*) ’Example 4 for LIN_SOL_SVD is correct.’
      end if

      end

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for lin_sol_svd. These error
messages are numbered 401−412; 421−432; 441−452; 461−472.
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lin_sol_tri
Solves multiple systems of linear equations

A x  y j  kj j  j= =, , ,1K

Each matrix AM is tridiagonal with the same dimension, n. The default solution
method is based on LU factorization computed using cyclic reduction or,
optionally, Gaussian elimination with partial pivoting.

Required Arguments

C   (Input [/Output])
Array of size 2n × k containing the upper diagonals of the matrices AM.
Each upper diagonal is entered in array locations c(1:n − 1, j). The data
C(n, 1:k) are not used.

D   (Input [/Output])
Array of size 2n × k containing the diagonals of the matrices AM. Each
diagonal is entered in array locations D(1:n, j).

B   (Input [/Output])
Array of size 2n × k containing the lower diagonals of the matrices AM.
Each lower diagonal is entered in array locations B(2:n, j). The data
B(1, 1:k) are not used.

Y   (Input [/Output])
Array of size 2n × k containing the right-hand sides, yM. Each right-hand
side is entered in array locations Y(1:n, j). The computed solution xM is
returned in locations Y(1:n, j).

Note: The required arguments have the Input data overwritten. If these
quantities are used later, they must be saved in user-defined arrays. The routine
uses each array’s locations (n + 1:2 * n, 1:k) for scratch storage and
intermediate data in the LU factorization. The default values for problem
dimensions are n = (size (D, 1))/2 and k = size (D, 2).z

Example 1: Solution of Multiple Tridiagonal Systems

The upper, main and lower diagonals of n systems of size n × n are generated
randomly. A scalar is added to the main diagonal so that the systems are positive
definite. A random vector xM� is generated and right-hand sides yM  = AM yM are
computed. The routine is used to compute the solution, using the AM  and yM. The
results should compare closely with the xM� used to generate the right-hand sides.
Also, see operator_ex17, Chapter 6.

      use lin_sol_tri_int
      use rand_gen_int
      use error_option_packet

      implicit none
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! This is Example 1 for LIN_SOL_TRI.

      integer i
      integer, parameter :: n=128
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) err
      real(kind(1d0)), dimension(2*n,n) :: d, b, c, res(n,n), &
        t(n), x, y

! Generate the upper, main, and lower diagonals of the
! n matrices A_i.  For each system a random vector x is used
! to construct the right-hand side, Ax = y.  The lower part
! of each array remains zero as a result.

      c = zero; d=zero; b=zero; x=zero
      do i = 1, n
         call rand_gen (c(1:n,i))
         call rand_gen (d(1:n,i))
         call rand_gen (b(1:n,i))
         call rand_gen (x(1:n,i))
      end do

! Add scalars to the main diagonal of each system so that
! all systems are positive definite.
      t = sum(c+d+b,DIM=1)
      d(1:n,1:n) = d(1:n,1:n) + spread(t,DIM=1,NCOPIES=n)

! Set Ax = y.  The vector x generates y.  Note the use
! of EOSHIFT and array operations to compute the matrix
! product, n distinct ones as one array operation.

     y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &
                c(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &
                b(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)

! Compute the solution returned in y.  (The input values of c,
! d, b, and y are overwritten by lin_sol_tri.)  Check for any
! error messages.

      call lin_sol_tri (c, d, b, y)

! Check the size of the residuals, y-x.  They should be small,
! relative to the size of values in x.
      res = x(1:n,1:n) - y(1:n,1:n)
      err = sum(abs(res)) / sum(abs(x(1:n,1:n)))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_SOL_TRI is correct.’
      end if

      end

Optional Arguments

NCOLS = n   (Input)
Uses arrays C(1:n − 1, 1:k), D(1:n, 1:k), and B(2:n, 1:k) as the upper,
main and lower diagonals for the input tridiagonal matrices. The right-
hand sides and solutions are in array Y(1:n, 1:k). Note that each of
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these arrays are rank-2.
Default: n = (size(D, 1))/2

NPROB = k   (Input)
The number of systems solved.
Default: k = size(D, 2)

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional data to the routine. The options are as follows:

Packaged Options for lin_sol_tri

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_tri_set_small 1

s_, d_, c_, z_ lin_sol_tri_set_jolt 2

s_, d_, c_, z_ lin_sol_tri_scan_for_NaN 3

s_, d_, c_, z_ lin_sol_tri_factor_only 4

s_, d_, c_, z_ lin_sol_tri_solve_only 5

s_, d_, c_, z_ lin_sol_tri_use_Gauss_elim 6

iopt(IO) = ?_options(?_lin_sol_tri_set_small, Small)
Whenever a reciprocation is performed on a quantity smaller than Small,
it is replaced by that value plus 2 × jolt.
Default: 0.25 × epsilon()

iopt(IO) = ?_options(?_lin_sol_tri_set_jolt, jolt)
Default: epsilon(), machine precision

iopt(IO) = ?_options(?_lin_sol_tri_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(C(i,j)) .or.

isNaN(D(i,j)) .or.

isNaN(B(i,j)) .or.

isNaN(Y(i,j)) == .true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_lin_sol_tri_factor_only, ?_dummy)

Obtain the LU factorization of the matrices AM. Does not solve for a
solution.
Default: Factor the matrices and solve the systems.

iopt(IO) = ?_options(?_lin_sol_tri_solve_only, ?_dummy)

Solve the systems AMxM = yM using the previously computed LU
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factorization.
Default: Factor the matrices and solve the systems.

iopt(IO) = ?_options(?_lin_sol_tri_use_Gauss_elim, ?_dummy)

The accuracy, numerical stability or efficiency of the cyclic reduction
algorithm may be inferior to the use of LU factorization with partial
pivoting.
Default: Use cyclic reduction to compute the factorization.

Description

The routine lin_sol_tri solves k systems of tridiagonal linear algebraic
equations, each problem of dimension n × n. No relation between k and n is
required. See Kershaw, pages 86−88 in Rodrigue (1982) for further details. To
deal with poorly conditioned or singular systems, a specific regularizing term is
added to each reciprocated value. This technique keeps the factorization process
efficient and avoids exceptions from overflow or division by zero. Each
occurrence of an array reciprocal a−1  is replaced by the expression a t+ −0 5 1 ,
where the array temporary t has the value 0 whenever the corresponding entry
satisfies |a| > Small. Alternately, t has the value 2 × jolt. (Every small
denominator gives rise to a finite “jolt”.) Since this tridiagonal solver is used in
the routines lin_svd and lin_eig_self for inverse iteration, regularization
is required. Users can reset the values of Small and jolt for their own needs. Using
the default values for these parameters, it is generally necessary to scale the
tridiagonal matrix so that the maximum magnitude has value approximately one.
This is normally not an issue when the systems are nonsingular.

The routine is designed to use cyclic reduction as the default method for
computing the LU factorization. Using an optional parameter, standard
elimination and partial pivoting will be used to compute the factorization. Partial
pivoting is numerically stable but is likely to be less efficient than cyclic
reduction.

Example 2: Iterative Refinement and Use of Partial Pivoting

This program unit shows usage that typically gives acceptable accuracy for a
large class of problems. Our goal is to use the efficient cyclic reduction algorithm
when possible, and keep on using it unless it will fail. In exceptional cases our
program switches to the LU factorization with partial pivoting. This use of both
factorization and solution methods enhances reliability and maintains efficiency
on the average. Also, see operator_ex18, Chapter 6.

      use lin_sol_tri_int
      use rand_gen_int

      implicit none

! This is Example 2 for LIN_SOL_TRI.

      integer i, nopt
      integer, parameter :: n=128
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      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0
      real(kind(1d0)), parameter :: d_one=1d0, d_zero=0d0
      real(kind(1e0)), dimension(2*n,n) :: d, b, c, res(n,n), &
        x, y
      real(kind(1e0)) change_new, change_old, err
      type(s_options) :: iopt(2) = s_options(0,s_zero)
      real(kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &
             x_save, y_save, x_sol
      logical solve_only

      c = s_zero; d=s_zero; b=s_zero; x=s_zero

! Generate the upper, main, and lower diagonals of the
! matrices A.  A random vector x is used to construct the
! right-hand sides: y=A*x.
      do i = 1, n
         call rand_gen (c(1:n,i))
         call rand_gen (d(1:n,i))
         call rand_gen (b(1:n,i))
         call rand_gen (x(1:n,i))
      end do

! Save double precision copies of the diagonals and the
! right-hand side.
      c_save = c(1:n,1:n); d_save = d(1:n,1:n)
      b_save = b(1:n,1:n); x_save = x(1:n,1:n)
      y_save(1:n,1:n) = d(1:n,1:n)*x_save + &
               c(1:n,1:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &
               b(1:n,1:n)*EOSHIFT(x_save,SHIFT=-1,DIM=1)

! Iterative refinement loop.
      factorization_choice:  do nopt=0, 1

! Set the logical to flag the first time through.

         solve_only = .false.
         x_sol = d_zero
         change_old = huge(s_one)

         iterative_refinement:  do

! This flag causes a copy of data to be moved to work arrays
! and a factorization and solve step to be performed.
            if (.not. solve_only) then
               c(1:n,1:n)=c_save; d(1:n,1:n)=d_save
               b(1:n,1:n)=b_save
            end if

! Compute current residuals, y - A*x, using current x.
            y(1:n,1:n) = -y_save + &
             d_save*x_sol + &
             c_save*EOSHIFT(x_sol,SHIFT=+1,DIM=1) + &
             b_save*EOSHIFT(x_sol,SHIFT=-1,DIM=1)

            call lin_sol_tri (c, d, b, y, iopt=iopt)

            x_sol = x_sol + y(1:n,1:n)
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            change_new = sum(abs(y(1:n,1:n)))

! If size of change is not decreasing, stop the iteration.
            if (change_new >= change_old) exit iterative_refinement

            change_old = change_new
            iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)
            solve_only = .true.

         end do iterative_refinement

! Use Gaussian Elimination if Cyclic Reduction did not get an
! accurate solution.
! It is an exceptional event when Gaussian Elimination is required.
         if (sum(abs(x_sol - x_save)) / sum(abs(x_save)) &
           <= sqrt(epsilon(d_one))) exit factorization_choice

         iopt = s_options(0,s_zero)
         iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)

      end do factorization_choice

! Check on accuracy of solution.

      res = x(1:n,1:n)- x_save
      err = sum(abs(res)) / sum(abs(x_save))
      if (err <= sqrt(epsilon(d_one))) then
         write (*,*) ’Example 2 for LIN_SOL_TRI is correct.’
      end if

      end

Example 3: Selected Eigenvectors of Tridiagonal Matrices

The eigenvalues

λ λ1, ,K n

of a tridiagonal real, self-adjoint matrix are computed. Note that the computation
is performed using the IMSL MATH/LIBRARY EVASB routine from the
FORTRAN 77 Library. This information is made available to the Fortran 90
compiler by using the FORTRAN 77 interface for EVASB. The user may write this
interface based on documentation of the arguments (IMSL 1994, p. 356), or use
the module Numerical_Libraries as we have done here. The eigenvectors
corresponding to k < n of the eigenvalues are required. These vectors are
computed using inverse iteration for all the eigenvalues at one step. See Golub
and Van Loan (1989, Chapter 7). The eigenvectors are then orthogonalized. Also,
see operator_ex19, Chapter 6.

      use lin_sol_tri_int
      use rand_gen_int
      use Numerical_Libraries

      implicit none

! This is Example 3 for LIN_SOL_TRI.
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      integer i, j, nopt
      integer, parameter :: n=128, k=n/4, ncoda=1, lda=2
      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0
      real(kind(1e0)) A(lda,n), EVAL(k)
      type(s_options) :: iopt(2)=s_options(0,s_zero)
      real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &
           b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k), temp
      logical small

! This flag is used to get the k largest eigenvalues.
      small = .false.

! Generate the main diagonal and the co-diagonal of the
! tridiagonal matrix.

      call rand_gen (b)
      call rand_gen (d)

      A(1,1:)=b; A(2,1:)=d

! Use Numerical Libraries routine for the calculation of k
! largest eigenvalues.

      CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)
      EVAL_T = EVAL

! Use DNFL tridiagonal solver for inverse iteration
! calculation of eigenvectors.
      factorization_choice:  do nopt=0,1

! Create k tridiagonal problems, one for each inverse
! iteration system.
         b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)
         c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)
         d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &
                        spread(EVAL_T,DIM=1,NCOPIES=n)

! Start the right-hand side at random values, scaled downward
! to account for the expected ’blowup’ in the solution.
         do i=1, k
            call rand_gen (y_t(1:n,i))
         end do

! Do two iterations for the eigenvectors.
         do i=1, 2
            y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)
            call lin_sol_tri(c_t, d_t, b_t, y_t, &
                        iopt=iopt)
            iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)
         end do

! Orthogonalize the eigenvectors.  (This is the most
! intensive part of the computing.)
         do j=1,k-1 ! Forward sweep of HMGS orthogonalization.
            temp=s_one/sqrt(sum(y_t(1:n,j)**2))
            y_t(1:n,j)=y_t(1:n,j)*temp

            y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &
            spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &
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                                              DIM=1,NCOPIES=n)* &
            spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)
         end do
         temp=s_one/sqrt(sum(y_t(1:n,k)**2))
         y_t(1:n,k)=y_t(1:n,k)*temp

         do j=k-1,1,-1 ! Backward sweep of HMGS.
            y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &
            spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &
                                              DIM=1,NCOPIES=n)* &
            spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)
         end do

! See if the performance ratio is smaller than the value one.
! If it is not the code will re-solve the systems using Gaussian
! Elimination.  This is an exceptional event.  It is a necessary
! complication for achieving reliable results.

         res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &
          spread(b,DIM=2,NCOPIES=k)* &
          EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &
          EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &
            -   y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)

! If the factorization method is Cyclic Reduction and perf_ratio is
! larger than one, re-solve using Gaussian Elimination.  If the
! method is already Gaussian Elimination, the loop exits
! and perf_ratio is checked at the end.
         perf_ratio = sum(abs(res(1:n,1:k))) / &
                         sum(abs(EVAL_T(1:k))) / &
                         epsilon(s_one) / (5*n)
         if (perf_ratio <= s_one) exit factorization_choice
         iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)

      end do factorization_choice

      if (perf_ratio <= s_one) then
         write (*,*) ’Example 3 for LIN_SOL_TRI is correct.’
      end if

      end

Example 4: Tridiagonal Matrix Solving within Diffusion Equations

The normalized partial differential equation

u
u

t

u

x
ut xx≡ = ≡

∂

∂

∂

∂

2

2

is solved for values of 0 ≤ x ≤ π and t > 0. A boundary value problem consists of
choosing the value

u t u0 0,0 5 =

such that the equation

u x t u1 1 1,1 6 =



42 • Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

 is satisfied.  Arbitrary values

x u1 12

1

2
= =π

,

and

t1 1=

are used for illustration of the solution process. The one-parameter equation

u x t  u1 1  1 0,1 6− =

The variables are changed to

v x t  u x t u, ,0 5 0 5= − 0

 that v(0, t) = 0. The function v(x, t) satisfies the differential equation. The one-
parameter equation solved is therefore

 v x t  u u1 1  1  0 0,1 6 1 6− − =

To solve this equation for u0 , use the standard technique of the variational
equation,

w
v

u
≡

∂

∂ 0

Thus

∂

∂

∂

∂

w

t

w

x
=

2

2

Since the initial data for

v x  u,0 00 5 = −

the variational equation initial condition is

w(x, 0) = −1

This model problem illustrates the method of lines and Galerkin principle
implemented with the differential-algebraic solver, D2SPG (IMSL 1994, pp.
696−717). We use the integrator in “ reverse communication” mode for evaluating
the required functions, derivatives, and solving linear algebraic equations. See
Example 4 of routine DASPG (IMSL 1994, pp. 713−717) for a problem that uses
reverse communication. Next see Example 4 of routine IVPAG (IMSL 1994, p.
674-678) for the development of the piecewise-linear Galerkin discretization
method to solve the differential equation. This present example extends parts of
both previous examples and illustrates Fortran 90 constructs. It further illustrates
how a user can deal with a defect of an integrator that normally functions using
only dense linear algebra factorization methods for solving the corrector
equations. See the comments in Brenan et al. (1989, esp. p. 137). Also, see
operator_ex20, Chapter 6.
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      use lin_sol_tri_int
      use rand_gen_int
      use Numerical_Libraries

      implicit none

! This is Example 4 for LIN_SOL_TRI.

      integer, parameter :: n=1000, ichap=5, iget=1, iput=2, &
         inum=6, irnum=7
      real(kind(1e0)), parameter :: zero=0e0, one = 1e0
      integer    i, ido, in(50), inr(20), iopt(6), ival(7), &
                iwk(35+n)
      real(kind(1e0))      hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &
                tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &
                a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &
                t_g(n), t_diag(2*n,1), t_upper(2*n,1), &
                t_lower(2*n,1), t_sol(2*n,1)
      type(s_options) :: iopti(2)=s_options(0,zero)

      character(2) :: pi(1) = ’pi’
! Define initial data.
      t = 0.0e0
      u_0 = 1
      u_1 = 0.5
      tend = one

! Initial values for the variational equation.
      y = -one; ypr= zero
      pi_value = const(pi)
      hx = pi_value/(n+1)

      a_diag = 2*hx/3
      a_off  = hx/6
      r_diag = -2/hx
      r_off  = 1/hx

! Get integer option numbers.
      iopt(1) = inum
      call iumag (’math’, ichap, iget, 1, iopt, in)

! Get floating point option numbers.
      iopt(1) = irnum
      call iumag (’math’, ichap, iget, 1, iopt, inr)

! Set for reverse communication evaluation of the DAE.
      iopt(1) = in(26)
      ival(1) = 0
! Set for use of explicit partial derivatives.
      iopt(2) = in(5)
      ival(2) = 1
! Set for reverse communication evaluation of partials.
      iopt(3) = in(29)
      ival(3) = 0
! Set for reverse communication solution of linear equations.
      iopt(4) = in(31)
      ival(4) = 0
! Storage for the partial derivative array are not allocated or
! required in the integrator.
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      iopt(5) = in(34)
      ival(5) = 1
! Set the sizes of iwk, wk for internal checking.
      iopt(6) = in(35)
      ival(6) = 35 + n
      ival(7) = 41 + 11*n
! Set integer options:
      call iumag (’math’, ichap, iput, 6, iopt, ival)
! Reset tolerances for integrator:
      atol = 1e-3; rtol= 1e-3
      sval(1) = atol; sval(2) = rtol
      iopt(1) = inr(5)
! Set floating point options:
      call sumag (’math’, ichap, iput, 1, iopt, sval)
! Integrate ODE/DAE.  Use dummy external names for g(y,y’)
! and partials.
      ido = 1
      Integration_Loop: do

          call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)
! Find where g(y,y’) goes.  (It only goes in one place here, but can
! vary where divided differences are used for partial derivatives.)
          iopt(1) = in(27)
          call iumag (’math’, ichap, iget, 1, iopt, ival)
! Direct user response:
        select case(ido)

        case(1,4)
! This should not occur.
          write (*,*) ’ Unexpected return with ido = ’, ido
          stop

        case(3)
! Reset options to defaults.  (This is good housekeeping but not
! required for this problem.)
          in = -in
          call iumag (’math’, ichap, iput, 50, in, ival)
          inr = -inr
          call sumag (’math’, ichap, iput, 20, inr, sval)
          exit Integration_Loop
        case(5)
! Evaluate partials of g(y,y’).
          t_y = y; t_ypr = ypr

          t_g = r_diag*t_y + r_off*EOSHIFT(t_y,SHIFT=+1) &
                          + EOSHIFT(r_off*t_y,SHIFT=-1) &
            -  (a_diag*t_ypr + a_off*EOSHIFT(t_ypr,SHIFT=+1) &
                             + EOSHIFT(a_off*t_ypr,SHIFT=-1))
! Move data from the assumed size to assumed shape arrays.
          do i=1, n
             wk(ival(1)+i-1) = t_g(i)
          end do
          cycle Integration_Loop

        case(6)
! Evaluate partials of g(y,y’).
! Get value of c_j for partials.
          iopt(1) = inr(9)
          call sumag (’math’, ichap, iget, 1, iopt, sval)
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! Subtract c_j from diagonals to compute (partials for y’)*c_j.
! The linear system is tridiagonal.
          t_diag(1:n,1) = r_diag - sval(1)*a_diag
          t_upper(1:n,1) = r_off - sval(1)*a_off
          t_lower = EOSHIFT(t_upper,SHIFT=+1,DIM=1)

          cycle Integration_Loop

        case(7)
! Compute the factorization.
          iopti(1) = s_options(s_lin_sol_tri_factor_only,zero)
          call lin_sol_tri (t_upper, t_diag, t_lower, &
                  t_sol, iopt=iopti)
          cycle Integration_Loop

        case(8)
! Solve the system.
          iopti(1) = s_options(s_lin_sol_tri_solve_only,zero)
! Move data from the assumed size to assumed shape arrays.
          t_sol(1:n,1)=wk(ival(1):ival(1)+n-1)

          call lin_sol_tri (t_upper, t_diag, t_lower, &
                    t_sol, iopt=iopti)

! Move data from the assumed shape to assumed size arrays.
          wk(ival(1):ival(1)+n-1)=t_sol(1:n,1)

          cycle Integration_Loop

        case(2)
! Correct initial value to reach u_1 at t=tend.
          u_0 = u_0 - (u_0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)

! Finish up internally in the integrator.
          ido = 3
          cycle Integration_Loop
      end select
      end do Integration_Loop

      write (*,*) ’The equation u_t = u_xx, with u(0,t) = ’, u_0
      write (*,*) ’reaches the value ’,u_1, ’ at time = ’, tend, ’.’
      write (*,*) ’Example 4 for LIN_SOL_TRI is correct.’

      end

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for lin_sol_tri. These error
messages are numbered 1081−1086; 1101−1106; 1121−1126; 1141−1146.
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Chapter 2: Singular Value and
Eigenvalue Decomposition

Introduction
This chapter describes routines for computing the singular value decomposition
for rectangular matrices, and the eigenvalue-eigenvector decomposition for
square matrices.
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lin_svd
Computes the singular value decomposition (SVD) of a rectangular matrix, A.
This gives the decomposition

A USV T=

where V is an n × n orthogonal matrix, U is an m × m orthogonal matrix, and S is
a real, rectangular diagonal matrix.

Required Arguments

A   (Input [/Output])
Array of size m × n containing the matrix.

S   (Output)
Array of size min(m, n) containing the real singular values. These
nonnegative values are in non-increasing order.

U   (Output)
Array of size m × m containing the singular vectors, U.

V   (Output)
Array of size n × n containing the singular vectors, V.

Example 1: Computing the SVD

The SVD of a square, random matrix A is computed. The residuals R = AV − US are
small with respect to working precision. Also, see operator_ex21, Chapter 6.

      use lin_svd_int
      use rand_gen_int

      implicit none

! This is Example 1 for LIN_SVD.

      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) err
      real(kind(1d0)), dimension(n,n) :: A, U, V, S(n), y(n*n)

! Generate a random n by n matrix.
      call rand_gen(y)
      A = reshape(y,(/n,n/))

! Compute the singular value decomposition.
      call lin_svd(A, S, U, V)

! Check for small residuals of the expression A*V - U*S.
      err = sum(abs(matmul(A,V) - U*spread(S,dim=1,ncopies=n))) &
                   / sum(abs(S))
      if (err  <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_SVD is correct.’
      end if
      end
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Optional Arguments

MROWS = m   (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size(A, 1)

NCOLS = n   (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(A, 2)

RANK = k   (Output)
Number of singular values that exceed the value Small. RANK will satisfy
k <= min(m, n).

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional data to the routine. The options are as follows:

Packaged Options for lin_svd

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_svd_set_small 1

s_, d_, c_, z_ lin_svd_overwrite_input 2

s_, d_, c_, z_ lin_svd_scan_for_NaN 3

s_, d_, c_, z_ lin_svd_use_qr 4

s_, d_, c_, z_ lin_svd_skip_orth 5

s_, d_, c_, z_ lin_svd_use_gauss_elim 6

s_, d_, c_, z_ lin_svd_set_perf_ratio 7

iopt(IO) = ?_options(?_lin_svd_set_small, Small)
If a singular value is smaller than Small, it is defined as zero for the
purpose of computing the rank of A.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_svd_overwrite_input, ?_dummy)

Does not save the input array A(:, :).

iopt(IO) = ?_options(?_lin_svd_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

See the isNaN() function, Chapter 6.
Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_svd_use_qr, ?_dummy)

Uses a rational QR algorithm to compute eigenvalues. Accumulate the
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singular vectors using this algorithm.
Default: singular vectors computed using inverse iteration

iopt(IO) = ?_options(?_lin_svd_skip_Orth, ?_dummy)

If the eigenvalues are computed using inverse iteration, skips the final
orthogonalization of the vectors. This method results in a more efficient
computation. However, the singular vectors, while a complete set, may
not be orthogonal.
Default: singular vectors are orthogonalized if obtained using inverse
iteration

iopt(IO) = ?_options(?_lin_svd_use_gauss_elim, ?_dummy)

If the eigenvalues are computed using inverse iteration, uses standard
elimination with partial pivoting to solve the inverse iteration problems.
Default: singular vectors computed using cyclic reduction

iopt(IO) = ?_options(?_lin_svd_set_perf_ratio, perf_ratio)
Uses residuals for approximate normalized singular vectors if they have
a performance index no larger than perf_ratio. Otherwise an alternate
approach is taken and the singular vectors are computed again: Standard
elimination is used instead of cyclic reduction, or the standard QR
algorithm is used as a backup procedure to inverse iteration. Larger
values of perf_ratio are less likely to cause these exceptions.
Default: perf_ratio = 4

Description

Routine lin_svd is an implementation of the QR algorithm for computing the
SVD of rectangular matrices. An orthogonal reduction of the input matrix to
upper bidiagonal form is performed. Then, the SVD of a real bidiagonal matrix is
calculated. The orthogonal decomposition AV = US results from products of
intermediate matrix factors. See Golub and Van Loan (1989, Chapter 8) for
details.

Additional Examples

Example 2: Linear Least Squares with a Quadratic Constraint

An m × n matrix equation Ax ≅ b, m > n, is approximated in a least-squares sense.
The matrix b is size m × k. Each of the k solution vectors of the matrix x is
constrained to have Euclidean length of value αM > 0. The value of αL is chosen so
that the constrained solution is 0.25 the length of the nonregularized or standard
least-squares equation. See Golub and Van Loan (1989, Chapter 12) for more
details. In the Example 2 code, Newton’s method is used to solve for each reg-
ularizing parameter of the k systems. The solution is then computed and its length
is checked. Also, see operator_ex22, Chapter 6.
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      use lin_svd_int
      use rand_gen_int

      implicit none

! This is Example 2 for LIN_SVD.

      integer, parameter :: m=64, n=32, k=4
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) a(m,n), s(n), u(m,m), v(n,n), y(m*max(n,k)), &
             b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &
             delta_lamda(k), t_g(n,k), s_sq(n), phi(n,k), &
             phi_dot(n,k), rand(k), err

! Generate a random matrix for both A and B.
      call rand_gen(y)
      a = reshape(y,(/m,n/))

      call rand_gen(y)
      b = reshape(y,(/m,k/))

! Compute the singular value decomposition.
      call lin_svd(a, s, u, v)

! Choose alpha so that the lengths of the regularized solutions
! are 0.25 times lengths of the non-regularized solutions.

      g = matmul(transpose(u),b)
      x = matmul(v,spread(one/s,dim=2,ncopies=k)*g(1:n,1:k))
      alpha = 0.25*sqrt(sum(x**2,dim=1))

      t_g = g(1:n,1:k)*spread(s,dim=2,ncopies=k)
      s_sq = s**2; lamda = zero

      solve_for_lamda:  do
         x=one/(spread(s_sq,dim=2,ncopies=k)+ &
                    spread(lamda,dim=1,ncopies=n))
         phi = (t_g*x)**2; phi_dot = -2*phi*x
         delta_lamda = (sum(phi,dim=1)-alpha**2)/sum(phi_dot,dim=1)

! Make Newton method correction to solve the secular equations for
! lamda.
         lamda = lamda - delta_lamda

         if (sum(abs(delta_lamda)) <= &
             sqrt(epsilon(one))*sum(lamda)) &
                         exit solve_for_lamda

! This is intended to fix up negative solution approximations.
         call rand_gen(rand)
         where (lamda < 0) lamda = s(1) * rand

      end do solve_for_lamda

! Compute solutions and check lengths.
      x = matmul(v,t_g/(spread(s_sq,dim=2,ncopies=k)+ &
                       spread(lamda,dim=1,ncopies=n)))

      err = sum(abs(sum(x**2,dim=1) - alpha**2))/sum(abs(alpha**2))
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      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_SVD is correct.’
      end if

      end

Example 3: Generalized Singular Value Decomposition

The n × n matrices A and B are expanded in a Generalized Singular Value
Decomposition (GSVD). Two n × n orthogonal matrices, U and V, and a
nonsingular matrix X are computed such that

AX Udiag c cn= 1, ,K1 6
and

BX Vdiag s sn= 1, ,K1 6
The values si  and ci L are normalized so that

s ci i
2 2 1+ =

The ci are nonincreasing, and the si  are nondecreasing. See Golub and Van Loan
(1989, Chapter 8) for more details. Our method is based on computing three
SVDs as opposed to the QR decomposition and two SVDs outlined in Golub and
Van Loan. As a bonus, an SVD of the matrix X is obtained, and you can use this
information to answer further questions about its conditioning. This form of the
decomposition assumes that the matrix

D
A

B
=

�
!
  

"
$
##

has all its singular values strictly positive. For alternate problems, where some
singular values of D are zero, the GSVD becomes

U A diag c c WT
n= 1, ,K1 6

 and

V B diag s s WT
n= 1, ,K1 6

The matrix W has the same singular values as the matrix D. Also, see
operator_ex23, Chapter 6.

      use lin_svd_int
      use rand_gen_int

      implicit none

! This is Example 3 for LIN_SVD.

      integer, parameter :: n=32
      integer i
      real(kind(1d0)), parameter :: one=1.0d0
      real(kind(1d0)) a(n,n), b(n,n), d(2*n,n), x(n,n), u_d(2*n,2*n), &
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             v_d(n,n), v_c(n,n), u_c(n,n), v_s(n,n), u_s(n,n), &
             y(n*n), s_d(n), c(n), s(n), sc_c(n), sc_s(n), &
             err1, err2

! Generate random square matrices for both A and B.

      call rand_gen(y)
      a = reshape(y,(/n,n/))

      call rand_gen(y)
      b = reshape(y,(/n,n/))

! Construct D; A is on the top; B is on the bottom.

      d(1:n,1:n) = a
      d(n+1:2*n,1:n) = b

! Compute the singular value decompositions used for the GSVD.

      call lin_svd(d, s_d, u_d, v_d)
      call lin_svd(u_d(1:n,1:n), c, u_c, v_c)
      call lin_svd(u_d(n+1:,1:n), s, u_s, v_s)

! Rearrange c(:) so it is non-increasing.  Move singular
! vectors accordingly.  (The use of temporary objects sc_c and
! x is required.)

      sc_c = c(n:1:-1); c = sc_c
      x = u_c(1:n,n:1:-1); u_c = x
      x = v_c(1:n,n:1:-1); v_c = x

! The columns of v_c and v_s have the same span.  They are
! equivalent by taking the signs of the largest magnitude values
! positive.

      do i=1, n
         sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(1:n,i)))),i))
         sc_s(i) = sign(one,v_s(sum(maxloc(abs(v_s(1:n,i)))),i))
      end do

      v_c = v_c*spread(sc_c,dim=1,ncopies=n)
      u_c = u_c*spread(sc_c,dim=1,ncopies=n)

      v_s = v_s*spread(sc_s,dim=1,ncopies=n)
      u_s = u_s*spread(sc_s,dim=1,ncopies=n)

! In this form of the GSVD, the matrix X can be unstable if D
! is ill-conditioned.
      x = matmul(v_d*spread(one/s_d,dim=1,ncopies=n),v_c)

! Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and
! B*X = u_s*diag(s_1, ..., s_n).
      err1 = sum(abs(matmul(a,x) - u_c*spread(c,dim=1,ncopies=n))) &
              / sum(s_d)
      err2 = sum(abs(matmul(b,x) - u_s*spread(s,dim=1,ncopies=n))) &
              / sum(s_d)
      if (err1 <= sqrt(epsilon(one)) .and. &
          err2 <= sqrt(epsilon(one))) then
         write (*,*) ’Example 3 for LIN_SVD is correct.’
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      end if

      end

Example 4: Ridge Regression as Cross-Validation with
Weighting

This example illustrates a particular choice for the ridge regression problem: The
least-squares problem Ax ≅ b is modified by the addition of a regularizing term to
become

min x Ax b x− +
2

2 2
2

2λ4 9
The solution to this problem, with row k deleted, is denoted by xN(λ). Using

nonnegative weights (w�, …, wP), the cross-validation squared error C(λ) is
given by:
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This expression is minimized. See Golub and Van Loan (1989, Chapter 12) for
more details. In the Example 4 code, mC(λ), at p = 10 grid points are evaluated
using a log-scale with respect to λ, 0 1  101 1. s s≤ ≤λ .  Array operations and
intrinsics are used to evaluate the function and then to choose an approximate
minimum. Following the computation of the optimum λ, the regularized solutions
are computed. Also, see operator_ex24, Chapter 6.

      use lin_svd_int
      use rand_gen_int

      implicit none

! This is Example 4 for LIN_SVD.

      integer i
      integer, parameter :: m=32, n=16, p=10, k=4
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda
      real(kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &
              s_sq(n), u(m,m), v(n,n), y(m*max(n,k)),  &
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              c_lamda(p,k), lamda(k), x(n,k), res(n,k)

! Generate random rectangular matrices for A and right-hand
! sides, b.
      call rand_gen(y)
      a = reshape(y,(/m,n/))

      call rand_gen(y)
      b = reshape(y,(/m,k/))

! Generate random weights for each of the right-hand sides.
      call rand_gen(y)
      w = reshape(y,(/m,k/))

! Compute the singular value decomposition.
      call lin_svd(a, s, u, v)

      g = matmul(transpose(u),b)
      s_sq = s**2

      log_lamda = log(10.*s(1)); log_lamda_t=log_lamda
      delta_log_lamda = (log_lamda - log(0.1*s(n))) / (p-1)

! Choose lamda to minimize the "cross-validation" weighted
! square error.  First evaluate the error at a grid of points,
! uniform in log_scale.

      cross_validation_error:  do i=1, p
         t = s_sq/(s_sq+exp(log_lamda))
         c_lamda(i,:) = sum(w*((b-matmul(u(1:m,1:n),g(1:n,1:k)* &
                             spread(t,DIM=2,NCOPIES=k)))/ &
                      (one-matmul(u(1:m,1:n)**2, &
                         spread(t,DIM=2,NCOPIES=k))))**2,DIM=1)
         log_lamda = log_lamda - delta_log_lamda
      end do cross_validation_error

! Compute the grid value and lamda corresponding to the minimum.
      do i=1, k
         lamda(i) = exp(log_lamda_t -  delta_log_lamda* &
                              (sum(minloc(c_lamda(1:p,i)))-1))
      end do

! Compute the solution using the optimum "cross-validation"
! parameter.
      x = matmul(v,g(1:n,1:k)*spread(s,DIM=2,NCOPIES=k)/ &
                     (spread(s_sq,DIM=2,NCOPIES=k)+ &
                      spread(lamda,DIM=1,NCOPIES=n)))
! Check the residuals, using normal equations.
      res = matmul(transpose(a),b-matmul(a,x)) - &
                    spread(lamda,DIM=1,NCOPIES=n)*x
      if (sum(abs(res))/sum(s_sq) <= &
              sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for LIN_SVD is correct.’
      end if

      end
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Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for lin_svd. These error messages
are numbered 1001−1010; 1021−1030; 1041−1050; 1061−1070.

lin_eig_self
Computes the eigenvalues of a self-adjoint matrix, A. Optionally, the eigenvectors

can be computed. This gives the decomposition A = VDV7 , where V is an n × n
orthogonal matrix and D is a real diagonal matrix.

Required Arguments

A   (Input [/Output])
Array of size n × n containing the matrix.

d   (Output)
Array of size n containing the eigenvalues. The values are in order of
decreasing absolute value.

Example 1: Computing Eigenvalues

The eigenvalues of a self-adjoint matrix are computed. The matrix A = C+C7  is
used, where C is random. The magnitudes of eigenvalues of A agree with the
singular values of A. Also, see operator_ex25, Chapter 6.

      use lin_eig_self_int
      use lin_sol_svd_int
      use rand_gen_int

      implicit none

! This is Example 1 for LIN_EIG_SELF.

      integer, parameter :: n=64
      real(kind(1e0)), parameter :: one=1e0
      real(kind(1e0)) :: A(n,n), b(n,0), D(n), S(n), x(n,0), y(n*n)

! Generate a random matrix and from it
! a self-adjoint matrix.
      call rand_gen(y)
      A = reshape(y,(/n,n/))
      A = A + transpose(A)

! Compute the eigenvalues of the matrix.
      call lin_eig_self(A, D)

! For comparison, compute the singular values.
      call lin_sol_svd(A, b, x, nrhs=0, s=S)

! Check the results:  Magnitude of eigenvalues should equal
! the singular values.
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      if (sum(abs(abs(D) - S)) <= &
           sqrt(epsilon(one))*S(1)) then
         write (*,*) ’Example 1 for LIN_EIG_SELF is correct.’
      end if
      end

Optional Arguments

NROWS = n   (Input)
Uses array A(1:n, 1:n) for the input matrix.
Default: n = size(A, 1)

v = v(:,:)   (Output)
Array of the same type and kind as A(1:n, 1:n). It contains the n × n
orthogonal matrix V.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix; used for
passing optional data to the routine. The options are as follows:

Packaged Options for lin_eig_self

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_eig_self_set_small 1

s_, d_, c_, z_ lin_eig_self_overwrite_input 2

s_, d_, c_, z_ lin_eig_self_scan_for_NaN 3

s_, d_, c_, z_ lin_eig_self_use_QR 4

s_, d_, c_, z_ lin_eig_self_skip_Orth 5

s_, d_, c_, z_ lin_eig_self_use_Gauss_elim 6

s_, d_, c_, z_ lin_eig_self_set_perf_ratio 7

iopt(IO) = ?_options(?_lin_eig_self_set_small, Small)
If a denominator term is smaller in magnitude than the value Small, it is
replaced by Small.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_eig_self_overwrite_input,
?_dummy)

Do not save the input array A(:, :).

iopt(IO) = ?_options(?_lin_eig_self_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

See the isNaN() function, Chapter 6.
Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_eig_use_QR, ?_dummy)

Uses a rational QR algorithm to compute eigenvalues. Accumulate the
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eigenvectors using this algorithm.
Default: the eigenvectors computed using inverse iteration

iopt(IO) = ?_options(?_lin_eig_skip_Orth, ?_dummy)

If the eigenvalues are computed using inverse iteration, skips the final
orthogonalization of the vectors. This will result in a more efficient
computation but the eigenvectors, while a complete set, may be far from
orthogonal.
Default: the eigenvectors are normally orthogonalized if obtained using
inverse iteration.

iopt(IO) = ?_options(?_lin_eig_use_Gauss_elim, ?_dummy)

If the eigenvalues are computed using inverse iteration, uses standard
elimination with partial pivoting to solve the inverse iteration problems.
Default: the eigenvectors computed using cyclic reduction

iopt(IO) = ?_options(?_lin_eig_self_set_perf_ratio, perf_ratio)
Uses residuals for approximate normalized eigenvectors if they have a
performance index no larger than perf_ratio. Otherwise an alternate
approach is taken and the eigenvectors are computed again: Standard
elimination is used instead of cyclic reduction, or the standard QR
algorithm is used as a backup procedure to inverse iteration. Larger
values of perf_ratio are less likely to cause these exceptions.
Default: perf_ratio = 4

Description

Routine lin_eig_self is an implementation of the QR algorithm for self-
adjoint matrices. An orthogonal similarity reduction of the input matrix to self-
adjoint tridiagonal form is performed. Then, the eigenvalue-eigenvector
decomposition of a real tridiagonal matrix is calculated. The expansion of the
matrix as AV = VD results from a product of these matrix factors. See Golub and
Van Loan (1989, Chapter 8) for details.

Additional Examples

Example 2: Eigenvalue-Eigenvector Expansion of a Square
Matrix

A self-adjoint matrix is generated and the eigenvalues and eigenvectors are

computed. Thus, A = VDV7, where V is orthogonal and D is a real diagonal
matrix. The matrix V is obtained using an optional argument. Also, see
operator_ex26, Chapter 6.

      use lin_eig_self_int
      use rand_gen_int

      implicit none
! This is Example 2 for LIN_EIG_SELF.

      integer, parameter :: n=8
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      real(kind(1e0)), parameter :: one=1e0
      real(kind(1e0)) :: a(n,n), d(n), v_s(n,n), y(n*n)

! Generate a random self-adjoint matrix.
      call rand_gen(y)
      a = reshape(y,(/n,n/))
      a = a + transpose(a)
! Compute the eigenvalues and eigenvectors.
      call lin_eig_self(a, d, v=v_s)
! Check the results for small residuals.
      if (sum(abs(matmul(a,v_s)-v_s*spread(d,1,n)))/d(1) <= &
             sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_EIG_SELF is correct.’
      end if
      end

Example 3: Computing a few Eigenvectors with Inverse
Iteration

A self-adjoint n × n matrix is generated and the eigenvalues, di; @ , are computed.

The eigenvectors associated with the first k of these are computed using the self-
adjoint solver, lin_sol_self, and inverse iteration. With random right-hand
sides, these systems are as follows:

A diI vi bi− =3 8
The solutions are then orthogonalized as in Hanson et al. (1991) to comprise a
partial decomposition AV = VD where V is an n × k matrix resulting from the
orthogonalized vi; @  and D is the k × k diagonal matrix of the distinguished

eigenvalues. It is necessary to suppress the error message when the matrix is
singular. Since these singularities are desirable, it is appropriate to ignore the
exceptions and not print the message text. Also, see operator_ex27, Chapter 6.

      use lin_eig_self_int
      use lin_sol_self_int
      use rand_gen_int
      use error_option_packet

      implicit none

! This is Example 3 for LIN_EIG_SELF.

      integer i, j
      integer, parameter :: n=64, k=8
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) big, err
      real(kind(1d0)) :: a(n,n), b(n,1), d(n), res(n,k), temp(n,n), &
              v(n,k), y(n*n)
      type(d_options) :: iopti(2)=d_options(0,zero)

! Generate a random self-adjoint matrix.
      call rand_gen(y)
      a = reshape(y,(/n,n/))
      a = a + transpose(a)
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! Compute just the eigenvalues.
      call lin_eig_self(a, d)

      do i=1, k

! Define a temporary array to hold the matrices A - eigenvalue*I.
         temp = a
         do j=1, n
            temp(j,j) = temp(j,j) - d(i)
         end do

! Use packaged option to reset the value of a small diagonal.
         iopti(1) = d_options(d_lin_sol_self_set_small,&
                    epsilon(one)*abs(d(i)))

! Use packaged option to skip singularity messages.
         iopti(2) = d_options(d_lin_sol_self_no_sing_mess,&
                    zero)
         call rand_gen(b(1:n,1))
         call lin_sol_self(temp, b, v(1:,i:i),&
              iopt=iopti)
      end do

! Orthogonalize the eigenvectors.
      do i=1, k
         big = maxval(abs(v(1:,i)))
         v(1:,i) = v(1:,i)/big
         v(1:,i) = v(1:,i)/sqrt(sum(v(1:,i)**2))
         if (i == k) cycle
         v(1:,i+1:k) = v(1:,i+1:k) + &
               spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &
               spread(v(1:,i),2,k-i)
      end do
      do i=k-1, 1, -1
         v(1:,i+1:k) = v(1:,i+1:k) + &
               spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &
               spread(v(1:,i),2,k-i)
      end do

! Check the results for both orthogonality of vectors and small
! residuals.
      res(1:k,1:k) = matmul(transpose(v),v)
      do i=1,k
         res(i,i)=res(i,i)-one
      end do
      err = sum(abs(res))/k**2
      res = matmul(a,v) - v*spread(d(1:k),1,n)
      if (err <= sqrt(epsilon(one))) then
         if (sum(abs(res))/abs(d(1)) <= sqrt(epsilon(one))) then
            write (*,*) ’Example 3 for LIN_EIG_SELF is correct.’
         end if
      end if
      end
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Example 4: Analysis and Reduction of a Generalized
Eigensystem

A generalized eigenvalue problem is Ax = λBx, where A and B are n × n self-
adjoint matrices. The matrix B is positive definite. This problem is reduced to an
ordinary self-adjoint eigenvalue problem Cy = λy by changing the variables of the
generalized problem to an equivalent form. The eigenvalue-eigenvector

decomposition B = VSV7 is first computed, labeling an eigenvalue too small if it
is less than epsilon(1.d0). The ordinary self-adjoint eigenvalue problem is
Cy = λy provided that the rank of B, based on this definition of Small, has the
value n. In that case,

C DV AVDT=

where

D S= −1 2/

The relationship between x and y is summarized as X = VDY, computed after the
ordinary eigenvalue problem is solved for the eigenvectors Y of C. The matrix X
is normalized so that each column has Euclidean length of value one. This
solution method is nonstandard for any but the most ill-conditioned matrices B.
The standard approach is to compute an ordinary self-adjoint problem following
computation of the Cholesky decomposition

B R RT=
where R is upper triangular. The computation of C can also be completed
efficiently by exploiting its self-adjoint property. See Golub and Van Loan (1989,
Chapter 8) for more information. Also, see operator_ex28, Chapter 6.

      use lin_eig_self_int
      use rand_gen_int
      implicit none

! This is Example 4 for LIN_EIG_SELF.

      integer i
      integer, parameter :: n=64
      real(kind(1e0)), parameter :: one=1d0
      real(kind(1e0)) b_sum
      real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &
               S(n), vb_d, X, ytemp(n*n), res

! Generate random self-adjoint matrices.
      call rand_gen(ytemp)
      A = reshape(ytemp,(/n,n/))
      A = A + transpose(A)

      call rand_gen(ytemp)
      B = reshape(ytemp,(/n,n/))
      B = B + transpose(B)

      b_sum = sqrt(sum(abs(B**2))/n)
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! Add a scalar matrix so B is positive definite.
      do i=1, n
         B(i,i) = B(i,i) + b_sum
      end do

! Get the eigenvalues and eigenvectors for B.

      call lin_eig_self(B, S, v=vb_d)

! For full rank problems, convert to an ordinary self-adjoint
! problem.  (All of these examples are full rank.)
      if (S(n) > epsilon(one)) then

         D = one/sqrt(S)

         C = spread(D,2,n)*matmul(transpose(vb_d), &
                matmul(A,vb_d))*spread(D,1,n)

! Get the eigenvalues and eigenvectors for C.
         call lin_eig_self(C, lambda, v=X)

! Compute the generalized eigenvectors.
         X = matmul(vb_d,spread(D,2,n)*X)

! Normalize the eigenvectors for the generalized problem.
         X = X * spread(one/sqrt(sum(X**2,dim=2)),1,n)

         res =  matmul(A,X) - &
               matmul(B,X)*spread(lambda,1,n)

! Check the results.
         if (sum(abs(res))/(sum(abs(A))+sum(abs(B))) <= &
            sqrt(epsilon(one))) then
            write (*,*) ’Example 4 for LIN_EIG_SELF is correct.’
         end if
end if
end

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for lin_eig_self. These error
messages are numbered 81−90; 101−110; 121−129; 141−149.

lin_eig_gen
Computes the eigenvalues of an n × n matrix, A. Optionally, the eigenvectors of A

or A7 are computed. Using the eigenvectors of A gives the decomposition AV =
VE, where V is an n × n complex matrix of eigenvectors, and E is the complex
diagonal matrix of eigenvalues. Other options include the reduction of A to upper
triangular or Schur form, reduction to block upper triangular form with 2 × 2 or
unit sized diagonal block matrices, and reduction to upper Hessenberg form.
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Required Arguments

A   (Input [/Output])
Array of size n × n containing the matrix.

E   (Output)
Array of size n containing the eigenvalues. These complex values are in
order of decreasing absolute value. The signs of imaginary parts of the
eigenvalues are in no predictable order.

Example 1: Computing Eigenvalues

The eigenvalues of a random real matrix are computed. These values define a
complex diagonal matrix E. Their correctness is checked by obtaining the
eigenvector matrix V and verifying that the residuals R = AV − VE are small.
Also, see operator_ex29, Chapter 6.

      use lin_eig_gen_int
      use rand_gen_int

      implicit none

! This is Example 1 for LIN_EIG_GEN.

      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) A(n,n), y(n*n), err
      complex(kind(1d0)) E(n), V(n,n), E_T(n)
      type(d_error) :: d_epack(16) = d_error(0,0d0)

! Generate a random matrix.
      call rand_gen(y)
      A = reshape(y,(/n,n/))

! Compute only the eigenvalues.
      call lin_eig_gen(A, E)

! Compute the decomposition, A*V = V*values,
! obtaining eigenvectors.
      call lin_eig_gen(A, E_T, v=V)

! Use values from the first decomposition, vectors from the
! second decomposition, and check for small residuals.
      err = sum(abs(matmul(A,V) - V*spread(E,DIM=1,NCOPIES=n))) &
                / sum(abs(E))
      if (err  <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_EIG_GEN is correct.’
      end if

      end
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Optional Arguments

NROWS = n   (Input)
Uses array A(1:n, 1:n) for the input matrix.
Default: n = size(A, 1)

v = V(:,:)   (Output)
Returns the complex array of eigenvectors for the matrix A.

v_adj = U(:,:)   (Output)

Returns the complex array of eigenvectors for the matrix A7.  Thus the
residuals

S A U UET= −
are small.

tri = T(:,:)   (Output)
Returns the complex upper-triangular matrix T associated with the
reduction of the matrix A to Schur form. Optionally a unitary matrix W is
returned in array V(:,:) such that the residuals Z = AW − WT are small.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional data to the routine. The options are as follows:

Packaged Options for lin_eig_gen

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_eig_gen_set_small 1

s_, d_, c_, z_ lin_eig_gen_overwrite_input 2

s_, d_, c_, z_ lin_eig_gen_scan_for_NaN 3

s_, d_, c_, z_ lin_eig_gen_no_balance 4

s_, d_, c_, z_ lin_eig_gen_set_iterations 5

s_, d_, c_, z_ lin_eig_gen_in_Hess_form 6

s_, d_, c_, z_ lin_eig_gen_out_Hess_form 7

s_, d_, c_, z_ lin_eig_gen_out_block_form 8

s_, d_, c_, z_ lin_eig_gen_out_tri_form 9

s_, d_, c_, z_ lin_eig_gen_continue_with_V 10

s_, d_, c_, z_ lin_eig_gen_no_sorting 11

iopt(IO) = ?_options(?_lin_eig_gen_set_small, Small)
This is the tolerance used to declare off-diagonal values effectively zero
compared with the size of the numbers involved in the computation of a
shift.
Default: Small = epsilon(), the relative accuracy of arithmetic
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iopt(IO) = ?_options(?_lin_eig_gen_overwrite_input, ?_dummy)

Does not save the input array A(:, :).
Default: The array is saved.

iopt(IO) = ?_options(?_lin_eig_gen_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

See the isNaN() function, Chapter 6.
Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_eig_no_balance, ?_dummy)

The input matrix is not preprocessed searching for isolated eigenvalues
followed by rescaling. See Golub and Van Loan (1989, Chapter 7) for
references. With some optional uses of the routine, this option flag is
required.
Default: The matrix is first balanced.

iopt(IO) = ?_options(?_lin_eig_gen_set_iterations, ?_dummy)

Resets the maximum number of iterations permitted to isolate each
diagonal block matrix.
Default: The maximum number of iterations is 52.

iopt(IO) = ?_options(?_lin_eig_gen_in_Hess_form, ?_dummy)

The input matrix is in upper Hessenberg form. This flag is used to avoid
the initial reduction phase which may not be needed for some problem
classes.
Default: The matrix is first reduced to Hessenberg form.

iopt(IO) = ?_options(?_lin_eig_gen_out_Hess_form, ?_dummy)

The output matrix is transformed to upper Hessenberg form, H1.  If the
optional argument “ v=V(:,:)”  is passed by the calling program unit,
then the array V(:,:) contains an orthogonal matrix Q1 such that

AQ Q H1 1 1 0− ≅

Requires the simultaneous use of option ?_lin_eig_no_balance.
Default: The matrix is reduced to diagonal form.

iopt(IO) = ?_options(?_lin_eig_gen_out_block_form, ?_dummy)

The output matrix is transformed to upper Hessenberg form, H2 , which

is block upper triangular. The dimensions of the blocks are either 2 × 2
or unit sized. Nonzero subdiagonal values of H2  determine the size of
the blocks. If the optional argument “ v=V(:,:)”  is passed by the
calling program unit, then the array V(:,:) contains an orthogonal
matrix Q2  such that

AQ Q H2 2 2 0− ≅

Requires the simultaneous use of option ?_lin_eig_no_balance.
Default: The matrix is reduced to diagonal form.
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iopt(IO) = ?_options(?_lin_eig_gen_out_tri_form, ?_dummy)

The output matrix is transformed to upper-triangular form, T. If the
optional argument “ v=V(:,:)”  is passed by the calling program unit,
then the array V(:,:) contains a unitary matrix W such that
AW − WT ≅ 0. The upper triangular matrix T is returned in the optional
argument “ tri=T(:,:)”.   The eigenvalues of A are the diagonal
entries of the matrix T . They are in no particular order. The output array
E(:)is blocked with NaNs using this option. This option requires the
simultaneous use of option ?_lin_eig_no_balance.
Default: The matrix is reduced to diagonal form.

iopt(IO) = ?_options(?_lin_eig_gen_continue_with_V, ?_dummy)

As a convenience or for maintaining efficiency, the calling program unit
sets the optional argument “ v=V(:,:)”  to a matrix that has transformed
a problem to the similar matrix, &A . The contents of V(:,:) are updated
by the transformations used in the algorithm. Requires the simultaneous
use of option ?_lin_eig_no_balance.
Default: The array V(:,:) is initialized to the identity matrix.

iopt(IO) = ?_options(?_lin_eig_gen_no_sorting, ?_dummy)

Does not sort the eigenvalues as they are isolated by solving the 2 × 2 or
unit sized blocks. This will have the effect of guaranteeing that complex
conjugate pairs of eigenvalues are adjacent in the array E(:).
Default: The entries of E(:) are sorted so they are non-increasing in
absolute value.

Description

The input matrix A is first balanced. The resulting similar matrix is transformed to
upper Hessenberg form using orthogonal transformations. The double-shifted QR
algorithm transforms the Hessenberg matrix so that 2 × 2 or unit sized blocks
remain along the main diagonal. Any off-diagonal that is classified as “small” in
order to achieve this block form is set to the value zero. Next the block upper
triangular matrix is transformed to upper triangular form with unitary rotations.
The eigenvectors of the upper triangular matrix are computed using back
substitution. Care is taken to avoid overflows during this process. At the end,
eigenvectors are normalized to have Euclidean length one, with the largest
component real and positive. This algorithm follows that given in Golub and Van
Loan, (1989, Chapter 7), with some novel organizational details for additional
options, efficiency and robustness.

Example 2: Complex Polynomial Equation Roots

The roots of a complex polynomial equation,

f z b z zk

k

n
n k n1 6 ≡ + =

=

−∑
1

0
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are required. This algebraic equation is formulated as a matrix eigenvalue
problem. The equivalent matrix eigenvalue problem is solved using the upper
Hessenberg matrix which has the value zero except in row number 1 and along
the first subdiagonal. The entries in the first row are given by
a��M = −bM, i = 1, …, n, while those on the first subdiagonal have the value one.
This is a companion matrix for the polynomial. The results are checked by testing
for small values of |f(eL)|, i = 1, …, n, at the eigenvalues of the matrix, which are
the roots of f(z). Also, see operator_ex30, Chapter 6.

      use lin_eig_gen_int
      use rand_gen_int

      implicit none
! This is Example 2 for LIN_EIG_GEN.

      integer i
      integer, parameter :: n=12
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
      real(kind(1d0)) err, t(2*n)
      type(d_options) :: iopti(1)=d_options(0,zero)
      complex(kind(1d0)) a(n,n), b(n), e(n), f(n), fg(n)

call rand_gen(t)
      b = cmplx(t(1:n),t(n+1:),kind(one))

! Define the companion matrix with polynomial coefficients
! in the first row.

      a = zero

      do i=2, n
         a(i,i-1) = one
      end do

      a(1,1:n) = -b

! Note that the input companion matrix is upper Hessenberg.
      iopti(1) = d_options(z_lin_eig_gen_in_Hess_form,zero)

! Compute complex eigenvalues of the companion matrix.

      call lin_eig_gen(a, e, iopt=iopti)

      f=one; fg=one

! Use Horner’s method for evaluation of the complex polynomial
! and size gauge at all roots.

      do i=1, n
         f = f*e + b(i)
         fg = fg*abs(e) + abs(b(i))
      end do

! Check for small errors at all roots.

      err = sum(abs(f/fg))/n
      if (err <= sqrt(epsilon(one))) then
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         write (*,*) ’Example 2 for LIN_EIG_GEN is correct.’
      end if
      end

Example 3: Solving Parametric Linear Systems with a Scalar
Change

The efficient solution of a family of linear algebraic equations is required. These
systems are (A + hI)x = b. Here A is an n × n real matrix, I is the identity matrix,
and b is the right-hand side matrix. The scalar h is such that the coefficient matrix
is nonsingular. The method is based on the Schur form for matrix
A: AW = WT, where W is unitary and T is upper triangular. This provides an
efficient solution method for several values of h, once the Schur form is
computed. The solution steps solve, for y, the upper triangular linear system

T hI y W bT+ =1 6
Then, x = x(h) = Wy. This is an efficient and accurate method for such parametric
systems provided the expense of computing the Schur form has a pay-off in later
efficiency. Using the Schur form in this way, it is not required to compute an LU
factorization of A + hI with each new value of h. Note that even if the data A, h,
and b are real, subexpressions for the solution may involve complex intermediate
values, with x(h) finally a real quantity. Also, see operator_ex31, Chapter 6.

     use lin_eig_gen_int
      use lin_sol_gen_int
      use rand_gen_int

      implicit none

! This is Example 3 for LIN_EIG_GEN.

      integer i
      integer, parameter :: n=32, k=2
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
      real(kind(1e0)) a(n,n), b(n,k), x(n,k), temp(n*max(n,k)), h, err
      type(s_options) :: iopti(2)
      complex(kind(1e0)) w(n,n), t(n,n), e(n), z(n,k)

      call rand_gen(temp)
      a = reshape(temp,(/n,n/))

      call rand_gen(temp)
      b = reshape(temp,(/n,k/))

      iopti(1) = s_options(s_lin_eig_gen_out_tri_form,zero)
      iopti(2) = s_options(s_lin_eig_gen_no_balance,zero)

! Compute the Schur decomposition of the matrix.

      call lin_eig_gen(a, e, v=w, tri=t, &
            iopt=iopti)

! Choose a value so that A+h*I is non-singular.
      h = one
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! Solve for (A+h*I)x=b using the Schur decomposition.

      z = matmul(conjg(transpose(w)),b)

! Solve intermediate upper-triangular system with implicit
! additive diagonal, h*I.  This is the only dependence on
! h in the solution process.
      do i=n,1,-1
         z(i,1:k) = z(i,1:k)/(t(i,i)+h)
         z(1:i-1,1:k) = z(1:i-1,1:k) + &
                        spread(-t(1:i-1,i),dim=2,ncopies=k)* &
                        spread(z(i,1:k),dim=1,ncopies=i-1)
      end do

! Compute the solution.  It should be the same as x, but will not be
! exact due to rounding errors.  (The quantity real(z,kind(one)) is
! the real-valued answer when the Schur decomposition method is used.)

      z = matmul(w,z)

! Compute the solution by solving for x directly.
      do i=1, n
         a(i,i) = a(i,i) + h
      end do

      call lin_sol_gen(a, b, x)

! Check that x and z agree approximately.
      err = sum(abs(x-z))/sum(abs(x))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 3 for LIN_EIG_GEN is correct.’
      end if

      end

Example 4: Accuracy Estimates of Eigenvalues Using Adjoint
and Ordinary Eigenvectors

A matrix A has entries that are subject to uncertainty. This is expressed as the
realization that A can be replaced by the matrix A + ηB, where the value η is
“small” but still significantly larger than machine precision. The matrix B satisfies
||B|| ≤ ||A||. A variation in eigenvalues is estimated using analysis found in Golub
and Van Loan, (1989, Chapter 7, p. 344). Each eigenvalue and eigenvector is
expanded in a power series in η. With

e e ei i iη η1 6 ≈ + & η)

and normalized eigenvectors, the bound

| & |e
A

u v
i

i i

≤
∗
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is satisfied. The vectors u vi i and  are the ordinary and adjoint eigenvectors
associated respectively with ei  and its complex conjugate. This gives an upper
bound on the size of the change to each ei  due to changing the matrix data.  The

reciprocal

u vi i
∗ −1

is defined as the condition number of ei .  Also, see operator_ex32, Chapter 6.

      use lin_eig_gen_int
      use rand_gen_int

      implicit none

! This is Example 4 for LIN_EIG_GEN.

      integer i
      integer, parameter :: n=17
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) a(n,n), c(n,n), variation(n), y(n*n), temp(n), &
              norm_of_a, eta
      complex(kind(1d0)), dimension(n,n) :: e(n), d(n), u, v

! Generate a random matrix.
      call rand_gen(y)
      a = reshape(y,(/n,n/))

! Compute the eigenvalues, left- and right- eigenvectors.
      call lin_eig_gen(a, e, v=v, v_adj=u)

! Compute condition numbers and variations of eigenvalues.
      norm_of_a = sqrt(sum(a**2)/n)
      do i=1, n
         variation(i) = norm_of_a/abs(dot_product(u(1:n,i), &
                                              v(1:n,i)))
      end do

! Now perturb the data in the matrix by the relative factors
! eta=sqrt(epsilon) and solve for values again.  Check the
! differences compared to the estimates.  They should not exceed
! the bounds.

      eta = sqrt(epsilon(one))
      do i=1, n
         call rand_gen(temp)
         c(1:n,i) = a(1:n,i) + (2*temp - 1)*eta*a(1:n,i)
      end do

      call lin_eig_gen(c,d)

! Looking at the differences of absolute values accounts for
! switching signs on the imaginary parts.
      if (count(abs(d)-abs(e) > eta*variation) == 0) then
         write (*,*) ’Example 4 for LIN_EIG_GEN is correct.’
      end if

      end
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Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for lin_eig_gen. These error
messages are numbered 841−858; 861−878; 881−898; 901−918.

lin_geig_gen
Computes the generalized eigenvalues of an n × n matrix pencil, Av = λBv.
Optionally, the generalized eigenvectors are computed. If either of A or B is
nonsingular, there are diagonal matrices α and β, and a complex matrix V, all
computed such that AVβ = BVα.

Required Arguments

A   (Input [/Output])
Array of size n × n containing the matrix A.

B   (Input [/Output])
Array of size n × n containing the matrix B.

alpha   (Output)
Array of size n containing diagonal matrix factors of the generalized
eigenvalues. These complex values are in order of decreasing absolute
value.

beta   (Output)
Array of size n containing diagonal matrix factors of the generalized
eigenvalues. These real values are in order of decreasing value.

Example 1: Computing Generalized Eigenvalues

The generalized eigenvalues of a random real matrix pencil are computed. These
values are checked by obtaining the generalized eigenvectors and then showing
that the residuals

AV BV− −αβ 1

are small. Note that when the matrix B is nonsingular β = I, the identity matrix.
When B is singular and A is nonsingular, some diagonal entries of β are
essentially zero. This corresponds to “ infinite eigenvalues” of the matrix pencil.
This random matrix pencil example has all finite eigenvalues. Also, see
operator_ex33, Chapter 6.

      use lin_geig_gen_int
      use rand_gen_int

      implicit none

! This is Example 1 for LIN_GEIG_GEN.

      integer, parameter :: n=32
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      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) A(n,n), B(n,n), beta(n), beta_t(n), err, y(n*n)
      complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)

! Generate random matrices for both A and B.
      call rand_gen(y)
      A = reshape(y,(/n,n/))
      call rand_gen(y)
      B = reshape(y,(/n,n/))

! Compute the generalized eigenvalues.
      call lin_geig_gen(A, B, alpha, beta)

! Compute the full decomposition once again, A*V = B*V*values.
      call lin_geig_gen(A, B, alpha_t, beta_t, &
                v=V)

! Use values from the first decomposition, vectors from the
! second decomposition, and check for small residuals.
      err = sum(abs(matmul(A,V) - &
                   matmul(B,V)*spread(alpha/beta,DIM=1,NCOPIES=n))) / &
                sum(abs(a)+abs(b))
      if (err  <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_GEIG_GEN is correct.’
      end if

      end

Optional Arguments

NROWS = n   (Input)
Uses arrays A(1:n, 1:n) and B(1:n, 1:n) for the input matrix pencil.
Default: n = size(A, 1)

v = V(:,:)   (Output)
Returns the complex array of generalized eigenvectors for the matrix
pencil.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional data to the routine. The options are as follows:

Packaged Options for lin_geig_gen

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_geig_gen_set_small 1

s_, d_, c_, z_ lin_geig_gen_overwrite_input 2

s_, d_, c_, z_ lin_geig_gen_scan_for_NaN 3

s_, d_, c_, z_ lin_geig_gen_self_adj_pos 4

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_self 5
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Packaged Options for lin_geig_gen

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_self 6

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_lsq 7

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_gen 8

iopt(IO) = ?_options(?_lin_geig_gen_set_small, Small)
This tolerance, multiplied by the sum of absolute value of the matrix B,
is used to define a small diagonal term in the routines lin_sol_lsq
and lin_sol_self. That value can be replaced using the option flags
lin_geig_gen_for_lin_sol_lsq, and
lin_geig_gen_for_lin_sol_self.
Default: Small = epsilon(.), the relative accuracy of arithmetic

iopt(IO) = ?_options(?_lin_geig_gen_overwrite_input,
?_dummy)

Does not save the input arrays A(:, :) and B(:, :).
Default: The array is saved.

iopt(IO) = ?_options(?_lin_geig_gen_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNaN(b(i,j)) == .true.

See the isNaN() function, Chapter 6.
Default: The arrays are not scanned for NaNs.

iopt(IO) = ?_options(?_lin_geig_gen_self_adj_pos, ?_dummy)

If both matrices A and B are self-adjoint and additionally B is positive-
definite, then the Cholesky algorithm is used to reduce the matrix pencil
to an ordinary self-adjoint eigenvalue problem.

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_self,
?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_sol_self),
?_dummy)

The options for lin_sol_self follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_self,
?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_eig_self),
?_dummy)

The options for lin_eig_self follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_lsq,
?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_sol_lsq),
?_dummy)

The options for lin_sol_lsq follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_gen,
?_dummy)
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iopt(IO+1) = ?_options((k=size of options for lin_eig_gen),
?_dummy)

The options for lin_eig_gen follow as data in iopt().

Description

Routine lin_geig_gen implements a standard algorithm that reduces a
generalized eigenvalue or matrix pencil problem to an ordinary eigenvalue
problem. An orthogonal decomposition is computed

BP HRT =

The orthogonal matrix H is the product of n − 1 row permutations, each followed
by a Householder transformation. Column permutations, P, are chosen at each
step to maximize the Euclidian length of the pivot column. The matrix R is upper
triangular. Using the default tolerance τ = ε||B||, where ε is machine relative
precision, each diagonal entry of R exceeds τ in value. Otherwise, R is singular.
In that case A and B are interchanged and the orthogonal decomposition is
computed one more time. If both matrices are singular the problem is declared
singular and is not solved. The interchange of A and B is accounted for in the
output diagonal matrices α and β. The ordinary eigenvalue problem is Cx = λx,
where

C H AP RT T= −1

and

RPv = x

If the matrices A and B are self-adjoint and if, in addition, B is positive-definite,
then a more efficient reduction than the default algorithm can be optionally used

to solve the problem: A Cholesky decomposition is obtained, R7R R = PBP7.
The matrix R is upper triangular and P is a permutation matrix. This is equivalent
to the ordinary self-adjoint eigenvalue problem Cx = λx, where RPv = x and

C R PAP RT T= − −1

The self-adjoint eigenvalue problem is then solved.

Additional Examples

Example 2: Self-Adjoint, Positive-Definite Generalized
Eigenvalue Problem

This example illustrates the use of optional flags for the special case where A and
B are complex self-adjoint matrices, and B is positive-definite. For purposes of
maximum efficiency an option is passed to routine lin_sol_self so that
pivoting is not used in the computation of the Cholesky decomposition of matrix
B. This example does not require that secondary option. Also, see
operator_ex34, Chapter 6.
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      use lin_geig_gen_int
      use lin_sol_self_int
      use rand_gen_int

      implicit none

! This is Example 2 for LIN_GEIG_GEN.

      integer i
      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
      real(kind(1d0)) beta(n), temp_c(n,n), temp_d(n,n), err
      type(d_options) :: iopti(4)=d_options(0,zero)
      complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V, alpha(n)

! Generate random matrices for both A and B.
      do i=1, n
         call rand_gen(temp_c(1:n,i))
         call rand_gen(temp_d(1:n,i))
      end do
      c = temp_c; d = temp_c
      do i=1, n
         call rand_gen(temp_c(1:n,i))
         call rand_gen(temp_d(1:n,i))
      end do
      c = cmplx(real(c),temp_c,kind(one))
      d = cmplx(real(d),temp_d,kind(one))

      a = conjg(transpose(c)) + c
      b = matmul(conjg(transpose(d)),d)

! Set option so that the generalized eigenvalue solver uses an
! efficient method for well-posed, self-adjoint problems.
      iopti(1) = d_options(z_lin_geig_gen_self_adj_pos,zero)
      iopti(2) = d_options(z_lin_geig_gen_for_lin_sol_self,zero)

! Number of secondary optional data items and the options:
      iopti(3) =   d_options(1,zero)
      iopti(4) =   d_options(z_lin_sol_self_no_pivoting,zero)

      call lin_geig_gen(a, b, alpha, beta, v=v, &
        iopt=iopti)

! Check that residuals are small.  Use the real part of alpha
! since the values are known to be real.
      err = sum(abs(matmul(a,v) - matmul(b,v)* &
            spread(real(alpha,kind(one))/beta,dim=1,ncopies=n))) / &
            sum(abs(a)+abs(b))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_GEIG_GEN is correct.’
      end if

      end
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Example 3: A Test for a Regular Matrix Pencil

In the classification of Differential Algebraic Equations (DAE), a system with
linear constant coefficients is given by A &x + Bx = f. Here A and B are n × n
matrices, and f is an n-vector that is not part of this example. The DAE system is
defined as solvable if and only if the quantity det(µA + B) does not vanish
identically as a function of the dummy parameter µ. A sufficient condition for
solvability is that the generalized eigenvalue problem Av = λBv is nonsingular. By
constructing A and B so that both are singular, the routine flags nonsolvability in
the DAE by returning NaN for the generalized eigenvalues. Also, see
operator_ex35, Chapter 6.

      use lin_geig_gen_int
      use rand_gen_int
      use error_option_packet
      use isnan_int

      implicit none

! This is Example 3 for LIN_GEIG_GEN.

      integer, parameter :: n=6
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
      real(kind(1d0)) a(n,n), b(n,n), beta(n), y(n*n)
      type(d_options) iopti(1)
      type(d_error) epack(1)
      complex(kind(1d0)) alpha(n)

! Generate random matrices for both A and B.
      call rand_gen(y)
      a = reshape(y,(/n,n/))

      call rand_gen(y)
      b = reshape(y,(/n,n/))

! Make columns of A and B zero, so both are singular.
      a(1:n,n) = 0; b(1:n,n) = 0

! Set internal tolerance for a small diagonal term.
      iopti(1) = d_options(d_lin_geig_gen_set_small,sqrt(epsilon(one)))

! Compute the generalized eigenvalues.
      call lin_geig_gen(a, b, alpha, beta, &
        iopt=iopti,epack=epack)

! See if singular DAE system is detected.
! (The size of epack() is too small for the message, so
! output is blocked with NaNs.)
      if (isnan(alpha)) then
         write (*,*) ’Example 3 for LIN_GEIG_GEN is correct.’
      end if

      end



IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition • 77

Example 4: Larger Data Uncertainty than Working Precision

Data values in both matrices A and B are assumed to have relative errors that can

be as large as ε1 2/  where ε is the relative machine precision. This example
illustrates the use of an optional flag that resets the tolerance used in routine
lin_sol_lsq for determining a singularity of either matrix. The tolerance is
reset to the new value ε1 2/ B  and the generalized eigenvalue problem is solved.
We anticipate that B might be singular and detect this fact. Also, see
operator_ex36, Chapter 6.

      use lin_geig_gen_int
      use lin_sol_lsq_int
      use rand_gen_int
      use isNaN_int

      implicit none

! This is Example 4 for LIN_GEIG_GEN.

      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) a(n,n), b(n,n), beta(n), y(n*n), err
      type(d_options) iopti(4)
      type(d_error) epack(1)
      complex(kind(1d0)) alpha(n), v(n,n)

! Generate random matrices for both A and B.

      call rand_gen(y)
      a = reshape(y,(/n,n/))

      call rand_gen(y)
      b = reshape(y,(/n,n/))

! Set the option, a larger tolerance than default for lin_sol_lsq.
      iopti(1) = d_options(d_lin_geig_gen_for_lin_sol_lsq,zero)

! Number of secondary optional data items
      iopti(2) =   d_options(2,zero)
      iopti(3) =   d_options(d_lin_sol_lsq_set_small,sqrt(epsilon(one))*&
                    sqrt(sum(b**2)/n))
      iopti(4) =   d_options(d_lin_sol_lsq_no_sing_mess,zero)

! Compute the generalized eigenvalues.
      call lin_geig_gen(A, B, alpha, beta, v=v, &
                  iopt=iopti, epack=epack)

      if(.not. isNaN(alpha)) then

! Check the residuals.
        err = sum(abs(matmul(A,V)*spread(beta,dim=1,ncopies=n) - &
                     matmul(B,V)*spread(alpha,dim=1,ncopies=n))) / &
                sum(abs(a)+abs(b))
        if (err  <= sqrt(epsilon(one))) then
           write (*,*) ’Example 4 for LIN_GEIG_GEN is correct.’
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        end if
      end if
      end

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for lin_geig_gen. These error
messages are numbered 921−936; 941−956; 961−976; 981−996.
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Chapter 3: Fourier Transforms

Introduction
Following are routines for computing Fourier Transfoms of rank-1, rank-2, and
rank-3 complex arrays.

Contents
fast_dft.................................................................................................. 79
Example 1: Transforming an Array of Random Complex Numbers......... 79
Example 2: Cyclical Data with a Linear Trend.......................................... 82
Example 3: Several Transforms with Initialization.................................... 83
Example 4: Convolutions using Fourier Transforms ................................ 84
fast_2dft ................................................................................................ 86
Example 1: Transforming an Array of Random Complex Numbers......... 86
Example 2: Cyclical 2D Data with a Linear Trend.................................... 88
Example 3: Several 2D Transforms with Initialization .............................. 90
fast_3dft ................................................................................................ 91
Example 1: Transforming an Array of Random Complex Numbers......... 91

fast_dft
Computes the Discrete Fourier Transform (DFT) of a rank-1 complex array, x.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are
forward_in and forward_out or inverse_in and inverse_out.

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers
is inverted and the final results are compared with the input array.

      use fast_dft_int
      use rand_gen_int

      implicit none
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! This is Example 1 for FAST_DFT.

      integer, parameter :: n=1024
      real(kind(1e0)), parameter :: one=1e0
      real(kind(1e0)) err, y(2*n)
      complex(kind(1e0)), dimension(n) :: a, b, c

! Generate a random complex sequence.
      call rand_gen(y)
      a = cmplx(y(1:n),y(n+1:2*n),kind(one))
      c = a

! Transform and then invert the sequence back.
      call c_fast_dft(forward_in=a, &
           forward_out=b)
      call c_fast_dft(inverse_in=b, &
           inverse_out=a)

! Check that inverse(transform(sequence)) = sequence.
      err = maxval(abs(c-a))/maxval(abs(c))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for FAST_DFT is correct.’
      end if

      end

Optional Arguments

forward_in = x   (Input)
Stores the input complex array of rank-1 to be transformed.

forward_out = y   (Output)
Stores the output complex array of rank-1 resulting from the transform.

inverse_in = y   (Input)
Stores the input complex array of rank-1 to be inverted.

inverse_out = x   (Output)
Stores the output complex array of rank-1 resulting from the inverse
transform.

ndata = n   (Input)
Uses the sub-array of size n for the numbers.
Default value: n = size(x).

ido = ido   (Input/Output)
Integer flag that directs user action. Normally, this argument is used only
when the working variables required for the transform and its inverse are
saved in the calling program unit. Computing the working variables and
saving them in internal arrays within fast_dft is the default. This
initialization step is expensive.

There is a two-step process to compute the working variables just once.
Example 3 illustrates this usage. The general algorithm for this usage is
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to enter fast_dft with ido = 0. A return occurs thereafter with
ido < 0. The optional rank-1 complex array w(:) with size(w) >= −ido
must be re-allocated. Then, re-enter fast_dft. The next return from
fast_dft has the output value ido = 1. The variables required for the
transform and its inverse are saved in w(:). Thereafter, when the routine
is entered with ido = 1 and for the same value of n, the contents of w(:)
will be used for the working variables. The expensive initialization step
is avoided. The optional arguments “ido=” and “work_array=” must
be used together.

work_array = w(:)   (Output/Input)
Complex array of rank-1 used to store working variables and values
between calls to fast_dft. The value for size(w) must be at least as
large as the value − ido for the value of ido < 0.

iopt = iopt(:)   (Input/Output)
Derived type array with the same precision as the input array; used for
passing optional data to fast_dft. The options are as follows:

Packaged Options for fast_dft

Option Prefix = ? Option Name Option Value

c_, z_ fast_dft_scan_for_NaN 1

c_, z_ fast_dft_near_power_of_2 2

c_, z_ fast_dft_scale_forward 3

c_, z_ fast_dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_dft_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(x(i)) ==.true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_dft_near_power_of_2, ?_dummy)

Nearest power of 2 ≥ n is returned as an output in iopt(IO +

1)%idummy.

iopt(IO) = ?_options(?_fast_dft_scale_forward,
real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the forward transformed array.
Default value is 1.

iopt(IO) = ?_options(?_fast_dft_scale_inverse,
real_part_of_scale)
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iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the inverse transformed array.
Default value is 1.

Description

The fast_dft routine is a Fortran 90 version of the FFT suite of IMSL (1994,
pp. 772-776). The maximum computing efficiency occurs when the size of the
array can be factored in the form

n i i i i= 2 3 4 51 2 3 4

using non-negative integer values {i�, i�, i�, i�}. There is no further restriction on

n ≥ 1.

Additional Examples

Example 2: Cyclical Data with a Linear Trend

This set of data is sampled from a function x(t) = at + b + y(t), where y(t) is a
harmonic series. The independent variable is normalized as −1 ≤ t ≤ 1. Thus, the
data is said to have cyclical components plus a linear trend . As a first step, the
linear terms are effectively removed from the data using the least-squares system
solver lin_sol_lsq, Chapter 1. Then, the residuals are transformed and the
resulting frequencies are analyzed.

      use fast_dft_int
      use lin_sol_lsq_int
      use rand_gen_int
      use sort_real_int

      implicit none

! This is Example 2 for FAST_DFT.

      integer i
      integer, parameter :: n=64, k=4
      integer ip(n)
      real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0
      real(kind(1e0)) delta_t, pi
      real(kind(1e0)) y(k), z(2), indx(k), t(n), temp(n)
      complex(kind(1e0)) a_trend(n,2), a, b_trend(n,1), b, c(k), f(n),&
               r(n), x(n), x_trend(2,1)

! Generate random data for linear trend and harmonic series.
      call rand_gen(z)
      a = z(1); b = z(2)
      call rand_gen(y)
! This emphasizes harmonics 2 through k+1.
      c = y + one

! Determine sampling interval.
      delta_t = two/n
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      t=(/(-one+i*delta_t, i=0,n-1)/)

! Compute pi.
      pi = atan(one)*4E0
      indx=(/(i*pi,i=1,k)/)

! Make up data set as a linear trend plus harmonics.
      x = a + b*t + &
         matmul(exp(cmplx(zero,spread(t,2,k)*spread(indx,1,n),kind(one))),c)

! Define least-squares matrix data for a linear trend.
      a_trend(1:,1) = one
      a_trend(1:,2) = t
      b_trend(1:,1) = x

! Solve for a linear trend.
      call lin_sol_lsq(a_trend, b_trend, x_trend)

! Compute harmonic residuals.
      r = x -  reshape(matmul(a_trend,x_trend),(/n/))

! Transform harmonic residuals.
      call c_fast_dft(forward_in=r, forward_out=f)
      ip=(/(i,i=1,n)/)

! The dominant frequencies should be 2 through k+1.
! Sort the magnitude of the transform first.
      call s_sort_real(-(abs(f)), temp, iperm=ip)

! The dominant frequencies are output in ip(1:k).
! Sort these values to compare with 2 through k+1.
      call s_sort_real(real(ip(1:k)), temp)
      ip(1:k)=(/(i,i=2,k+1)/)

! Check the results.
      if (count(int(temp(1:k)) /= ip(1:k)) == 0) then
         write (*,*) ’Example 2 for FAST_DFT is correct.’
      end if

      end

Example 3: Several Transforms with Initialization

In this example, the optional arguments ido and work_array are used to save
working variables in the calling program unit. This results in maximum efficiency
of the transform and its inverse since the working variables do not have to be
precomputed following each entry to routine fast_dft.

      use fast_dft_int
      use rand_gen_int

      implicit none

! This is Example 3 for FAST_DFT.

! The value of the array size for work(:) is computed in the
! routine fast_dft as a first step.
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      integer, parameter :: n=64
      integer ido_value
      real(kind(1e0)) :: one=1e0
      real(kind(1e0)) err, y(2*n)
      complex(kind(1e0)), dimension(n) :: a, b, save_a
      complex(kind(1e0)), allocatable :: work(:)

! Generate a random complex array.
      call rand_gen(y)
      a = cmplx(y(1:n),y(n+1:2*n),kind(one))
      save_a = a

! Transform and then invert the sequence using the pre-computed
! working values.
      ido_value = 0
      do
         if(allocated(work)) deallocate(work)

! Allocate the space required for work(:).
         if (ido_value <= 0) allocate(work(-ido_value))

         call c_fast_dft(forward_in=a, forward_out=b, &
          ido=ido_value, work_array=work)

         if (ido_value == 1) exit
      end do

! Re-enter routine with working values available in work(:).
      call c_fast_dft(inverse_in=b, inverse_out=a, &
            ido=ido_value, work_array=work)

! Deallocate the space used for work(:).
      if (allocated(work)) deallocate(work)

! Check the results.
      err = maxval(abs(save_a-a))/maxval(abs(save_a))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 3 for FAST_DFT is correct.’
      end if

      end

Example 4: Convolutions using Fourier Transforms

In this example we compute sums

c a b k nk j k j
j

n

= = −−
=

−

∑ , , ,0 1
0

1

K

The definition implies a matrix-vector product.  A direct approach requires about
n2  operations consisisting of an add and multiply.  An efficient method consisting
of computing the products of the transforms of the

     a j= Band bj= B
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then inverting this product, is preferable to the matrix-vector approach for large
problems.  The example is also illustrated in operator_ex37, Chapter 6
using the generic function interface FFT and IFFT.

      use fast_dft_int
      use rand_gen_int

      implicit none

! This is Example 4 for FAST_DFT.

      integer j
      integer, parameter :: n=40
      real(kind(1e0)) :: one=1e0
      real(kind(1e0)) err
      real(kind(1e0)), dimension(n) :: x, y, yy(n,n)
      complex(kind(1e0)), dimension(n) :: a, b, c, d, e, f

! Generate two random complex sequence ’a’ and ’b’.

      call rand_gen(x)
      call rand_gen(y)
      a=x; b=y

! Compute the convolution ’c’ of ’a’ and ’b’.
! Use matrix times vector for test results.
      yy(1:,1)=y
      do j=2,n
        yy(2:,j)=yy(1:n-1,j-1)
        yy(1,j)=yy(n,j-1)
      end do

      c=matmul(yy,x)

! Transform the ’a’ and ’b’ sequences into ’d’ and ’e’.

      call c_fast_dft(forward_in=a, &
           forward_out=d)
      call c_fast_dft(forward_in=b, &
           forward_out=e)

! Invert the product d*e.

      call c_fast_dft(inverse_in=d*e, &
           inverse_out=f)

! Check the Convolution Theorem:
! inverse(transform(a)*transform(b)) = convolution(a,b).

      err = maxval(abs(c-f))/maxval(abs(c))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for FAST_DFT is correct.’
      end if

      end
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Fatal and Terminal Messages

See the messages.gls file for error messages for fast_dft. These error mes-
sages are numbered 651−661; 701−711.

fast_2dft
Computes the Discrete Fourier Transform (2DFT) of a rank-2 complex array, x.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are
forward_in and forward_out or inverse_in and inverse_out.

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers
is inverted and the final results are compared with the input array.

      use fast_2dft_int
      use rand_int

      implicit none

! This is Example 1 for FAST_2DFT.

      integer, parameter :: n=24
      integer, parameter :: m=40
      real(kind(1e0)) :: err, one=1e0
      complex(kind(1e0)), dimension(n,m) :: a, b, c

! Generate a random complex sequence.
      a=rand(a); c=a

! Transform and then invert the transform.
      call c_fast_2dft(forward_in=a, &
           forward_out=b)
      call c_fast_2dft(inverse_in=b, &
           inverse_out=a)

! Check that inverse(transform(sequence)) = sequence.
      err = maxval(abs(c-a))/maxval(abs(c))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for FAST_2DFT is correct.’
      end if

      end

Optional Arguments

forward_in = x   (Input)
Stores the input complex array of rank-2 to be transformed.
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forward_out = y   (Output)
Stores the output complex array of rank-2 resulting from the transform.

inverse_in = y   (Input)
Stores the input complex array of rank-2 to be inverted.

inverse_out = x   (Output)
Stores the output complex array of rank-2 resulting from the inverse
transform.

mdata = m   (Input)
Uses the sub-array in first dimension of size m for the numbers.
Default value: m = size(x,1).

ndata = n   (Input)
Uses the sub-array in the second dimension of size n for the numbers.
Default value: n = size(x,2).

ido = ido   (Input/Output)
Integer flag that directs user action. Normally, this argument is used only
when the working variables required for the transform and its inverse are
saved in the calling program unit. Computing the working variables and
saving them in internal arrays within fast_2dft is the default. This
initialization step is expensive.

There is a two-step process to compute the working variables just once.
Example 3 illustrates this usage. The general algorithm for this usage is
to enter fast_2dft with ido = 0. A return occurs thereafter with
ido < 0. The optional rank-1 complex array w(:) with size(w) >= −ido
must be re-allocated. Then, re-enter fast_2dft. The next return from
fast_2dft has the output value ido = 1. The variables required for the
transform and its inverse are saved in w(:). Thereafter, when the routine
is entered with ido = 1 and for the same values of m and n, the contents
of w(:) will be used for the working variables. The expensive
initialization step is avoided. The optional arguments “ido=” and
“work_array=” must be used together.

work_array = w(:)   (Output/Input)
Complex array of rank-1 used to store working variables and values
between calls to fast_2dft. The value for size(w) must be at least as
large as the value − ido for the value of ido < 0.

iopt = iopt(:)   (Input/Output)
Derived type array with the same precision as the input array; used for
passing optional data to fast_2dft. The options are as follows:
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Packaged Options for fast_2dft

Option Prefix = ? Option Name Option Value

c_, z_ fast_2dft_scan_for_NaN 1

c_, z_ fast_2dft_near_power_of_2 2

c_, z_ fast_2dft_scale_forward 3

c_, z_ fast_2dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_2dft_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(x(i,j)) ==.true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_2dft_near_power_of_2, ?_dummy)

Nearest powers of 2 ≥ m and  ≥ n are returned as an outputs in iopt(IO
+ 1)%idummy and iopt(IO + 2)%idummy.

iopt(IO) = ?_options(?_fast_2dft_scale_forward,
real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the forward transformed array.
Default value is 1.

iopt(IO) = ?_options(?_fast_2dft_scale_inverse,
real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the inverse transformed array.
Default value is 1.

Description

The fast_2dft routine is a Fortran 90 version of the FFT suite of IMSL (1994,
pp. 772-776).

Additional Examples

Example 2: Cyclical 2D Data with a Linear Trend

This set of data is sampled from a function x(s, t) = a + bs + ct + y(s, t) , where
y(s, t)  is an harmonic series. The independent variables are normalized as
 −1 ≤ s ≤ 1 and −1 ≤ t ≤ 1. Thus, the data is said to have cyclical components plus
a linear trend. As a first step, the linear terms are effectively removed from the
data using the least-squares system solver lin_sol_lsq, Chapter 1. Then, the
residuals are transformed and the resulting frequencies are analyzed.
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      use fast_2dft_int
      use lin_sol_lsq_int
      use sort_real_int
      use rand_int
      implicit none

! This is Example 2 for FAST_2DFT.

      integer i
      integer, parameter :: n=8, k=15
      integer ip(n*n), order(k)
      real(kind(1e0)), parameter :: one=1e0, two=2e0, zero=0e0
      real(kind(1e0)) delta_t
      real(kind(1e0)) rn(3), s(n), t(n), temp(n*n), new_order(k)
      complex(kind(1e0)) a, b, c, a_trend(n*n,3), b_trend(n*n,1),  &
               f(n,n), r(n,n), x(n,n), x_trend(3,1)
      complex(kind(1e0)), dimension(n,n) :: g=zero, h=zero

! Generate random data for planar trend.
      rn = rand(rn)
      a = rn(1)
      b = rn(2)
      c = rn(3)

! Generate the frequency components of the harmonic series.
! Non-zero random amplitudes given on two edges of the square domain.
      g(1:,1)=rand(g(1:,1))
      g(1,1:)=rand(g(1,1:))

! Invert ’g’ into the harmonic series ’h’ in time domain.
      call c_fast_2dft(inverse_in=g, inverse_out=h)

! Compute sampling interval.
      delta_t = two/n
      s = (/(-one + (i-1)*delta_t, i=1,n)/)
      t = (/(-one + (i-1)*delta_t, i=1,n)/)

! Make up data set as a linear trend plus harmonics.
      x = a + b*spread(s,dim=2,ncopies=n) +   &
              c*spread(t,dim=1,ncopies=n) + h

! Define least-squares matrix data for a planar trend.
      a_trend(1:,1) = one
      a_trend(1:,2) = reshape(spread(s,dim=2,ncopies=n),(/n*n/))
      a_trend(1:,3) = reshape(spread(t,dim=1,ncopies=n),(/n*n/))
      b_trend(1:,1) = reshape(x,(/n*n/))

! Solve for a linear trend.
      call lin_sol_lsq(a_trend, b_trend, x_trend)

! Compute harmonic residuals.
      r = x -  reshape(matmul(a_trend,x_trend),(/n,n/))

! Transform harmonic residuals.
      call c_fast_2dft(forward_in=r, forward_out=f)

      ip = (/(i,i=1,n**2)/)
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! Sort the magnitude of the transform.
      call s_sort_real(-(abs(reshape(f,(/n*n/)))), &
                                      temp, iperm=ip)

! The dominant frequencies are output in ip(1:k).
! Sort these values to compare with the original frequency order.
      call s_sort_real(real(ip(1:k)), new_order)

      order(1:n) = (/(i,i=1,n)/)
      order(n+1:k) = (/((i-n)*n+1,i=n+1,k)/)

! Check the results.
      if (count(order /= int(new_order)) == 0) then
         write (*,*) ’Example 2 for FAST_2DFT is correct.’
      end if

      end

Example 3: Several 2D Transforms with Initialization

In this example, the optional arguments ido and work_array are used to save
working variables in the calling program unit. This results in maximum efficiency
of the transform and its inverse since the working variables do not have to be
precomputed following each entry to routine fast_2dft.

      use fast_2dft_int

      implicit none

! This is Example 3 for FAST_2DFT.

      integer i, j
      integer, parameter :: n=256
      real(kind(1e0)), parameter :: one=1e0, zero=0e0
      real(kind(1e0)) r(n,n), err
      complex(kind(1e0)) a(n,n), b(n,n), c(n,n)

! The value of the array size for work(:) is computed in the
! routine fast_dft as a first step.

      integer ido_value
      complex(kind(1e0)), allocatable :: work(:)

! Fill in value one for points inside the circle with r=64.
      a = zero
      r = reshape((/(((i-n/2)**2 + (j-n/2)**2, i=1,n), &
                  j=1,n)/),(/n,n/))
      where (r <= (n/4)**2) a = one
      c = a

! Transform and then invert the sequence using the pre-computed
! working values.
      ido_value = 0
      do
         if(allocated(work)) deallocate(work)
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! Allocate the space required for work(:).
         if (ido_value <= 0) allocate(work(-ido_value))

! Transform the image and then invert it back.
      call c_fast_2dft(forward_in=a, &
           forward_out=b, IDO=ido_value, work_array=work)
         if (ido_value == 1) exit
      end do
      call c_fast_2dft(inverse_in=b, &
           inverse_out=a, IDO=ido_value, work_array=work)

! Deallocate the space used for work(:).
      if (allocated(work)) deallocate(work)

! Check that inverse(transform(image)) = image.
      err = maxval(abs(c-a))/maxval(abs(c))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 3 for FAST_2DFT is correct.’
      end if

      end

Fatal and Terminal Messages

See the messages.gls file for error messages for fast_2dft. These error mes-
sages are numbered 670−680; 720−730.

fast_3dft
Computes the Discrete Fourier Transform (2DFT) of a rank-3 complex array, x.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are
forward_in and forward_out or inverse_in and inverse_out.

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers
is inverted and the final results are compared with the input array.

      use fast_3dft_int

      implicit none

! This is Example 1 for FAST_3DFT.

      integer i, j, k
      integer, parameter :: n=64
      real(kind(1e0)), parameter :: one=1e0, zero=0e0
      real(kind(1e0)) r(n,n,n), err
      complex(kind(1e0)) a(n,n,n), b(n,n,n), c(n,n,n)
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! Fill in value one for points inside the sphere
! with radius=16.
      a = zero
      do i=1,n
        do j=1,n
          do k=1,n
            r(i,j,k) = (i-n/2)**2+(j-n/2)**2+(k-n/2)**2
          end do
        end do
      end do
      where (r <= (n/4)**2) a = one
      c = a

! Transform the image and then invert it back.
       call c_fast_3dft(forward_in=a, &
           forward_out=b)
       call c_fast_3dft(inverse_in=b, &
           inverse_out=a)

! Check that inverse(transform(image)) = image.
      err = maxval(abs(c-a))/maxval(abs(c))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for FAST_3DFT is correct.’
      end if

      end

Optional Arguments

forward_in = x   (Input)
Stores the input complex array of rank-3 to be transformed.

forward_out = y   (Output)
Stores the output complex array of rank-3 resulting from the transform.

inverse_in = y   (Input)
Stores the input complex array of rank-3 to be inverted.

inverse_out = x   (Output)
Stores the output complex array of rank-3 resulting from the inverse
transform.

mdata = m   (Input)
Uses the sub-array in first dimension of size m for the numbers.
Default value: m = size(x,1).

ndata = n   (Input)
Uses the sub-array in the second dimension of size n for the numbers.
Default value: n = size(x,2).

kdata = k   (Input)
Uses the sub-array in the third dimension of size k for the numbers.
Default value: k = size(x,3).

ido = ido   (Input/Output)
Integer flag that directs user action. Normally, this argument is used only
when the working variables required for the transform and its inverse are
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saved in the calling program unit. Computing the working variables and
saving them in internal arrays within fast_3dft is the default. This
initialization step is expensive.

There is a two-step process to compute the working variables just once.
The general algorithm for this usage is to enter fast_3dft with
ido = 0. A return occurs thereafter with ido < 0. The optional rank-1
complex array w(:) with size(w) >= −ido must be re-allocated. Then,
re-enter fast_3dft. The next return from fast_3dft has the output
value ido = 1. The variables required for the transform and its inverse
are saved in w(:). Thereafter, when the routine is entered with ido = 1
and for the same values of m and n, the contents of w(:) will be used for
the working variables. The expensive initialization step is avoided. The
optional arguments “ido=” and “work_array=” must be used
together.

work_array = w(:)   (Output/Input)
Complex array of rank-1 used to store working variables and values
between calls to fast_3dft. The value for size(w) must be at least as
large as the value − ido for the value of ido < 0.

iopt = iopt(:)   (Input/Output)
Derived type array with the same precision as the input array; used for
passing optional data to fast_3dft. The options are as follows:

Packaged Options for fast_3dft

Option Prefix = ? Option Name Option Value

c_, z_ fast_3dft_scan_for_NaN 1

c_, z_ fast_3dft_near_power_of_2 2

c_, z_ fast_3dft_scale_forward 3

c_, z_ fast_3dft_scale_inverse 4

iopt(IO) = ?_options(?_fast_3dft_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(x(i,j,k)) ==.true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_fast_3dft_near_power_of_2, ?_dummy)

Nearest powers of 2 ≥ m, ≥ n, and  ≥ k are returned as an outputs in
iopt(IO+1)%idummy , iopt(IO+2)%idummy and
iopt(IO+3)%idummy

iopt(IO) = ?_options(?_fast_3dft_scale_forward,
real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor
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cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the forward transformed array.
Default value is 1.

iopt(IO) = ?_options(?_fast_3dft_scale_inverse,
real_part_of_scale)

iopt(IO+1) = ?_options(?_dummy, imaginary_part_of_scale)

Complex number defined by the factor
cmplx(real_part_of_scale, imaginary_part_of_scale) is
multiplied by the inverse transformed array.
Default value is 1.

Description

The fast_3dft routine is a Fortran 90 version of the FFT suite of IMSL (1994,
pp. 772-776).

Fatal and Terminal Messages

See the messages.gls file for error messages for fast_3dft. These error mes-
sages are numbered 685−695; 740−750.
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Chapter 4: Curve and Surface
Fitting with Splines
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Introduction
The following describes routines for fitting or smoothing sets of discrete data by a
sum of B-splines, in one dimension, or a tensor-product of B-splines, in two
dimensions.  First time users are advised to see IMSL (1994, pp. 413-414) and de
Boor (1978) for the basics about B-splines.  The sense of the approximation is
weighted least-squares data fitting.  We have included the capability of enforcing
constraints on the resulting function.  For the two-dimensional problem we
provide regularization of the least-squares surface fitting problem, and we allow
users to change the default values of the parameters.  We provide controls for
users to shape resulting curves or surfaces based on other information about the
problem that cannot be easily expressed as least-squares data fitting.  For instance
a user may want the fitted curve to be monotone decreasing, everywhere non-
negative, and with a specified sign for the second derivative in sub intervals.
Example 2 for the routine spline_fitting presents a curve fitting problem
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with these constraints.  Example 4 for the routine surface_fitting gives an
example of constraining a surface to be non-negative.

One-Dimensional Smoothing, Check-List

For data fitting or smoothing, users should follow a check-list:

1. Choose the degree of the piece-wise polynomials (spline function) and their
knots. Use the IMSL DNFL derived type s_spline_knots or
d_spline_knots to define this data for use as an argument to the fitting
routine.  These derived types are discussed below.

2. Choose the constraints that the spline function must satisfy.  Use the generic
derived type function spline_constraints for defining this optional
information to be passed to the fitting routine.  This derived type is discussed
below.

3. Define the data values to be fit.  These are triples of independent and
dependent variable values

x y i ndatai i, , ,...,1 6 = 1

and uncertainty:  Each dependent variable value requires an estimate of its
uncertainty, σ i .

4. Use the array function spline_fitting to compute the coefficients of the
B-spline.

5. With the coefficients obtained in the previous step, the array function
spline_values evaluates the spline, its derivatives, or the square root of its
variance.

The Derived Types s_knots and d_knots

The user defines the polynomial degree of the B-spline (which is one less than its
order) and the knots or breakpoints for this set of data.  We have packaged the
derived types

     type ?_spline_knots
        integer spline_degree
        real (kind(?)), pointer :: ?_knots(:)
     end type

Here the ‘?_’  is either ‘s_’  or ‘d_’  for single or double precision,
respectively.  The definition of these derived types are in the module MP_TYPES.
This is inherited by using the module SPLINE_FITTING_INT .  Examples 1-4
illustrate how this derived type is declared and assigned components.

The Derived Type Function spline_constraints

The user defines the constraints of the spline at discrete points by use of an array
of derived type.  Each entry of that array has components with the following
definitions:
     type ?_spline_constraints
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        integer derivative_index
        real (kind(?)) where_applied
        CHARACTER (LEN=*) constraint_indicator
        real (kind(?)) value_applied
     end type

A generic function is packaged in the module SPLINE_FITTING_INT.  Its values
are arrays of derived type ?_spline_constraints, determined by the
precision of the arguments.

The Evaluator Function spline_values

After computation of the B-spline coefficients, values of the spline, its derivative
functions, or the square root of the variance function, are evaluated with this
function.  Since a major use of the values are likely to be for graphical display, a
vector of input value yields a vector of output spline values of the same size as
the input.  The same quantities can be evaluated at a single independent variable
value.

The Array Function spline_fitting

The coefficients of the B-spline are the output values of this generic function.
The precision of the coefficients is determined through the generic interface by
the precision of the arguments.  The data array and the derived type
?_spline_knots are required arguments.  The array of derived type
?_spline_constraints is an optional argument.

Two-Dimensional Smoothing, Check-List

For two-dimensional smoothing, users should follow the check-list below:

1. Choose the degree of the piece-wise polynomials (tensor product spline
function) and their knots in both independent variables.  The degree of the
spline must be the same in both dimensions.  Use the IMSL DNFL derived
type s_spline_knots or d_spline_knots to define this data for use as
an argument to the fitting routine.  Note that this derived type is also used for
the one-dimensional problem, but for two-dimensional problems separate
arguments are needed in each dimension.

2. Choose the regularization parameters and constraints that the tensor product
spline function must satisfy.  Values of the regularization parameters are
passed to the fitting routine using the derived type s_options or
d_options.  Of particular importance for obtaining pleasing results is the
need to vary the parameters thinness and, occasionally flatness or smallness,
appearing in the least-squares model.

3. Use the generic derived type function surface_constraints for
specifying optional constraint information for the fitting routine.  This derived
type is discussed below.

4. Define the data values to be fit.  These are quadruples consisting of pairs of
independent and single dependent variable values
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x y z i ndatai i i, , , ,...,1 6 = 1

and uncertainty:  Each dependent variable value requires an estimate of its
uncertainty, σ i .

5. Use the array function surface_fitting to compute the coefficients of the tensor
product B-spline.

6. With the coefficients obtained in the previous step, the array function
surface_values evaluates the spline, its derivatives, or the square root of
its variance.

The Derived Type Function surface_constraints

The user defines the constraints of the tensor product spline at discrete points by
use of an array of derived type.  Each entry of that array has components with the
following definitions:

type ?_surface_constraints
integer derivative_index(2)
real (kind(?)) where_applied(2)
CHARACTER (LEN=*) constraint_indicator
real (kind(?)) value_applied
real (kind(?)) periodic_point(2)

end type

A generic function is packaged in the module SURFACE_FITTING_INT.  Its
values are arrays of derived type ?_surface_constraints, depending on the
precision of the arguments.

The Evaluator Function surface_values

After computation of the tensor product B-spline coefficients, values of the spline
surface, its various derivative functions, or the square root of the variance of the
curve, are computed or evaluated with this function.  Since a major use of the
values are likely to be for graphical display, arrays of input values for both of the
independent variables yield an array output spline values of the size of the
product of the sizes of the input.  Users can also evaluate the same surface
quantities at a single point.

The Array Function surface_fitting

The coefficients of the tensor product B-spline are the output values of this
generic function.  The precision of the coefficients is determined through the
generic interface by the precision of the arguments.  The data array and the
derived type ?_spline_knots, for the x and y coordinates, are required
arguments.  The array of derived type ?_surface_constraints is an optional
argument.
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spline_constraints
This function returns the derived type array result, ?_spline_constraints,
given optional input.  There are optional arguments for the derivative index, the
value applied to the spline, and the periodic point for any periodic constraint.

The function is used, for entry number j,
?_spline_constraints(j) = &
   spline_constraints([derivative=derivative_index,] &
   point = where_applied, [value=value_applied,], &
   type = constraint_indicator, &
   [periodic_point = value_applied])

The square brackets enclose optional arguments.  For each constraint either (but
not both) the ‘value =’  or the ‘periodic_point  =’  optional arguments
must be present.

Required Arguments

point = where_applied   (Input)
The point in the data interval where a constraint is to be
applied.

type = constraint_indicator   (Input)
The indicator for the type of constraint the spline function or its
derivatives is to satisfy at the point: where_applied .  The
choices are the character strings ‘==’, ‘<=’, ‘>=’,

‘.=.’,  and ‘.=-’ .  They respectively indicate that the spline
value or its derivatives will be equal to, not greater than, not
less than, equal to the value of the spline at another point, or
equal to the negative of the spline value at another point.  These
last two constraints are called periodic and negative-periodic,
respectively.  The alternate independent variable point is
value_applied  for either periodic constraint.  There is a use
of periodic constraints in Example 4.

Optional Arguments

derivative = derivative_index   (Input)
This is the number of the derivative for the spline to apply the
constraint.  The value 0 corresponds to the function, the value 1
to the first derivative, etc.  If this argument is not present in the
list, the value 0 is substituted automatically.  Thus a constraint
without the derivative listed applies to the spline function.

periodic_point = value_applied

This optional argument improves readability by automatically
identifying the second independent variable value for periodic
constraints.
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spline_values
This rank-1 array function returns an array result, given an array of input.  Use the
optional argument for the covariance matrix when the square root of the variance
function is required.  The result will be a scalar value when the input variable is
scalar.

Required Arguments

derivative = derivative  (Input)
The index of the derivative evaluated.  Use non-negative
integer values.  For the function itself use the value 0.

variables = variables  (Input)
The independent variable values where the spline or its
derivatives are evaluated.  Either a rank-1 array or a scalar can
be used as this argument.

knots = knots  (Input)
The derived type ?_spline_knots, defined as the array
COEFFS was obtained with the function SPLINE_FITTING.
This contains the polynomial spline degree and the number of
knots and the knots themselves for this spline function.

coeffs = c  (Input)
The coefficients in the representation for the spline function,

f x c B xj j
j

N

0 5 0 5=
=

∑
1

.

These result from the fitting process or array assignment
C=SPLINE_FITTING(...), defined below.  The value
 N = size(C)  satisfies the identity
N - 1 + spline_degree = size (?_knots), where the two right-
most quantities refer to components of the argument knots.

Optional Arguments

covariance = G  (Input)
This argument, when present, results in the evaluation of the
square root of the variance function

e x b x Gb xT0 5 0 5 0 54 9=
1 2/

where

b x B x B xN
T0 5 0 5 0 5= 1 , ,K

and G  is the covariance matrix associated with the coefficients
of the spline
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c c cN
T= 1, ,K

The argument G is an optional output parameter from the
function spline_fitting, described below.  When the
square root of the variance function is computed, the arguments
DERIVATIVE and C are not used.

iopt = iopt  (Input)
This optional argument, of derived type ?_options, is not
used in this release.

spline_fitting
Weighted least-squares fitting by B-splines to discrete One-Dimensional data is
performed.  Constraints on the spline or its derivatives are optional.  The spline
function

f x c B xj j
j

N

0 5 0 5=
=

∑
1

its derivatives, or the square root of its variance function are evaluated after the
fitting.

Required Arguments

data = data(1:3,:)  (Input/Output)
An assumed-shape array with size(data,1) = 3.  The data are placed in
the array: data(1,i) = xi , data(2,i) = yi , and data(3,i) = σ i ,
i ndata= 1,..., . If the variances are not known but are proportional to an
unknown value, users may set data(3,i) = 1, i ndata= 1,..., .

knots = knots  (Input)
A derived type, ?_spline_knots, that defines the degree of the spline and
the breakpoints for the data fitting interval.

Example 1: Natural Cubic Spline Interpolation to Data

The function

g x x0 5 3 8= −exp /2 2

is interpolated by cubic splines on the grid of points

x i x i ndatai = − =1 10 5∆ , ,...,

Those natural conditions are

f x g x i ndata
d f

dx
x

d g

dx
x i ndatai i i i1 6 1 6 1 6 1 6= = = =, ,..., ; ,0 0

2

2

2

2  and 
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Our program checks the term const. appearing in the maximum truncation error
term

error const x≈ ×. ∆ 4

at a finer grid.

      USE spline_fitting_int
      USE show_int
      USE norm_int

      implicit none

! This is Example 1 for SPLINE_FITTING, Natural Spline
! Interpolation using cubic splines.  Use the function
! exp(-x**2/2) to generate samples.

      integer :: i
      integer, parameter :: ndata=24, nord=4, ndegree=nord-1, &
        nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord, nvalues=2*ndata
      real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1
      real(kind(1e0)), parameter :: delta_x=0.15, delta_xv=0.4*delta_x
      real(kind(1e0)), target :: xdata(ndata), ydata(ndata), &
            spline_data (3, ndata), bkpt(nbkpt), &
            ycheck(nvalues), coeff(ncoeff), &
            xvalues(nvalues), yvalues(nvalues), diff

      real(kind(1e0)), pointer :: pointer_bkpt(:)
      type (s_spline_knots) break_points
      type (s_spline_constraints) constraints(2)

      xdata = (/((i-1)*delta_x, i=1,ndata)/)
      ydata = exp(-half*xdata**2)
      xvalues =(/(0.03+(i-1)*delta_xv,i=1,nvalues)/)
      ycheck= exp(-half*xvalues**2)
      spline_data(1,:)=xdata
      spline_data(2,:)=ydata
      spline_data(3,:)=one

! Define the knots for the interpolation problem.
         bkpt(1:ndegree) = (/(i*delta_x, i=-ndegree,-1)/)
         bkpt(nord:nbkpt-ndegree) = xdata
         bkpt(nbkpt-ndegree+1:nbkpt) =  &
         (/(xdata(ndata)+i*delta_x, i=1,ndegree)/)

! Assign the degree of the polynomial and the knots.
      pointer_bkpt => bkpt
      break_points=s_spline_knots(ndegree, pointer_bkpt)

! These are the natural conditions for interpolating cubic
! splines.  The derivatives match those of the interpolating
! function at the ends.
      constraints(1)=spline_constraints &
         (derivative=2, point=bkpt(nord), type=’==’, value=-one)
      constraints(2)=spline_constraints &
         (derivative=2,point=bkpt(nbkpt-ndegree), type= ’==’, &
         value=(-one+xdata(ndata)**2)*ydata(ndata))

      coeff = spline_fitting(data=spline_data, knots=break_points,&
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             constraints=constraints)
      yvalues=spline_values(0, xvalues, break_points, coeff)

      diff=norm(yvalues-ycheck,huge(1))/delta_x**nord

      if (diff <= one) then
        write(*,*) ’Example 1 for SPLINE_FITTING is correct.’
      end if
      end

Optional Arguments

constraints = spline_constraints  (Input)
A rank-1 array of derived type ?_spline_constraints that give
constraints the output spline is to satisfy.

covariance = G  (Output)
An assumed-shape rank-2 array of the same precision as the data.  This output
is the covariance matrix of the coefficients.  It is optionally used to evaluate
the square root of the variance function.

iopt = iopt(:)  (Input/Output)
Derived type array with the same precision as the input array; used for passing
optional data to spline_fitting. The options are as follows:

Packaged Options for spline_fitting

Prefix = None Option Name Option Value

spline_fitting_tol_equal 1

spline_fitting_tol_least 2

iopt(IO) = ?_options(spline_fitting_tol_equal, ?_value)
This resets the value for determining that equality constraint equations are

rank-deficient.  The default is ?_value = 10��.

iopt(IO) = ?_options(spline_fitting_tol_least, ?_value)
This resets the value for determining that least-squares equations are rank-

deficient.  The default is ?_value = 10��.

Description

This routine has similar scope to CONFT/DCONFT found in IMSL (1994, pp 551-
560).  We provide the square root of the variance function, but we do not provide
for constraints on the integral of the spline.  The least-squares matrix problem for
the coefficients is banded, with band-width equal to the spline order.  This fact is
used to obtain an efficient solution algorithm when there are no constraints.
When constraints are present the routine solves a linear-least squares problem
with equality and inequality constraints.  The processed least-squares equations
result in a banded and upper triangular matrix, following accumulation of the
spline fitting equations.  The algorithm used for solving the constrained least-



104 • Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

squares system will handle rank-deficient problems.  A set of reference are
available in Hanson (1995) and Lawson and Hanson (1995).  The
CONFT/DCONFT routine uses QPROG (loc cit., p. 959), which requires that the
least-squares equations be of full rank.

Additional Examples

Example 2: Shaping a Curve and its Derivatives

The function

g x x noise0 5 3 80 5= − +exp /2 2 1

is fit by cubic splines on the grid of equally spaced points

x i x i ndatai = − =1 10 5∆ , ,...,

The term noise is uniform random numbers from the normalized interval
−τ τ, , where τ = 0 01. .  The spline curve is constrained to be convex down for

for 0 ≤ x ≤ 1 convex upward for 1< x ≤ 4, and have the second derivative exactly
equal to the value zero at  x = 1.  The first derivative is constrained with the value
zero at x = 0  and is non-negative at the right and of the interval, x = 4.  A sample
table of independent variables, second derivatives and square root of  variance
function values is printed.

      use spline_fitting_int
      use show_int
      use rand_int
      use norm_int

      implicit none

! This is Example 2 for SPLINE_FITTING. Use 1st and 2nd derivative
! constraints to shape the splines.

      integer :: i, icurv
      integer, parameter :: nbkptin=13, nord=4, ndegree=nord-1, &
             nbkpt=nbkptin+2*ndegree, ndata=21, ncoeff=nbkpt-nord
      real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1
      real(kind(1e0)), parameter :: range=4.0, ratio=0.02, tol=ratio*half
      real(kind(1e0)), parameter :: delta_x=range/(ndata-1),

delta_b=range/(nbkptin-1)
      real(kind(1e0)), target :: xdata(ndata), ydata(ndata), ynoise(ndata),&
            sddata(ndata), spline_data (3, ndata), bkpt(nbkpt), &
            values(ndata), derivat1(ndata), derivat2(ndata), &
            coeff(ncoeff), root_variance(ndata), diff
      real(kind(1e0)), dimension(ncoeff,ncoeff) :: sigma_squared

      real(kind(1e0)), pointer :: pointer_bkpt(:)
      type (s_spline_knots) break_points
      type (s_spline_constraints) constraints(nbkptin+2)

      xdata = (/((i-1)*delta_x, i=1,ndata)/)
      ydata = exp(-half*xdata**2)
      ynoise = ratio*ydata*(rand(ynoise)-half)
      ydata = ydata+ynoise
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      sddata = ynoise
      spline_data(1,:)=xdata
      spline_data(2,:)=ydata
      spline_data(3,:)=sddata

      bkpt=(/((i-nord)*delta_b, i=1,nbkpt)/)

! Assign the degree of the polynomial and the knots.
      pointer_bkpt => bkpt
      break_points=s_spline_knots(ndegree, pointer_bkpt)

      icurv=int(one/delta_b)+1

! At first shape the curve to be convex down.
      do i=1,icurv-1
        constraints(i)=spline_constraints &
 (derivative=2, point=bkpt(i+ndegree), type=’<=’, value=zero)
      end do

! Force a curvature change.
      constraints(icurv)=spline_constraints &
 (derivative=2, point=bkpt(icurv+ndegree), type=’==’, value=zero)

! Finally, shape the curve to be convex up.
      do i=icurv+1,nbkptin
        constraints(i)=spline_constraints &
 (derivative=2, point=bkpt(i+ndegree), type=’>=’, value=zero)
      end do

! Make the slope zero and value non-negative at right.
      constraints(nbkptin+1)=spline_constraints &
 (derivative=1, point=bkpt(nord), type=’==’, value=zero)
      constraints(nbkptin+2)=spline_constraints &
 (derivative=0, point=bkpt(nbkptin+ndegree), type=’>=’, value=zero)

      coeff = spline_fitting(data=spline_data, knots=break_points, &
              constraints=constraints, covariance=sigma_squared)

!     Compute value, first two derivatives and the variance.
      values=spline_values(0, xdata, break_points, coeff)
      root_variance=spline_values(0, xdata, break_points, coeff, &
                             covariance=sigma_squared)
      derivat1=spline_values(1, xdata, break_points, coeff)
      derivat2=spline_values(2, xdata, break_points, coeff)

      call show(reshape((/xdata, derivat2, root_variance/),(/ndata,3/)),&
"The x values, 2-nd derivatives, and square root of variance.")

! See that differences are relatively small and the curve has
! the right shape and signs.
      diff=norm(values-ydata)/norm(ydata)
      if (all(values > zero) .and. all(derivat1 < epsilon(zero))&
         .and. diff <= tol) then
        write(*,*) ’Example 2 for SPLINE_FITTING is correct.’
      end if

      end
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Example 3: Splines Model a Random Number Generator

The function

g x x x

x

0 5 3 8= − − < <

= ≥

exp / ,

, | |

2 2 1 1

0 1

is an unnormalized probability distribution.  This function is similar to the
standard Normal distribution, with specific choices for the mean and variance,
except that it is truncated.  Our algorithm interpolates g(x) with a natural cubic
spline, f(x).  The cumulative distribution is approximated by precise evaluation of
the function

q x f t dt
x0 5 0 5=

−I 1

Gauss-Legendre quadrature formulas, IMSL (1994, pp. 621-626), of order two
are used on each polynomial piece of f(t)  to evaluate q(x) cheaply.  After
normalizing the cubic spline so that q(1) = 1, we may then generate random
numbers according to the distribution f x g x0 5 0 5≅ .  The values of x  are
evaluated by solving q(x) = u, -1 < x < 1.  Here u  is a uniform random sample.
Newton’s method, for a vector of unknowns, is used for the solution algorithm.
Recalling the relation

d

dx
q x u f x x0 51 6 0 5− = − < <, 1 1

we believe this illustrates a method for generating a vector of random numbers
according to a continuous distribution function having finite support.

use spline_fitting_int
use linear_operators
use Numerical_Libraries

       implicit none

! This is Example 3 for SPLINE_FITTING.  Use splines to
! generate random (almost normal) numbers.  The normal distribution
! function has support (-1,+1), and is zero outside this interval.
! The variance is 0.5.

integer i, niterat
        integer, parameter :: iweight=1, nfix=0, nord=4, ndata=50
        integer, parameter :: nquad=(nord+1)/2, ndegree=nord-1
        integer, parameter :: nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord
        integer, parameter :: last=nbkpt-ndegree, n_samples=1000
        integer, parameter :: limit=10

real(kind(1e0)), dimension(n_samples) :: fn, rn, x, alpha_x, beta_x
        INTEGER LEFT_OF(n_samples)

real(kind(1e0)), parameter :: one=1e0, half=5e-1, zero=0e0, two=2e0
real(kind(1e0)), parameter :: delta_x=two/(ndata-1)

        real(kind(1e0)), parameter :: qalpha=zero, qbeta=zero, domain=two
        real(kind(1e0)) qx(nquad), qxi(nquad), qw(nquad), qxfix(nquad)
        real(kind(1e0)) alpha_, beta_, quad(0:ndata-1)
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        real(kind(1e0)), target :: xdata(ndata), ydata(ndata),
coeff(ncoeff), &
            spline_data(3, ndata), bkpt(nbkpt)

        real(kind(1e0)), pointer :: pointer_bkpt(:)
        type (s_spline_knots) break_points
        type (s_spline_constraints) constraints(2)

! Approximate the probability density function by splines.
        xdata = (/(-one+(i-1)*delta_x, i=1,ndata)/)
        ydata = exp(-half*xdata**2)

        spline_data(1,:)=xdata
        spline_data(2,:)=ydata
        spline_data(3,:)=one

        bkpt=(/(-one+(i-nord)*delta_x, i=1,nbkpt)/)

! Assign the degree of the polynomial and the knots.
      pointer_bkpt => bkpt
      break_points=s_spline_knots(ndegree, pointer_bkpt)

! Define the natural derivatives constraints:
        constraints(1)=spline_constraints &
          (derivative=2, point=bkpt(nord), type=’==’, &
          value=(-one+xdata(1)**2)*ydata(1))
        constraints(2)=spline_constraints &
          (derivative=2, point=bkpt(last), type=’==’, &
          value=(-one+xdata(ndata)**2)*ydata(ndata))

! Obtain the spline coefficients.
        coeff=spline_fitting(data=spline_data, knots=break_points,&
        constraints=constraints)

! Compute the evaluation points ’qx(*)’ and weights ’qw(*)’ for
! the Gauss-Legendre quadrature.  This will give a precise
! quadrature for polynomials of degree <= nquad*2.
        call gqrul(nquad, iweight, qalpha, qbeta, nfix, qxfix, qx, qw)

! Compute pieces of the accumulated distribution function:
        quad(0)=zero

do i=1, ndata-1
          alpha_= (bkpt(nord+i)-bkpt(ndegree+i))*half
          beta_ = (bkpt(nord+i)+bkpt(ndegree+i))*half

! Normalized abscissas are stretched to each spline interval.
! Each polynomial piece is integrated and accumulated.
          qxi = alpha_*qx+beta_
          quad(i) = sum(qw*spline_values(0, qxi, break_points,
coeff))*alpha_&
                  + quad(i-1)

end do

! Normalize the coefficients and partial integrals so that the
! total integral has the value one.
        coeff=coeff/quad(ndata-1); quad=quad/quad(ndata-1)
        rn=rand(rn)
        x=zero; niterat=0
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solve_equation: do

! Find the intervals where the x values are located.
          LEFT_OF=NDEGREE; I=NDEGREE
            do
               I=I+1; if(I >= LAST) EXIT
               WHERE(x >= BKPT(I))LEFT_OF = LEFT_OF+1
            end do

! Use Newton’s method to solve the nonlinear equation:
! accumulated_distribution_function - random_number = 0.
            alpha_x = (x-bkpt(LEFT_OF))*half
            beta_x  = (x+bkpt(LEFT_OF))*half
            FN=QUAD(LEFT_OF-NORD)-RN
            DO I=1,NQUAD
               FN=FN+QW(I)*spline_values(0, alpha_x*QX(I)+beta_x,&
                     break_points, coeff)*alpha_x
            END DO

! This is the Newton method update step:
            x=x-fn/spline_values(0, x, break_points, coeff)
            niterat=niterat+1

! Constrain the values so they fall back into the interval.
! Newton’s method may give approximates outside the interval.
            where(x <= -one .or. x >= one) x=zero

            if(norm(fn,1) <= sqrt(epsilon(one))*norm(x,1))&
              exit solve_equation

end do solve_equation

! Check that Newton’s method converges.

        if (niterat <= limit) then
          write (*,*) ’Example 3 for SPLINE_FITTING is correct.’
        end if

end

Example 4: Represent a Periodic Curve

The curve tracing the edge of a rectangular box, traversed in a counter-clockwise
direction, is parameterized with a spline representation for each coordinate
function, (x(t), y(t)).  The functions are constrained to be periodic at the ends of
the parameter interval.  Since the perimeter arcs are piece-wise linear functions,
the degree of the splines is the value one.  Some breakpoints are chosen so they
correspond to corners of the box, where the derivatives of the coordinate
functions are discontinuous.  The value of this representation is that for each t the
splines representing (x(t), y(t)) are points on the perimeter of the box.  This
“eases” the complexity of evaluating the edge of the box.  This example illustrates
a method for representing the edge of a domain in two dimensions, bounded by a
periodic curve.

      use spline_fitting_int
      use norm_int
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      implicit none

! This is Example 4 for SPLINE_FITTING. Use piecewise-linear
! splines to represent the perimeter of a rectangular box.

      integer i, j
      integer, parameter :: nbkpt=9, nord=2, ndegree=nord-1, &
               ncoeff=nbkpt-nord, ndata=7, ngrid=100, &
               nvalues=(ndata-1)*ngrid
      real(kind(1e0)), parameter :: zero=0e0, one=1e0
      real(kind(1e0)), parameter ::  delta_t=one, delta_b=one, delta_v=0.01
      real(kind(1e0)) delta_x, delta_y
      real(kind(1e0)), dimension(ndata) ::  sddata=one,  &
! These are redundant coordinates on the edge of the box.
             xdata=(/0.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0/), &
             ydata=(/0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0/)
      real(kind(1e0)) tdata(ndata), xspline_data(3, ndata), &
            yspline_data(3, ndata), tvalues(nvalues), &
            xvalues(nvalues), yvalues(nvalues), xcoeff(ncoeff), &
            ycoeff(ncoeff), xcheck(nvalues), ycheck(nvalues), diff
      real(kind(1e0)), target :: bkpt(nbkpt)
      real(kind(1e0)), pointer :: pointer_bkpt(:)
      type (s_spline_knots) break_points
      type (s_spline_constraints) constraints(1)

      tdata = (/((i-1)*delta_t, i=1,ndata)/)
      xspline_data(1,:)=tdata; yspline_data(1,:)=tdata
      xspline_data(2,:)=xdata; yspline_data(2,:)=ydata
      xspline_data(3,:)=sddata; yspline_data(3,:)=sddata

      bkpt(nord:nbkpt-ndegree)=(/((i-nord)*delta_b,  &
                                  i=nord, nbkpt-ndegree)/)
! Collapse the outside knots.
      bkpt(1:ndegree)=bkpt(nord)
      bkpt(nbkpt-ndegree+1:nbkpt)=bkpt(nbkpt-ndegree)

! Assign the degree of the polynomial and the knots.
      pointer_bkpt => bkpt
      break_points=s_spline_knots(ndegree, pointer_bkpt)

! Make the two parametric curves also periodic.
      constraints(1)=spline_constraints &
        (derivative=0, point=bkpt(nord), type=’.=.’, &
        value=bkpt(nbkpt-ndegree))

      xcoeff = spline_fitting(data=xspline_data, knots=break_points, &
                              constraints=constraints)
      ycoeff = spline_fitting(data=yspline_data, knots=break_points, &
                              constraints=constraints)

! Use the splines to compute the coordinates of points along the perimeter.
! Compare them with the coordinates of the edge points.
      tvalues= (/((i-1)*delta_v, i=1,nvalues)/)
      xvalues=spline_values(0, tvalues, break_points, xcoeff)
      yvalues=spline_values(0, tvalues, break_points, ycoeff)
      do i=1, nvalues
        j=(i-1)/ngrid+1
        delta_x=(xdata(j+1)-xdata(j))/ngrid

delta_y=(ydata(j+1)-ydata(j))/ngrid
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        xcheck(i)=xdata(j)+mod(i+ngrid-1,ngrid)*delta_x
        ycheck(i)=ydata(j)+mod(i+ngrid-1,ngrid)*delta_y
      end do

      diff=norm(xvalues-xcheck,1)/norm(xcheck,1)+&
           norm(yvalues-ycheck,1)/norm(ycheck,1)
      if (diff <= sqrt(epsilon(one))) then
        write(*,*) ’Example 4 for SPLINE_FITTING is correct.’
      end if

      end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for spline_fitting. These error
messages are numbered 1340−1367.

surface_constraints
This function returns the derived type array result, ?_surface_constraints,
given optional input.  There are optional arguments for the partial derivative
indices, the value applied to the spline, and the periodic point for any periodic
constraint.  The function is used, for entry number j,
?_surface_constraints(j) = &
surface_constraints&
   ([derivative=derivative_index(1:2),] &
   point = where_applied(1:2),[value=value_applied,],&
   type = constraint_indicator, &
   [periodic_point = periodic_point(1:2)])

The square brackets enclose optional arguments.  For each constraint the
arguments ‘value =’  and ‘periodic_point =’  are not used at the same
time.

Required Arguments

point = where_applied  (Input)
The point in the data domain where a constraint is to be
applied.  Each point has an x and y coordinate, in that order.

type = constraint_indicator  (Input)
The indicator for the type of constraint the tensor product spline
function or its partial derivatives is to satisfy at the point:
where_applied .  The choices are the character strings ‘==’,

‘<=’, ‘>=’, ‘.=.’,  and ‘.=-’ . They respectively indicate
that the spline value or its derivatives will be equal to, not
greater than, not less than, equal to the value of the spline at
another point, or equal to the negative of the spline value at
another point. These last two constraints are called periodic
and negative-periodic, respectively.
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Optional Arguments

derivative = derivative_index(1:2)  (Input)
These are the number of the partial derivatives for the tensor
product spline to apply the constraint.  The array (/0,0/)
corresponds to the function, the value (/1,0/)  to the first
partial derivative with respect to x, etc.  If this argument is not
present in the list, the value (/0,0/) is substituted
automatically.  Thus a constraint without the derivatives listed
applies to the tensor product spline function.

periodic = periodic_point(1:2)

This optional argument improves readability by identifying the
second pair of independent variable values for periodic
constraints.

surface_values
This rank-2 array function returns a tensor product array result, given two arrays
of independent variable values.  Use the optional input argument for the
covariance matrix when the square root of the variance function is evaluated.  The
result will be a scalar value when the input independent variable is scalar.

Required Arguments

derivative = derivative(1:2)  (Input)
The indices of the partial derivative evaluated.  Use non-
negative integer values.  For the function itself use the array
(/0,0/).

variablesx = variablesx (Input)
The independent variable values in the first or x  dimension
where the spline or its derivatives are evaluated.  Either a rank-
1 array or a scalar can be used as this argument.

variablesy = variablesy  (Input)
The independent variable values in the second or y  dimension
where the spline or its derivatives are evaluated.  Either a rank-
1 array or a scalar can be used as this argument.

knotsx = knotsx  (Input)
The derived type ?_spline_knots, used when the array
coeffs(:,:)was obtained with the function
SURFACE_FITTING.  This contains the polynomial spline
degree and the number of knots and the knots themselves, in the
x dimension.

knotsy = knotsy  (Input)
The derived type ?_spline_knots, used when the array



112 • Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

coeffs(:,:) was obtained with the function
SURFACE_FITTING.  This contains the polynomial spline
degree and the number of knots and the knots themselves, in the
y dimension.

coeffs = c  (Input)
The coefficients in the representation for the spline function,

f x y c B y B xij
i

M

i
j

N

j,0 5 0 5 0 5=
==
∑∑

11

These result from the fitting process or array assignment
C=SURFACE_FITTING(...), defined below.  The values M =
size (C,1) and N = size (C,2) satisfies the respective identities N
-1 + spline_degree = size (?_knotsx), and
M -1 + spline_degree = size (?_knotsy) , where the two right-
most quantities in both equations refer to components of the
arguments knotsx and knotsy.  The same value of
spline_degree must be used for both knotsx and knotsy.

Optional Arguments

covariance = G  (Input)
This argument, when present, results in the evaluation of  the
square root of the variance function

e x y b x y Gb x yT, , ,
/0 5 0 5 0 54 9=

1 2

where

b x y B x B y B x B yN
T

, , , ,0 5 0 5 0 5 0 5 0 5= 1 1 1K K

and G is the covariance matrix associated with the coefficients
of the spline

c c cN
T= 11 1, , ,K K

The argument G is an optional output from surface_fitting,
described below.  When the square root of the variance function
is computed, the arguments DERIVATIVE and C are not used.

iopt = iopt  (Input)
This optional argument, of derived type ?_options, is not
used in this release.

surface_fitting
Weighted least-squares fitting by tensor product B-splines to discrete two-
dimensional data is performed.  Constraints on the spline or its partial derivatives
are optional.  The spline function
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its derivatives, or the square root of its variance function are evaluated after the
fitting.

Required Arguments

data = data(1:4,:)  (Input/Output)
An assumed-shape array with size(data,1) = 4.  The data are placed in
the array:

data(1,i) = xi ,

data(2,i) = yi ,

data(3,i) = zi ,

data(4,i) = σ i , i ndata= 1,..., .

If the variances are not known, but are proportional to an unknown value, use

data(4,i) = 1, i ndata= 1,..., .

knotsx = knotsx  (Input)
A derived type, ?_spline_knots, that defines the degree of the spline and
the breakpoints for the data fitting domain, in the first dimension.

knotsy = knotsy  (Input)
A derived type, ?_spline_knots, that defines the degree of the spline and
the breakpoints for the data fitting domain, in the second dimension.

Example 1: Tensor Product Spline Fitting of Data

The function

g x y x y, exp0 5 3 8= − −2 2

is least-squares fit by a tensor product of cubic splines on the square

0 0,2 ,2⊗

There are ndata  random pairs of values for the independent variables.  Each
datum is given unit uncertainty.  The grid of knots in both x and y dimensions are
equally spaced, in the interior cells, and identical to each other.  After the
coefficients are computed a check is made that the surface approximately agrees
with g(x,y) at a tensor product grid of equally spaced values.

      USE surface_fitting_int
      USE rand_int
      USE norm_int

      implicit none

! This is Example 1 for SURFACE_FITTING, tensor product
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! B-splines approximation.  Use the function
! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.
! The spline order is "nord" and the number of cells is
! "(ngrid-1)**2".  There are "ndata" data values in the square.

      integer :: i
      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &
        nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100
      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0
      real(kind(1d0)), parameter :: TOLERANCE=1d-3
      real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &
             coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &
             x(nvalues), y(nvalues), values(nvalues, nvalues)

      real(kind(1d0)), pointer :: pointer_bkpt(:)
      type (d_spline_knots) knotsx, knotsy

! Generate random (x,y) pairs and evaluate the
! example exponential function at these values.
      spline_data(1:2,:)=two*rand(spline_data(1:2,:))
      spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))
      spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.
         delta = two/(ngrid-1)
         bkpt(1:ndegree) = zero
         bkpt(nbkpt-ndegree+1:nbkpt) =  two
         bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.
      pointer_bkpt => bkpt
      knotsx=d_spline_knots(ndegree, pointer_bkpt)
      knotsy=knotsx

! Fit the data and obtain the coefficients.
      coeff = surface_fitting(spline_data, knotsx, knotsy)

! Evaluate the residual = spline - function
! at a grid of points inside the square.
      delta=two/(nvalues+1)
      x=(/(i*delta,i=1,nvalues)/); y=x

      values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))
      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&
             values

! Compute the R.M.S. error:
      sizev=norm(pack(values, (values == values)))/nvalues

      if (sizev <= TOLERANCE) then
        write(*,*) ’Example 1 for SURFACE_FITTING is correct.’
      end if
      end
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Optional Arguments

constraints = surface_constraints  (Input)
A rank-1 array of derived type ?_surface_constraints that defines
constraints the tensor product spline is to satisfy.

covariance = G  (Output)
An assumed-shape rank-2 array of the same precision as the data.  This output
is the covariance matrix of the coefficients.  It is optionally used to evaluate
the square root of the variance function.

iopt = iopt(:)  (Input/Output)
Derived type array with the same precision as the input array; used for passing
optional data to surface_fitting.  The options are as follows:

Packaged Options for surface_fitting

Prefix = None Option Name Option Value

surface_fitting_smallness 1

surface_fitting_flatness 2

surface_fitting_tol_equal 3

surface_fitting_tol_least 4

surface_fitting_residuals 5

surface_fitting_print 6

surface_fitting_thinness 7

iopt(IO) = ?_options&

            (surface_fitting_smallnes, ?_value)
This resets the square root of the regularizing parameter multiplying the
squared integral of the unknown function.  The argument ?_value is
replaced by the default value. The default is ?_value = 0.

iopt(IO) = ?_options&

            (surface_fitting_flatness, ?_value)
This resets the square root of the regularizing parameter multiplying the
squared integral of the partial derivatives of the unknown function.  The
argument  ?_value is replaced by the default value. The default is ?_value
= sqrt(epsilon(?_value))*size, where

size data data ndata= +∑ | ( ,:) / ( ,:)|/3 4 10 5 .
iopt(IO) = ?_options&

            (surface_fitting_tol_equal, ?_value)
This resets the value for determining that equality constraint equations are

rank-deficient.  The default is ?_value = 10��.

iopt(IO) = ?_options&
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            (surface_fitting_tol_least, ?_value)
This resets the value for determining that least-squares equations are rank-

deficient.  The default is ?_value = 10��.

iopt(IO) = ?_options&

            (surface_fitting_residuals, dummy)
This option returns the residuals = surface - data, in data(4,:).  That row
of the array is overwritten by the residuals.  The data is returned in the order
of cell processing order, or left-to-right in x and then increasing in y.  The
allocation of a temporary for data(1:4,:) is avoided, which may be
desirable for problems with large amounts of data.  The default is to not
evaluate the residuals and to leave data(1:4,:) as input.

iopt(IO) = ?_options&

            (surface_fitting_print, dummy)
This option prints the knots or breakpoints for x and y, and the count of data
points in cell processing order.  The default is to not print these arrays.

iopt(IO) = ?_options&

            (surface_fitting_thinness, ?_value)
This resets the square root of the regularizing parameter multiplying the
squared integral of the second partial derivatives of the unknown function.
The argument  ?_value is replaced by the default value. The default is

?_value = 10�� × size,, where

size data data ndata= +∑ | ( ,:) / ( ,:)|/3 4 10 5 .

Description

The coefficients are obtained by solving a least-squares system of linear algebraic
equations, subject to linear equality and inequality constraints.  The system is the
result of the weighted data equations and regularization.  If there are no
constraints, the solution is computed using a banded least-squares solver.  Details
are found in Hanson (1995).

Additional Examples

Example 2: Parametric Representation of a Sphere

From Struik (1961), the parametric representation of points (x,y,z) on the surface
of a sphere of radius a > 0 is expressed in terms of spherical coordinates,

x u v a u v u

y u v a u v v

z u v a u

, cos cos ,

, cos sin ,

, sin

1 6 1 6 1 6
1 6 1 6 1 6

1 6 1 6

= − ≤ ≤
= − ≤ ≤

=

π π
π π

2

The parameters are radians of latitude (u)and longitude (v).  The example
program fits the same ndata  random pairs of latitude and longitude in each
coordinate.  We have covered the sphere twice by allowing
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− ≤ ≤π πu

for latitude.  We solve three data fitting problems, one for each coordinate
function.  Periodic constraints on the value of the spline are used for both u and v.
We could reduce the computational effort by fitting a spline function in one
variable for the z coordinate.  To illustrate the representation of more general
surfaces than spheres, we did not do this.  When the surface is evaluated we
compute latitude, moving from the South Pole to the North Pole,

− ≤ ≤π π2u

Our surface will approximately satisfy the equality

x y z a2 2 2 2+ + =

These residuals are checked at a rectangular mesh of latitude and longitude pairs.
To illustrate the use of some options, we have reset the three regularization
parameters to the value zero, the least-squares system tolerance to a smaller value
than the default, and obtained the residuals for each parametric coordinate
function at the data points.

      USE surface_fitting_int
      USE rand_int
      USE norm_int
      USE Numerical_Libraries

      implicit none

! This is Example 2 for SURFACE_FITTING, tensor product
! B-splines approximation.  Fit x, y, z parametric functions
! for points on the surface of a sphere of radius “A”.
! Random values of latitude and longitude are used to generate
! data.  The functions are evaluated at a rectangular grid
! in latitude and longitude and checked to lie on the surface
! of the sphere.

      integer :: i, j
      integer, parameter :: ngrid=6, nord=6, ndegree=nord-1, &
        nbkpt=ngrid+2*ndegree, ndata =1000, nvalues=50, NOPT=5
      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0
      real(kind(1d0)), parameter :: TOLERANCE=1d-2
      real(kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &
             coeff(ngrid+ndegree-1,ngrid+ndegree-1, 3), delta, sizev, &
             pi, A, x(nvalues), y(nvalues), values(nvalues, nvalues), &
             data(4,ndata)

      real(kind(1d0)), pointer :: pointer_bkpt(:)
      type (d_spline_knots) knotsx, knotsy
      type (d_options) OPTIONS(NOPT)
! Get the constant "pi" and a random radius, > 1.
      pi = DCONST((/"pi"/)); A=one+rand(A)

! Generate random (latitude, longitude) pairs and evaluate the
! surface parameters at these points.
      spline_data(1:2,:,1)=pi*(two*rand(spline_data(1:2,:,1))-one)
      spline_data(1:2,:,2)=spline_data(1:2,:,1)
      spline_data(1:2,:,3)=spline_data(1:2,:,1)
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! Evaluate x, y, z parametric points.
      spline_data(3,:,1)=A*cos(spline_data(1,:,1))*cos(spline_data(2,:,1))
      spline_data(3,:,2)=A*cos(spline_data(1,:,2))*sin(spline_data(2,:,2))
      spline_data(3,:,3)=A*sin(spline_data(1,:,3))

! The values are equally uncertain.
      spline_data(4,:,:)=one

! Define the knots for the tensor product data fitting problem.
         delta = two*pi/(ngrid-1)
         bkpt(1:ndegree) = -pi
         bkpt(nbkpt-ndegree+1:nbkpt) =  pi
         bkpt(nord:nbkpt-ndegree)=(/(-pi+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.
      pointer_bkpt => bkpt
      knotsx=d_spline_knots(ndegree, pointer_bkpt)
      knotsy=knotsx

! Fit a data surface for each coordinate.
! Set default regularization parameters to zero and compute
! residuals of the individual points. These are returned
! in DATA(4,:).
      do j=1,3
        data=spline_data(:,:,j)
OPTIONS(1)=d_options(surface_fitting_thinness,zero)
OPTIONS(2)=d_options(surface_fitting_flatness,zero)
OPTIONS(3)=d_options(surface_fitting_smallness,zero)
OPTIONS(4)=d_options(surface_fitting_tol_least,1d-5)
OPTIONS(5)=surface_fitting_residuals
        coeff(:,:,j) = surface_fitting(data, knotsx, knotsy,&
           IOPT=OPTIONS)
      end do

! Evaluate the function at a grid of points inside the rectangle of
! latitude and longitude covering the sphere just once.  Add the
! sum of squares. They should equal "A**2" but will not due to
! truncation and rounding errors.
      delta=pi/(nvalues+1)
      x=(/(-pi/two+i*delta,i=1,nvalues)/); y=two*x
      values=zero
      do j=1,3
        values=values+&
        surface_values((/0,0/), x, y, knotsx, knotsy, coeff(:,:,j))**2
      end do
      values=values-A**2
! Compute the R.M.S. error:

      sizev=norm(pack(values, (values == values)))/nvalues

      if (sizev <= TOLERANCE) then
        write(*,*) "Example 2 for SURFACE_FITTING is correct."
      end if
      end



IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines • 119

Example 3: Constraining Some Points using a Spline Surface

This example illustrates the use of discrete constraints to shape the surface. The
data fitting problem of Example 1 is modified by requiring that the surface
interpolate the value one at x = y = 0.  The shape is constrained so first partial
derivatives in both x and y are zero at x = y = 0.  These constraints mimic some
properties of the function g(x,y).  The size of the residuals at a grid of points and
the residuals of the constraints are checked.

      USE surface_fitting_int
      USE rand_int
      USE norm_int

      implicit none

! This is Example 3 for SURFACE_FITTING, tensor product
! B-splines approximation, f(x,y).  Use the function
! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.
! The spline order is "nord" and the number of cells is
! "(ngrid-1)**2".  There are "ndata" data values in the square.
! Constraints are put on the surface at (0,0).  Namely
! f(0,0) = 1, f_x(0,0) = 0, f_y(0,0) = 0.

      integer :: i
      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &
        nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100, NC = 3
      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0
      real(kind(1d0)), parameter :: TOLERANCE=1d-3
      real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &
             coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &
             x(nvalues), y(nvalues), values(nvalues, nvalues), &
             f_00, f_x00, f_y00

      real(kind(1d0)), pointer :: pointer_bkpt(:)
      type (d_spline_knots) knotsx, knotsy
      type (d_surface_constraints) C(NC)
      LOGICAL PASS

! Generate random (x,y) pairs and evaluate the
! example exponential function at these values.
      spline_data(1:2,:)=two*rand(spline_data(1:2,:))
      spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))
      spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.
         delta = two/(ngrid-1)
         bkpt(1:ndegree) = zero
         bkpt(nbkpt-ndegree+1:nbkpt) =  two
         bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.
      pointer_bkpt => bkpt
      knotsx=d_spline_knots(ndegree, pointer_bkpt)
      knotsy=knotsx

! Define the constraints for the fitted surface.
     C(1)=surface_constraints(point=(/zero,zero/),type=’==’,value=one)
     C(2)=surface_constraints(derivative=(/1,0/),&
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          point=(/zero,zero/),type=’==’,value=zero)
     C(3)=surface_constraints(derivative=(/0,1/),&
          point=(/zero,zero/),type=’==’,value=zero)

! Fit the data and obtain the coefficients.

      coeff = surface_fitting(spline_data, knotsx, knotsy,&
              CONSTRAINTS=C)

! Evaluate the residual = spline - function
! at a grid of points inside the square.
      delta=two/(nvalues+1)
      x=(/(i*delta,i=1,nvalues)/); y=x

      values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))
      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&
             values
      f_00 = surface_values((/0,0/), zero, zero,  knotsx, knotsy, coeff)
      f_x00= surface_values((/1,0/), zero, zero,  knotsx, knotsy, coeff)
      f_y00= surface_values((/0,1/), zero, zero,  knotsx, knotsy, coeff)

! Compute the R.M.S. error:
      sizev=norm(pack(values, (values == values)))/nvalues
      PASS = sizev <= TOLERANCE
      PASS = abs (f_00 - one) <= sqrt(epsilon(one)) .and. PASS
      PASS = f_x00 <= sqrt(epsilon(one)) .and. PASS
      PASS = f_y00 <= sqrt(epsilon(one)) .and. PASS

      if (PASS) then
        write(*,*) ’Example 3 for SURFACE_FITTING is correct.’
      end if
      end

Example 4: Constraining a Spline Surface to be non-Negative

The review of interpolating methods by Franke (1982) uses a test data set
originally due to James Ferguson.  We use this data set of 25 points, with unit
uncertainty for each dependent variable.  Our algorithm does not interpolate the
data values but approximately fits them in the least-squares sense.  We reset the
regularization parameter values of flatness and thinness, Hanson (1995).  Then
the surface is fit to the data and evaluated at a grid of points.  Although the
surface appears smooth and fits the data, the values are negative near one corner.
Our scenario for the application assumes that the surface be non-negative at all
points of the rectangle containing the independent variable data pairs.  Our
algorithm for constraining the surface is simple but effective in this case.  The
data fitting is repeated one more time but with positive constraints at the grid of
points where it was previously negative.

      USE surface_fitting_int
      USE rand_int
      USE norm_int

      implicit none

! This is Example 4 for SURFACE_FITTING, tensor product
! B-splines approximation, f(x,y).  Use the data set from
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! Franke, due to Ferguson.  Without constraints the function
! becomes negative in a corner.  Constrain the surface
! at a grid of values so it is non-negative.

      integer :: i, j, q
      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &
        nbkpt=ngrid+2*ndegree, ndata = 25, nvalues=50
      real(kind(1d0)), parameter :: zero=0d0, one=1d0
      real(kind(1d0)), parameter :: TOLERANCE=1d-3
      real(kind(1d0)), target :: spline_data (4, ndata), bkptx(nbkpt), &
             bkpty(nbkpt),coeff(ngrid+ndegree-1,ngrid+ndegree-1), &
             x(nvalues), y(nvalues), values(nvalues, nvalues), &
             delta
      real(kind(1d0)), pointer :: pointer_bkpt(:)
      type (d_spline_knots) knotsx, knotsy
      type (d_surface_constraints), allocatable :: C(:)

      real(kind(1e0)) :: data (3*ndata) = & ! This is Ferguson’s data:
(/2.0   ,  15.0  ,    2.5 ,      2.49 ,     7.647,    3.2,&
  2.981 ,   0.291,    3.4 ,      3.471,    -7.062,    3.5,&
  3.961 , -14.418,    3.5 ,      7.45 ,    12.003,    2.5,&
  7.35  ,   6.012,    3.5 ,      7.251,     0.018,    3.0,&
  7.151 ,  -5.973,    2.0 ,      7.051,   -11.967,    2.5,&
  10.901,   9.015,    2.0 ,     10.751,     4.536,    1.925,&
  10.602,   0.06 ,    1.85,     10.453,    -4.419,    1.576,&
  10.304,  -8.895,    1.7 ,     14.055,    10.509,    1.5,&
  14.194,   6.783,    1.3 ,     14.331,     3.054,    1.7,&
  14.469,  -0.672,    2.1 ,     14.607,    -4.398,    1.75,&
  15.0  ,  12.0  ,    0.5 ,     15.729,     8.067,    0.5,&
  16.457,   4.134,    0.7 ,     17.185,     0.198,    1.1,&
  17.914,  -3.735,    1.7/)

      spline_data(1:3,:)=reshape(data,(/3,ndata/)); spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.
! Use the data limits to  the knot sequences.
         bkptx(1:ndegree) = minval(spline_data(1,:))
         bkptx(nbkpt-ndegree+1:nbkpt) =  maxval(spline_data(1,:))
         delta=(bkptx(nbkpt)-bkptx(ndegree))/(ngrid-1)
         bkptx(nord:nbkpt-ndegree)=(/(bkptx(1)+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots for x.
      pointer_bkpt => bkptx
      knotsx=d_spline_knots(ndegree, pointer_bkpt)
         bkpty(1:ndegree) = minval(spline_data(2,:))
         bkpty(nbkpt-ndegree+1:nbkpt) =  maxval(spline_data(2,:))
         delta=(bkpty(nbkpt)-bkpty(ndegree))/(ngrid-1)
         bkpty(nord:nbkpt-ndegree)=(/(bkpty(1)+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots for y.
      pointer_bkpt => bkpty
      knotsy=d_spline_knots(ndegree, pointer_bkpt)

! Fit the data and obtain the coefficients.
      coeff = surface_fitting(spline_data, knotsx, knotsy)

      delta=(bkptx(nbkpt)-bkptx(1))/(nvalues+1)
      x=(/(bkptx(1)+i*delta,i=1,nvalues)/)
      delta=(bkpty(nbkpt)-bkpty(1))/(nvalues+1)
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      y=(/(bkpty(1)+i*delta,i=1,nvalues)/)

! Evaluate the function at a rectangular grid.
! Use non-positive values to  a constraint.
      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)

! Count the number of values <= zero.  Then constrain the spline
! so that it is >= TOLERANCE at those points where it was <= zero.
      q=count(values <= zero)
      allocate (C(q))
      DO I=1,nvalues
         DO J=1,nvalues
           IF(values(I,J) <= zero) THEN
             C(q)=surface_constraints(point=(/x(i),y(j)/), type=’>=’,&
                  value=TOLERANCE)
             q=q-1
           END IF
         END DO
      END DO

! Fit the data with constraints and obtain the coefficients.
      coeff = surface_fitting(spline_data, knotsx, knotsy,&
              CONSTRAINTS=C)
      deallocate(C)

! Evaluate the surface at a grid and check, once again, for
! non-positive values.  All values should now be positive.
      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)
if (count(values <= zero) == 0) then
        write(*,*) ’Example 4 for SURFACE_FITTING is correct.’
      end if

      end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for surface_fitting. These error
messages are numbered 1151-1152, 1161-1162, 1370-1393.
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error_post
Prints error messages that are generated by IMSL Fortran 90 routines.

Required Argument

epack   (Input [/Output])
Derived type array of size p containing the array of message numbers and
associated data for the messages. The definition of this derived type is packaged
within the modules used as interfaces for each suite of routines. The declaration
is:
type ?_error

integer idummy; real(kind(?_)) rdummy

end type

The choice of  “?_” is either “s_” or “d_” depending on the accuracy of the
data. This array gets additional messages and data from each routine that uses the
“epack=” optional argument, provided p is large enough to hold data for a new
message. The value p = 8 is sufficient to hold the longest single terminal, fatal, or
warning message that an IMSL Fortran 90 routine generates.
The location at entry epack (1)%idummy contains the number of data items for
all messages. When the error_post routine exits, this value is set to zero.
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Locations in array positions (2:) %idummy contain groups of integers consisting
of a message number, the error severity level, then the required integer data for
the message. Floating-point data, if required in the message, is passed in
locations(:)%rdummy matched with the starting point for integer data. The extent
of the data for each message is determined by the requirements of the larger of
each group of integer or floating-point values.

Optional Arguments

new_unit = nunit   (Input)
Unit number, of type integer, associated for reading the direct-access file of error
messages for the IMSL Fortran 90 routines.
Default: nunit = 4

new_path = path   (Input)
Pathname in the local file space, of type character*64, needed for reading the
direct-access file of error messages. Default string for path is defined during the
installation procedure for the  IMSL Fortran 90 routines.

Description

A default direct-access error message file (.daf file) is supplied with this product.
This file is read by error_post using the contents of the derived type argument
epack, containing the message number, error severity level, and associated data.
The message is converted into character strings accepted by the error processor
and then printed. The number of pending messages that print depends on the
settings of the parameters PRINT and STOP IMSL MATH/LIBRARY User’s
Manual (IMSL 1994, pp. 1194−1195). These values are initialized to defaults
such that any Level 5 or Level 4 message causes a STOP within the error processor
after a print of the text. To change these defaults so that more than one error
message prints, use the routine ERSET documented and illustrated with examples
in IMSL MATH/LIBRARY User’s Manual (IMSL 1994, pp. 1196−1198).  The
method of using a message file to store the messages is required to support
“shared-memory parallelism.”

Managing the Message File

For most applications of this product, there will be no need to manage this file.
However, there are a few situations which may require changing or adding
messages:

New system-wide messages have been developed for applications using the
IMSL Fortran 90 MP Library.

All or some of the existing messages need to be translated to another
language

A subset of users need to add a specific message file for their applications
using the IMSL Fortran 90 MP Library.



IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities • 125

Following is information on changing the contents of the message file, and
information on how to create and access a message file for a private application.

Changing Messages

In order to change messages, two files are required:

An editable message glossary, messages.gls, supplied with this product.

A source program, prepmess.f, used to generate an executable which
builds messages.daf from messages.gls.

To change messages, first make a backup copy of messages.gls. Use a text
editor to edit  messages.gls. The format of this file is a series of pairs of
statements:

message_number=<nnnn>

message=’message string’

(Note that neither of these lines should begin with a tab.)

The variable <nnnn> is an integer message number (see below for ranges and
reserved message numbers).

The ’message string’ is any valid message string not to exceed 255
characters. If a message line is too long for a screen, the standard Fortran 90
concatenation operator // with the line continuation character & may be used to
wrap the text.

Most strings have substitution parameters embedded within them.  These may be
in the following forms:

%(i<n>) for an integer substitution, where n is the nth integer output in
this message.

%(r<n>) for single precision real number substitution, where n is the nth
real number output in this message.

%(d<n>) for double precision real number substitution, where n is the nth
double precision number output in this message.

New messages added to the system-wide error message file should be placed at
the end of the file. Message numbers 5000 through 10000 have been reserved for
user-added messages.  Currently, messages 1 through 1400 are used by IMSL.
Gaps in message number ranges are permitted; however, the message numbers
must be in ascending order within the file.  The message numbers used for each
IMSL Fortran 90 MP Library subroutine are documented in this manual and in
online help.

If existing messages are being edited or translated, make sure not to alter the
message_number lines. (This prevents conflicts with any new messages.gls

file supplied with future versions of IMSL Fortran 90 MP Library.)
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Building a New Direct-access Message File

The prepmess executable must be available to complete the message changing
process. For information on building the prepmess executable from
prepmess.f , consult the installation guide for this product.

Once new messages have been placed in the messages.gls file, make a backup
copy of the messages.daf file.  Then remove messages.daf from the current
directory.  Now enter the following command:

prepmess > prepmess_output

A new messages.daf file is created.  Edit the prepmess_output file and
look near the end of the file for the new error messages.  The prepmess
program processes each message through the error message system as a validity
check.  There should be no FATAL error announcement within the
prepmess_output file.

Private Message Files

Users can create a private message file within their own messages.  This file
would generally be used by an application that calls the IMSL Fortran 90 MP
Library.  Follow the steps outlined above to created a private messages.gls
file.  The user should then be given a copy of the prepmess executable.  In the
application code, call the error_post subprogram with the
new_unit/new_path optional arguments.  The new path should point to the
directory in which the private messages.daf file resides.

rand_gen
Generates a rank-1 array of random numbers. The output array entries are
positive and less than 1 in value.

Required Argument

x   (Output)
Rank-1 array containing the random numbers.

Example 1: Running Mean and Variance

An array of random numbers is obtained. The sample mean and variance are
computed. These values are compared with the same quantities computed using a
stable method for the running means and variances, sequentially moving through
the data. Details about the running mean and variance are found in Henrici (1982,
pp. 21−23).

use rand_gen_int

      implicit none

! This is Example 1 for RAND_GEN.
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      integer i
      integer, parameter :: n=1000
      real(kind(1e0)), parameter :: one=1e0, zero=0e0
      real(kind(1e0)) x(n), mean_1(0:n), mean_2(0:n), s_1(0:n), s_2(0:n)

! Obtain random numbers.
      call rand_gen(x)

! Calculate each partial mean.
      do i=1,n
        mean_1(i) = sum(x(1:i))/i
      end do

! Calculate each partial variance.
      do i=1,n
        s_1(i)=sum((x(1:i)-mean_1(i))**2)/i
      end do

      mean_2(0)=zero
      mean_2(1)=x(1)
      s_2(0:1)=zero

! Alternately calculate each running mean and variance,
! handling the random numbers once.
      do i=2,n
       mean_2(i)=((i-1)*mean_2(i-1)+x(i))/i
       s_2(i)   = (i-1)*s_2(i-1)/i+(mean_2(i)-x(i))**2/(i-1)
      end do

! Check that the two sets of means and variances agree.
      if (maxval(abs(mean_1(1:)-mean_2(1:))/mean_1(1:)) <= &
              sqrt(epsilon(one))) then
         if (maxval(abs(s_1(2:)-s_2(2:))/s_1(2:)) <= &
              sqrt(epsilon(one))) then
            write (*,*) ’Example 1 for RAND_GEN is correct.’
         end if
      end if

      end

Optional Arguments

irnd = irnd   (Output)
Rank-1 integer array. These integers are the internal results of the Generalized
Feedback Shift Register (GFSR) algorithm. The values are scaled to yield the

floating-point array x. The output array entries are between 1 and 2�� − 1 in value.

istate_in = istate_in   (Input)
Rank-1 integer array of size 3p + 2, where p = 521, that defines the ensuing state
of the GFSR generator. It is used to reset the internal tables to a previously
defined state. It is the result of a previous use of the “istate_out=” optional
argument.

istate_out = istate_out   (Output)
Rank-1 integer array of size 3p + 2 that describes the current state of the GFSR
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generator. It is normally used to later reset the internal tables to the state defined
following a return from the GFSR generator. It is the result of a use of the
generator without a user initialization, or it is the result of a previous use of the
optional argument “istate_in=” followed by updates to the internal tables
from newly generated values. Example 2 illustrates use of istate_in and
istate_out for setting and then resetting rand_gen so that the sequence of
integers, irnd, is repeatable.

iopt = iopt(:)   (Input[/Output])
Derived type array with the same precision as the array x; used for passing
optional data to rand_gen. The options are as follows:

Packaged Options for rand_gen

Option Prefix = ? Option Name Option Value

s_, d_ rand_gen_generator_seed 1

s_, d_ rand_gen_LCM_modulus 2

s_, d_ rand_gen_use_Fushimi_start 3

iopt(IO) = ?_options(?_rand_gen_generator_seed, ?_dummy)

Sets the initial values for the GFSR. The present value of the seed, obtained by
default from the real-time clock as described below, swaps places with iopt(IO

+ 1)%idummy. If the seed is set before any current usage of rand_gen, the
exchanged value will be zero.

iopt(IO) = ?_options(?_rand_gen_LCM_modulus, ?_dummy)

iopt(IO+1) = ?_options(modulus, ?_dummy)

Sets the initial values for the GFSR. The present value of the LCM, with default
value k = 16807, swaps places with iopt(IO+1)%idummy.

iopt(IO) = ?_options(?_rand_gen_use_Fushimi_start, ?_dummy)

Starts the GFSR sequence as suggested by Fushimi (1990). The default starting
sequence is with the LCM recurrence described below.

Description

This GFSR algorithm is based on the recurrence

x x xt t p t q= ⊕− −3 3

where a ⊕ b is the exclusive OR operation on two integers a and b. This operation
is performed until size(x) numbers have been generated. The subscripts in the
recurrence formula are computed modulo 3p. These numbers are converted to
floating point by effectively multiplying the positive integer quantity

xt ∪1

by a scale factor slightly smaller than 1./(huge(1)). The values p = 521 and
q = 32 yield a sequence with a period approximately
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2 10156 8p > .

The default initial values for the sequence of integers {xW} are created by a
congruential generator starting with an odd integer seed

m v count bit size= +  ∩  − ∪| |_ ( )2 1 113 8
obtained by the Fortran 90 real-time clock routine:

CALL SYSTEM_CLOCK(COUNT=count,CLOCK_RATE=CLRATE)

An error condition is noted if the value of CLRATE=0. This indicates that the
processor does not have a functioning real-time clock. In this exceptional case a
starting seed must be provided by the user with the optional argument “iopt=”
and option number ?_rand_generator_seed. The value v is the current clock
for this day, in milliseconds.  This value is obtained using the date routine:

               CALL DATE_AND_TIME(VALUES=values)

and converting values(5:8) to milliseconds.

The LCM generator initializes the sequence { xW} using the following recurrence:

m m k huge← × , mod(  ( ) / )1 2

The default value of k = 16807. Using the optional argument “iopt=” and the
packaged option number ?_rand_gen_LCM_modulus, k can be given an
alternate value. The option number ?_rand_gen_generator_seed can be
used to set the initial value of m instead of using the asynchronous value given by
the system clock. This is illustrated in Example 2. If the default choice of m
results in an unsatisfactory starting sequence or it is necessary to duplicate the
sequence, then it is recommended that users set the initial seed value to one of
their own choosing. Resetting the seed complicates the usage of the routine.

This software is based on Fushimi (1990), who gives a more elaborate starting
sequence for the {xt} .  The starting sequence suggested by Fushimi can be used
with the option number ?_rand_gen_use_Fushimi_start. Fushimi’s starting
process is more expensive than the default method, and it is equivalent to starting

in another place of the sequence with period 2S.

Additional Examples

Example 2: Seeding, Using, and Restoring the Generator

     use rand_gen_int

      implicit none

! This is Example 2 for RAND_GEN.

      integer i
      integer, parameter :: n=34, p=521
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
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      integer irndi(n), i_out(3*p+2), hidden_message(n)
      real(kind(1e0)) x(n), y(n)
      type(s_options) :: iopti(2)=s_options(0,zero)
      character*34 message, returned_message

! This is the message to be hidden.
      message = ’SAVE YOURSELF.  WE ARE DISCOVERED!’

! Start the generator with a known seed.
      iopti(1) = s_options(s_rand_gen_generator_seed,zero)
      iopti(2) = s_options(123,zero)
      call rand_gen(x, iopt=iopti)

! Save the state of the generator.
      call rand_gen(x, istate_out=i_out)

! Get random integers.
      call rand_gen(y, irnd=irndi)

! Hide text using collating sequence subtracted from integers.
      do i=1, n
         hidden_message(i) = irndi(i) - ichar(message(i:i))
      end do

! Reset generator to previous state and generate the previous
! random integers.
      call rand_gen(x, irnd=irndi, istate_in=i_out)

! Subtract hidden text from integers and convert to character.
      do i=1, n
         returned_message(i:i) = char(irndi(i) - hidden_message(i))
      end do

! Check the results.
      if (returned_message == message) then
         write (*,*) ’Example 2 for RAND_GEN is correct.’
      end if

      end

Example 3: Generating Strategy with a Histogram

We generate random integers but with the frequency as in a histogram with nELQV
slots.  The generator is initially used a large number of times to demonstrate that
it is making choices with the same shape as the histogram.  This is not required to
generate samples.  The program next generates a summary set of integers
according to the histogram.  These are not repeatable and are representative of the
histogram in the sense of looking at 20 integers during generation of a large
number of samples.

        use rand_gen_int
        use show_int

      implicit none
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! This is Example 3 for RAND_GEN.

      integer i, i_bin, i_map, i_left, i_right
      integer, parameter :: n_work=1000
      integer, parameter :: n_bins=10
      integer, parameter :: scale=1000
      integer, parameter :: total_counts=100
      integer, parameter :: n_samples=total_counts*scale
      integer, dimension(n_bins) :: histogram=  &
        (/4,  6,  8, 14, 20, 17, 12,  9,  7,  3 /)
      integer, dimension(n_work) :: working=0
      integer, dimension(n_bins) :: distribution=0
      integer break_points(0:n_bins)
      real(kind(1e0)) rn(n_samples)
      real(kind(1e0)), parameter :: tolerance=0.005

      integer, parameter :: n_samples_20=20
      integer rand_num_20(n_samples_20)
      real(kind(1e0)) rn_20(n_samples_20)

! Compute the normalized cumulative distribution.
      break_points(0)=0
      do i=1,n_bins
        break_points(i)=break_points(i-1)+histogram(i)
      end do

      break_points=break_points*n_work/total_counts

! Obtain uniform random numbers.
        call rand_gen(rn)

! Set up the secondary mapping array.
      do i_bin=1,n_bins
        i_left=break_points(i_bin-1)+1
        i_right=break_points(i_bin)
        do i=i_left, i_right
          working(i)=i_bin
        end do
      end do

! Map the random numbers into the ’distribution’ array.
! This is made approximately proportional to the histogram.
      do i=1,n_samples
        i_map=nint(rn(i)*(n_work-1)+1)
        distribution(working(i_map))=  &
          distribution(working(i_map))+1
      end do

! Check the agreement between the distribution of the
! generated random numbers and the original histogram.
       write (*, ’(A)’, advance=’no’) ’Original: ’
       write (*, ’(10I6)’) histogram*scale
       write (*, ’(A)’, advance=’no’) ’Generated:’
       write (*, ’(10I6)’) distribution

      if (maxval(abs(histogram(1:)*scale-distribution(1:))) &
            <= tolerance*n_samples) then
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        write(*, ’(A/)’) ’Example 3 for RAND_GEN is correct.’
      end if

! Generate 20 integers in 1, 10 according to the distribution
! induced by the histogram.
        call rand_gen(rn_20)

! Map from the uniform distribution to the induced distribution.
      do i=1,n_samples_20
        i_map=nint(rn_20(i)*(n_work-1)+1)
        rand_num_20(i)=working(i_map)
      end do

        call show(rand_num_20,&
’Twenty integers generated according to the histogram:’)
      end

Example 4: Generating with a Cosine Distribution

We generate random numbers based on the continuous distribution function

p x x x0 5 0 51 6= + − ≤ ≤1 2cos / ,π π π

Using the cumulative

q x p t dt x x
x0 5 0 5 0 51 6= = + +

−I 1 2 2/ sin / π
π

we generate the samples by obtaining uniform samples u, 0 < u < 1 and solve the
equation

q x u x0 5− = − < <0, π π

These are evaluated in vector form, that is all entries at one time, using Newton’s
method:

x x dx dx q x u p x← − = −, /0 51 6 0 5
An iteration counter forces the loop to terminate, but this is not often required
although it is an important detail.

      use rand_gen_int
      use show_int
      use Numerical_Libraries

        IMPLICIT NONE

! This is Example 4 for RAND_GEN.

      integer i, i_map, k
      integer, parameter :: n_bins=36
      integer, parameter :: offset=18
      integer, parameter :: n_samples=10000
      integer, parameter :: n_samples_30=30
      integer, parameter :: COUNT=15

      real(kind(1e0)) probabilities(n_bins)
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      real(kind(1e0)), dimension(n_bins) :: counts=0.0
      real(kind(1e0)), dimension(n_samples) :: rn, x, f, fprime, dx
      real(kind(1e0)), dimension(n_samples_30) :: rn_30, &
               x_30, f_30, fprime_30, dx_30
      real(kind(1e0)), parameter :: one=1e0, zero=0e0, half=0.5e0
      real(kind(1e0)), parameter :: tolerance=0.01
      real(kind(1e0)) two_pi, omega

! Initialize values of ’two_pi’ and ’omega’.
       two_pi=2.0*const((/’pi’/))
       omega=two_pi/n_bins

! Compute the probabilities for each bin according to
! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.
      do i=1,n_bins
        probabilities(i)=(sin(omega*(i-offset))  &
            -sin(omega*(i-offset-1))+omega)/two_pi
      end do

! Obtain uniform random numbers in (0,1).
      call rand_gen(rn)

! Use Newton’s method to solve the nonlinear equation:
! accumulated_distribution_function - random_number = 0.
      x=zero; k=0
      solve_equation: do
        f=(sin(x)+x)/two_pi+half-rn
        fprime=(one+cos(x))/two_pi
        dx=f/fprime
        x=x-dx; k=k+1
        if (maxval(abs(dx)) <= sqrt(epsilon(one)) &
              .or. k > COUNT) exit solve_equation
      end do solve_equation

! Map the random numbers ’x’ array into the ’counts’ array.
        do i=1,n_samples
          i_map=int(x(i)/omega+offset)+1
          counts(i_map)=counts(i_map)+one
        end do

! Normalize the counts array.
      counts=counts/n_samples

! Check that the generated random numbers are indeed
! based on the original distribution.
      if (maxval(abs(counts(1:)-probabilities(1:))) &
            <= tolerance) then
        write (*,’(a/)’) ’Example 4 for RAND_GEN is correct.’
      end if

! Generate 30 random numbers in (-pi,pi) according to
! the probability density (cos(x)+1)/(2*pi), -pi<x<pi.
        call rand_gen(rn_30)

      x_30=0.0; k=0
      solve_equation_30: do
        f_30=(sin(x_30)+x_30)/two_pi+half-rn_30
        fprime_30=(one+cos(x_30))/two_pi
        dx_30=f_30/fprime_30
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        x_30=x_30-dx_30
        if (maxval(abs(dx_30)) <= sqrt(epsilon(one))&
             .or. k > COUNT) exit solve_equation_30
      end do solve_equation_30

        write(*,’(A)’) ’Thirty random numbers generated ’, &
                   ’according to the probability density ’,&
                   ’pdf(x)=(cos(x)+1)/(2*pi), -pi<x<pi:’

        call show(x_30)
        end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for rand_gen. These error mes-
sages are numbered 521−528; 541−548.

sort_real
Sorts a rank-1 array of real numbers x so the y results are algebraically
nondecreasing, y� ≤ y� ≤ … yQ.

Required Argument

x   (Input)
Rank-1 array containing the numbers to be sorted.

y   (Output)
Rank-1 array containing the sorted numbers.

Example 1: Sorting an Array

An array of random numbers is obtained. The values are sorted so they are
nondecreasing.

      use sort_real_int
      use rand_gen_int

      implicit none

! This is Example 1 for SORT_REAL.

      integer, parameter :: n=100
      real(kind(1e0)), dimension(n) :: x, y

! Generate random data to sort.
      call rand_gen(x)

! Sort the data so it is non-decreasing.
      call sort_real(x, y)

! Check that the sorted array is not decreasing.
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      if (count(y(1:n-1) > y(2:n)) == 0) then
         write (*,*) ’Example 1 for SORT_REAL is correct.’
      end if

      end

Optional Arguments

nsize = n   (Input)
Uses the sub-array of size n for the numbers.
Default value: n = size(x)

iperm = iperm   (Input/Output)
Applies interchanges of elements that occur to the entries of iperm(:). If the
values iperm(i)=i,i=1,n are assigned prior to call, then the output array is
moved to its proper order by the subscripted array assignment y =
x(iperm(1:n)).

icycle = icycle   (Output)
Permutations applied to the input data are converted to cyclic interchanges. Thus,
the output array y is given by the following elementary interchanges, where :=:
denotes a swap:

j = icycle(i)
y(j) :=: y(i), i = 1,n

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix; used for passing
optional data to the routine. The options are as follows:

Packaged Options for sort_real

Option Prefix = ? Option Name Option Value

s_, d_ sort_real_scan_for_NaN 1

iopt(IO) = ?_options(?_sort_real_scan_for_NaN, ?_dummy)

Examines each input array entry to find the first value such that

isNaN(x(i)) == .true.

See the isNaN() function, Chapter 6.
Default: Does not scan for NaNs.

Description

The sort_real routine is a Fortran 90 version of SVRGN from IMSL
MATH/LIBRARY User’s Manual (IMSL 1994, p. 1141).
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Additional Examples

Example 2: Sort and Final Move with a Permutation

A set of n random numbers is sorted so the results are nonincreasing. The
columns of an n × n random matrix are moved to the order given by the
permutation defined by the interchange of the entries. Since the routine sorts the
results to be algebraically nondecreasing, the array of negative values is used as
input. Thus, the negative value of the sorted output order is nonincreasing. The
optional argument “iperm=” records the final order and is used to move the
matrix columns to that order. This example illustrates the principle of sorting
record keys, followed by direct movement of the records to sorted order.

      use sort_real_int
      use rand_gen_int

      implicit none

! This is Example 2 for SORT_REAL.

      integer i
      integer, parameter :: n=100
      integer ip(n)
      real(kind(1e0)) a(n,n), x(n), y(n), temp(n*n)

! Generate a random array and matrix of values.
      call rand_gen(x)
      call rand_gen(temp)
      a = reshape(temp,(/n,n/))

! Initialize permutation to the identity.
      do i=1, n
         ip(i) = i
      end do

! Sort using negative values so the final order is
! non-increasing.
      call sort_real(-x, y, iperm=ip)

! Final movement of keys and matrix columns.
      y = x(ip(1:n))
      a = a(:,ip(1:n))

! Check the results.
      if (count(y(1:n-1) < y(2:n)) == 0) then
         write (*,*) ’Example 2 for SORT_REAL is correct.’
      end if

      end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for sort_real. These error
messages are numbered 561−567; 581−587.
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show
Print rank-1 or rank-2 arrays of numbers in a readable format.

Required Argument

x   (Input)
Rank-1 or rank-2 array containing the numbers to be printed.

Example 1: Printing an Array

Array of random numbers for all the intrinsic data types are printed.  For
REAL(KIND(1E0)) rank-1 arrays, the number of displayed digits is reset from
the default value of  4 to the value 7 and the subscripts for the array are reset so
they match their declared extent when printed.  The output is not shown.

use show_int
use rand_int

implicit none

! This is Example 1 for SHOW.

integer, parameter :: n=7, m=3
real(kind(1e0)) s_x(-1:n), s_m(m,n)
real(kind(1d0)) d_x(n), d_m(m,n)
complex(kind(1e0)) c_x(n), c_m(m,n)
complex(kind(1d0)) z_x(n),z_m(m,n)
integer i_x(n), i_m(m,n)

        type (s_options) options(3)

! The data types printed are real(kind(1e0)), real(kind(1d0)),
complex(kind(1e0)),
!complex(kind(1d0)), and INTEGER. Fill with randsom numbers
! and then print the contents, in each case with a label.

s_x=rand(s_x); s_m=rand(s_m)
d_x=rand(d_x); d_m=rand(d_m)
c_x=rand(c_x); c_m=rand(c_m)
z_x=rand(z_x); z_m=rand(z_m)
i_x=100*rand(s_x(1:n)); i_m=100*rand(s_m)

call show (s_x, ’Rank-1, REAL’)
call show (s_m, ’Rank-2, REAL’)
call show (d_x, ’Rank-1, DOUBLE’)
call show (d_m, ’Rank-2, DOUBLE’)
call show (c_x, ’Rank-1, COMPLEX’)
call show (c_m, ’Rank-2, COMPLEX’)
call show (z_x, ’Rank-1, DOUBLE COMPLEX’)
call show (z_m, ’Rank-2, DOUBLE COMPLEX’)
call show (i_x, ’Rank-1, INTEGER’)
call show (i_m, ’Rank-2, INTEGER’)

! Show 7 digits per number and  according to the
! natural or declared size of the array.
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        options(1)=show_significant_digits_is_7
        options(2)=show_starting_index_is
        options(3)= -1 ! The starting  value.
        call show (s_x, &
’Rank-1, REAL with 7 digits, natural indexing’, IOPT=options)
        end

Optional Arguments

text = CHARACTER   (Input)
CHARACTER(LEN=*) string used for labeling the array.

image = buffer  (Output)
CHARACTER(LEN=*) string used for an internal write buffer.  With this argument
present the output is converted to characters and packed.  The lines are separated
by an end-of-line sequence.  The length of buffer is estimated by the line width
in effect, time the number of lines for the array.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input array; used for passing
optional data to the routine. Use the REAL(KIND(1E0)) precision for output of
INTEGER arrays.  The options are as follows:

Packaged Options for show

Prefix is blank Option Name Option Value

show_significant_digits_is_4 1

show_significant_digits_is_7 2

show_significant_digits_is_16 3

show_line_width_is_44 4

show_line_width_is_72 5

show_line_width_is_128 6

show_end_of_line_sequence_is 7

show_starting_index_is 8

show_starting_row_index_is 9

show_starting_col_index_is 10

iopt(IO) = show_significant_digits_is_4

iopt(IO) = show_significant_digits_is_7

iopt(IO) = show_significant_digits_is_16

These options allow more precision to be displayed.  The default is 4D
for each value. The other possible choices display 7D or 16D.

iopt(IO) = show_line_width_is_44

iopt(IO) = show_line_width_is_72



IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities • 139

iopt(IO) = show_line_width_is_128

These options allow varying the output line width.  The default is 72
characters per line.  This allows output on many work stations or
terminals to be read without wrapping of lines.

iopt(IO) = show_end-of_line_sequence_is

The sequence of characters ending a line when it is placed into the
internal character buffer corresponding to the optional argument
‘IMAGE = buffer‘.  The value of iopt(IO+1)%idummy  is the
number of characters.  These are followed, starting at
iopt(IO+2)%idummy , by the ASCII codes of the characters themselves.
The default is the single character, ASCII value 10 or New Line.

iopt(IO) = show_starting_index_is

This are used to reset the starting index for a rank-1 array to a value
different from the default value, which is 1.

iopt(IO) = show_starting_row_index_is

iopt(IO) = show_starting_col_index_is

These are used to reset the starting row and column indices to values
different from their defaults, each 1.

Description

The show routine is a generic subroutine interface to separate low-level
subroutines for each data type and array shape.  Output is directed to the unit
number IUNIT.   That number is obtained with the subroutine UMACH, IMSL
MATH/LIBRARY User’s Manual (IMSL 1994, pp. 1204−1205.  Thus the user
must open this unit in the calling program if it desired to be different from the
standard output unit.  If the optional argument ‘IMAGE = buffer‘  is present,
the output is not sent to a file but to a character string within buffer . These
characters are available to output or be used in the application.

Additional Examples

Example 2: Writing an Array to a Character Variable

This example prepares a rank-1 array for further processing, in this case delayed
writing to the standard output unit.  The indices and the amount of precision are
reset from their defaults, as in Example 1.  An end-of-line sequence of the
characters CR-NL (ASCII 10,13) is used in place of the standard ASCII 10. This
is not required for writing this array, but is included for an illustration of the
option.

use show_int
use rand_int

implicit none
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! This is Example 2 for SHOW.
integer, parameter :: n=7
real(kind(1e0)) s_x(-1:n)

        type (s_options) options(7)
        CHARACTER (LEN=(72+2)*4) BUFFER
! The data types printed are real(kind(1e0)) random numbers.

s_x=rand(s_x)

! Show 7 digits per number and  according to the
! natural or declared size of the array.
! Prepare the output lines in array BUFFER.
! End each line with ASCII sequence CR-NL.
        options(1)=show_significant_digits_is_7

        options(2)=show_starting_index_is
        options(3)= -1 ! The starting  value.

        options(4)=show_end_of_line_sequence_is
        options(5)=  2 ! Use 2 EOL characters.
        options(6)= 10 ! The ASCII code for CR.
        options(7)= 13 ! The ASCII code for NL.

        BUFFER= ’ ’    ! Blank out the buffer.

! Prepare the output in BUFFER.
 call show (s_x, &
 ’Rank-1, REAL with 7 digits, natural indexing ’//&
 ’internal BUFFER, CR-NL EOLs.’,&
 IMAGE=BUFFER,  IOPT=options)

! Display BUFFER as a CHARACTER array. Discard blanks
! on the ends.
        WRITE(*,’(1x,A)’) TRIM(BUFFER)

        end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for show. These error messages are
numbered 601−606; 611−617; 621−627; 631−636; 641−646.
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Chapter 6: Operators and Generic
Functions - The Parallel Option

Introduction

MPI REQUIRED

This chapter describes numerical linear algebra software packaged as operations
that are executed with a function notation similar to standard mathematics. The
resulting interface is a great simplification. It alters the way libraries are presented
to the user. Many computations of numerical linear algebra are documented here
as operators and generic functions. A notation is developed reminiscent of matrix
algebra. This allows the Fortran 90 user to express mathematical formulas in
terms of operators. Thus, important aspects of “object-oriented” programming
are provided as a part of this chapter's design.

A comprehensive Fortran 90 module, linear_operators, defines the operators and
functions. Its use provides this simplification. Subroutine calls and the use of
type-dependent procedure names are largely avoided. This makes a rapid
development cycle possible, at least for the purposes of experiments and proof-of-
concept. The goal is to provide the Fortran 90 programmer with an interface,
operators, and functions that are useful and succinct. The modules can be used
with existing Fortran programs, but the operators provide a more readable
program. Frequently this approach requires more hidden working storage. The
size of the executable program may be larger than alternatives using subroutines.
There are applications wherein the operator and function interface does not have
the functionality that is available using subroutine libraries. To retain greater
flexibility, some users will continue to require the traditional techniques of calling
subroutines.

A parallel computation for many of the defined operators and functions has been
implemented.  Most of the detailed communication is hidden from the user. Those
functions having this data type computed in parallel are marked in bold type.
The section “Parallelism Using MPI” (in this chapter) gives an introduction on
how users should write their codes to use other machines on a network.
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Matrix Algebra Operations

MPI REQUIRED

Consider a Fortran 90 code fragment that solves a linear system of algebraic
equations, Ay = b, then computes the residual r = b − Ay. A standard
mathematical notation is often used to write the solution,

y A b= −1

A user thinks: “matrix and right-hand side yields solution.” The code shows the
computation of this mathematical solution using a defined Fortran operator
“.ix.”, and random data obtained with the function, rand. This operator is read
“inverse matrix times.” The residuals are computed with another defined Fortran
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operator “.x.”, read “matrix times vector.” Once a user understands the equiva-
lence of a mathematical formula with the corresponding Fortran operator, it is
possible to write this program with little effort. The last line of the example
before end is discussed below.

USE linear_operators

   integer,parameter :: n=3; real A(n,n), y(n), b(n), r(n)

   A=rand(A); b=rand(b); y = A .ix. b

   r = b - (A .x. y )

end

The IMSL Fortran 90 MP Library provides additional lower-level software that
implements the operation “.ix.”, the function rand, matrix multiply  “.x.”, and
others not used in this example. Standard matrix products and inverse operations
of matrix algebra are shown in the following table:

Defined Array Operation Matrix Operation Alternative in Fortran 90

A .x. B AB matmul(A, B)

.i. A A−1 lin_sol_gen

lin_sol_lsq

.t. A, .h. A A AT H, transpose(A)

conjg(transpose(A))

A .ix. B A B−1 lin_sol_gen

lin_sol_lsq

B .xi. A BA−1 lin_sol_gen

lin_sol_lsq

A .tx. B, or (.t. A) .x. B

A .hx. B, or (.h. A) .x. B

A B A BT H, matmul(transpose (A), B)

matmul(conjg(transpose(A)), B)

B .xt. A, or B .x. (.t. A)

B .xh. A, or B .x. (.h. A)

BA BAT H, matmul(B, transpose(A))

matmul(B, conjg(transpose(A)))

Operators apply generically to all precisions and floating-point data types and to
objects that are broader in scope than arrays. For example, the matrix product
“.x..” applies to matrix times vector and matrix times matrix represented as
Fortran 90 arrays. It also applies to “independent matrix products.”  For this,
use the notion: a box of problems to refer to independent linear algebra
computations, of the same kind and dimension, but different data. The racks of
the box are the distinct problems. In terms of Fortran 90 arrays, a rank-3,
assumed-shape array is the data structure used for a box. The first two
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dimensions are the data for a matrix problem; the third dimension is the rack
number. Each problem is independent of other problems in consecutive racks of
the box. We use parallelism of an underlying network of processors when
computing these disjoint problems.

In addition to the operators .ix., .xi., .i., and .x., additional operators
.t., .h., .tx., .hx., .xt., and .xh. are provided for complex matrices.
Since the transpose matrix is defined for complex matrices, this meaning is kept
for the defined operations. In order to write one defined operation for both real
and complex matrices, use the conjugate-transpose in all cases. This will result
in only real operations when the data arrays are real.

For sums and differences of vectors and matrices, the intrinsic array operations
“+” and “−” are available. It is not necessary to have separate defined
operations. A parsing rule in Fortran 90 states that the result of a defined
operation involving two quantities has a lower precedence than any intrinsic
operation. This explains the parentheses around the next-to-last line containing
the sub-expression “A .x. y” found in the example. Users are advised to
always include parentheses around array expressions that are mixed with
defined operations, or whenever there is possible confusion without them. The
next-to-last line of the example results in computing the residual associated
with the solution, namely r = b − Ay. Ideally, this residual is zero when the
system has a unique solution. It will be computed as a non-zero vector due to
rounding errors and conditioning of the problem.

Matrix and Utility Functions
Several decompositions and functions required for numerical linear algebra
follow. The convention of enclosing optional quantities in brackets, “[ ]” is used.
The functions that use MPI for parallel execution of the box data type are marked
in bold.

Defined Array Functions Matrix Operation

S=SVD(A [,U=U, V=V]) A USV T=

E=EIG(A [[,B=B, D=D],

V=V, W=W])

(AV = VE), AVD = BVE

(AW = WE), AWD = BWE

R=CHOL(A) A R RT=
Q=ORTH(A [,R=R]) A QR Q Q IT= =0 5,
U=UNIT(A) u a a1 1 1, / ,K K=

F=DET(A) det(A) = determinant

K=RANK(A) rank(A) = rank
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Defined Array Functions Matrix Operation

P=NORM(A[,[type=]i])
p A a

p A s

p A a

j ij

i

m

huge i ij

j

n

= =

= = =

= =

=

∞↔

∑

∑

1
1

2 1

1

max ( )

max ( )

 largest singular value

=1
0 5

C=COND(A) s srank A1 / 0 5
Z=EYE(N) Z IN=
A=DIAG(X) A diag x= 1,K1 6
X=DIAGONALS(A) x a= 11,K1 6
Y=FFT (X,[WORK=W]);
X=IFFT(Y,[WORK=W])

Discrete Fourier Transform, Inverse

Y=FFT_BOX (X,[WORK=W]);
X=IFFT_BOX(Y,[WORK=W])

Discrete Fourier Transform for Boxes, Inverse

A=RAND(A) random numbers, 0 < A < 1

L=isNaN(A) test for NaN, if (l) then…

In certain functions, the optional arguments are inputs while other optional
arguments are outputs. To illustrate the example of the box SVD function, a code
is given that computes the singular value decomposition and the reconstruction of

the random matrix box, A. Using the computed factors, R = USV7.
Mathematically R = A, but this will be true, only approximately, due to rounding
errors. The value units_of_error = ||A − R||/(||A||ε), shows the merit of this
approximation.

USE linear_operators

USE mpi_setup_int

   integer,parameter :: n=3, k=16

   real, dimension(n,n,k) :: A,U,V,R,S(n,k), units_of_error(k)

   MP_NPROCS=MP_SETUP()       ! Set up MPI.

   A=rand(A); S=SVD(A, U=U, V=V)

   R = U .x. diag(S) .xt. V; units_of_error =
      norm(A-R)/S(1,1:k)/epsilon(A)

   MP_NPROCS=MP_SETUP(‘Final’) ! Shut down MPI.

   end
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Parallelism Using MPI

MPI REQUIRED
General Remarks

The central theme we use for the computing functions of the box data type is
that of delivering results to a distinguished node of the machine.  One of the
design goals was to shield much of the complexity of distributed computing
from the user.

The nodes are numbered by their “ranks.”  Each node has rank value
MP_RANK.  There are MP_NPROCS nodes, so MP_RANK = 0,
1,...,MP_NPROCS-1.  The root node has MP_RANK = 0.   Most of the
elementary MPI material is found in Gropp, Lusk, and Skjellum (1994) and
Snir, Otto, Huss-Lederman, Walker, and Dongarra (1996).  Although Fortran
90 MP Library users are for the most part shielded from the complexity of
MPI, it is desirable for some users to learn this important topic.  Users should
become familiar with any referenced MPI routines and the documentation of
their usage.  MPI routines are not discussed here, because that is best found in
the above references.

The Fortran 90 MP Library algorithm for allocating the racks of the box to the
processors consists of creating a schedule for the processors, followed by
communication and execution of this schedule.  The efficiency may be
improved by using the nodes according to a specific priority order.  This order
can reflect information such as a powerful machine on the network other than
the user’s work station, or even complex or transient network behavior.  The
Fortran 90 MP Library allows users to define this order, including using a
default.  A setup function establishes an order based on timing matrix products
of a size given by the user.  Parallel Example 4 illustrates this usage.

Getting Started with Modules MPI_setup_int and
MPI_node_int

The MPI_setup_int and MPI_node_int modules are part of the
Fortran 90 MP Library and not part of MPI itself.  Following a call to the
function MP_SETUP(),  the module MPI_node_int will contain
information about the number of processors, the rank of a processor, the
communicator for Fortran 90 MP Library, and the usage priority order of the
node machines.  Since MPI_node_int is used by MPI_setup_int, it is
not necessary to explicitly use this module.  If neither MP_SETUP() nor
MPI_Init() is called, then the box data type will compute entirely on one
node.  No routine from MPI will be called.

MODULE MPI_NODE_INT

  INTEGER, ALLOCATABLE :: MPI_NODE_PRIORITY(:)

  INTEGER, SAVE :: MP_LIBRARY_WORLD = huge(1)

  LOGICAL, SAVE :: MPI_ROOT_WORKS = .TRUE.

  INTEGER, SAVE :: MP_RANK = 0, MP_NPROCS = 1
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END MODULE

When the function MP_SETUP() is called with no arguments, the following
events occur:

• If MPI has not been initialized, it is first initialized.  This step uses the
routines MPI_Initialized() and possibly MPI_Init(). Users
who choose not to call MP_SETUP() must make the required
initialization call before using any Fortran 90 MP Library code that relies
on MPI for its execution. If the user’s code calls a Fortran 90 MP Library
function utilizing the box data type and MPI has not been initialized, then
the computations are performed on the root node.   The only MPI routine
always called in this context is MPI_Initialized().  The name
MP_SETUP is pushed onto the subprogram or call stack.

• If MP_LIBRARY_WORLD equals its initial value (=huge(1)) then
MPI_COMM_WORLD, the default MPI communicator, is duplicated  and
becomes its handle.  This uses the routine MPI_Comm_dup(). Users can
change the handle of MP_LIBRARY_WORLD as required by their
application code.  Often this issue can be ignored.

• The integers MP_RANK and MP_NPROCS are respectively the node’s
rank and the number of nodes in the communicator,
MP_LIBRARY_WORLD.  Their values require the routines
MPI_Comm_size() and MPI_Comm_rank(). The default values are
important when MPI is not initialized and a box data type is computed.   In
this case the root node is the only node and it will do all the work.  No calls
to MPI communication routines are made when MP_NPROCS = 1 when
computing the box data type functions.  A program can temporarily assign
this value to force box data type computation entirely at the root node.
This is desirable for problems where using many nodes would be less
efficient than using the root node exclusively.

• The array MPI_NODE_PRIORITY(:) is unallocated unless the user
allocates it. The Fortran 90 MP Library codes use this array for assigning
tasks to processors, if it is allocated.  If it is not allocated, the default
priority of the nodes is (0,1,...,MP_NPROCS-1).  Use of the
function call MP_SETUP(N) allocates the array, as explained below.
Once the array is allocated its size is MP_NPROCS. The contents of the
array is a permutation of the integers 0,...,MP_NPROCS-1. Nodes
appearing at the start of the list are used first for parallel computing.  A
node other than the root can avoid any computing, except receiving the
schedule, by setting the value MPI_NODE_PRIORITY(I) < 0. This
means that node |MPI_NODE_PRIORITY(I)| will be sent the task
schedule but will not perform any significant work as part of  box data type
function evaluations.

• The LOGICAL flag MPI_ROOT_WORKS designates whether or not the
root node participates in the major computation of  the tasks.  The root
node communicates with the other nodes to complete the tasks but can be
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designated to do no other work.  Since there may be only one processor,
this flag has the default value .TRUE., assuring that one node exists to do
work.  When more than one processor is available users can consider
assigning MPI_ROOT_WORKS=.FALSE. This is desirable when the
alternate nodes have equal or greater computational resources compared
with the root node.  Example 4 illustrates this usage.  A single problem is
given a box data type, with one rack.  The computing is done at the node,
other than the root, with highest priority.  This example requires more than
one processor since the root does not work.

When the generic function MP_SETUP(N) is called, where N is a positive
integer, a call to MP_SETUP() is first made, using no argument.  Use just one
of these calls to MP_SETUP().  This initializes the MPI system and the other
parameters described above.  The array MPI_NODE_PRIORITY(:) is
allocated with size MP_NPROCS.  Then DOUBLE PRECISION matrix
products C = AB, where A and B are N by N matrices, are computed at each
node and the elapsed time is recorded.  These elapsed times are sorted and the
contents of MPI_NODE_PRIORITY(:) permuted  in accordance with the
shortest times yielding the highest priority.  All the nodes in the communicator
MP_LIBRARY_WORLD are timed.  The array MPI_NODE_PRIORITY(:) is
then broadcast from the root to the remaining nodes of MP_LIBRARY_WORLD
using the routine MPI_Bcast(). Timing matrix products to define the node
priority is relevant because the effort to compute C is comparable to that of
many linear algebra computations of similar size.  Users are free to define their
own node priority and broadcast the array MPI_NODE_PRIORITY(:) to the
alternate nodes in the communicator.

To print any IMSL Fortran 90 MP Library error messages that have occurred at
any node, and to finalize MPI, use the function call MP_SETUP(‘Final’).
Case of the string ‘Final’ is not important. Any error messages pending will
be discarded after printing on the root node.  This is triggered by popping the
name ‘MP_SETUP’ from the subprogram stack or returning to Level 1 in the
stack. Users can obtain error messages by popping the stack to Level 1 and still
continuing with MPI calls.  This requires executing call e1pop (‘MP_SETUP’).
To continue on after summarizing errors execute call e1psh (‘MP_SETUP’).
More details about the error processor are found in Chapter 9.

Messages are printed by nodes from largest rank to smallest, which is the root
node.  Use of the routine MPI_Finalize() is made within
MP_SETUP(‘Final’),  which shuts down MPI.  After MPI_Finalize()
is called, the value of MP_NPROCS = 0. This flags that MPI has been
initialized and terminated.  It cannot be initialized again in the same program
unit execution.  No MPI routine is defined when MP_NPROCS has this value.

Using Processors

There are certain pitfalls to avoid when using Fortran 90 MP Library and box
data types as implemented with MPI.  A fundamental requirement is to allow all
processors to participate in parts of the program where their presence is needed
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for correctness.  It is incorrect to have a program unit that restricts nodes from
executing a block of code required when computing with the box data type.
On the other hand it is appropriate to restrict computations with rank-2 arrays to
the root node.  This is not required, but the results for the alternate nodes are
normally discarded.  This will avoid gratuitous error messages that may appear
at alternate nodes.

Observe that only the root has a correct result for a box data type function.
Alternate nodes have the constant value one as the result. The reason for this is
that during the computation of the functions, sub-problems are allocated to the
alternate nodes by the root, but for only the root to utilize the result.  If a user
needs a value at the other nodes, then the root must send it to the nodes.  This
principle is illustrated in Parallel Example 3:  Convergence information is
computed at the root node and broadcast to the others.  Without this step some
nodes would not terminate the loop even when corrections at the root become
small.  This would cause the program to be incorrect.

Optional Data Changes
To reset tolerances for determining singularity and to allow for other data
changes, non-allocated “hidden” variables are defined within the modules.  These
variables can be allocated first, then assigned values which result in the use of
different tolerances or greater efficiency in the executable program.  The non-
allocated variables, whose scope is limited to the module, are hidden from the
casual user.  Default values or rules are applied if these arrays are not allocated.
In more detail, the inverse matrix operator “ .i.”  applied to a square matrix first
uses the LU factorization code lin_sol_gen and row pivoting.  The default
value for a small diagonal term is defined to be:

sqrt(epsilon(A))*sum(abs(A))/(n*n+1)

If the system is singular, a generalized matrix inverse is computed with the QR
factorization code lin_sol_lsq using this same tolerance.  Both row and
column pivoting are used.  If the system is singular, an error message will be
printed and a Fortran 90 STOP is executed.  Users may want to change this rule.
This is illustrated by continuing and not printing the error message.  The
following is an additional source to accomplish this, for all following invocations
of the operator “ .i.”:

allocate(inverse_options(1))

inverse_options(1)=skip_error_processing

B=.i. A

There are additional self-documenting integer parameters, packaged in the
module linear_operators, that allow users other choices, such as changing the
value of the tolerance, as noted above.  Included will be the ability to have the
option apply for just the next invocation of the operator.  Options are available
that allow optional data to be passed to supporting Fortran 90 subroutines.  This
is illustrated with an example in operator_ex36 in this chapter.
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Operators: .x., .tx., .xt., .hx., .xh.
Compute matrix-vector and matrix-matrix products. The results are in a precision
and data type that ascends to the most accurate or complex operand. The
operators apply when one or both operands are rank-1, rank-2 or rank-3 arrays.

Required Operands

Each of these operators requires two operands. Mixing of intrinsic floating-point
data types arrays is permitted. There is no distinction made between a rank-1
array, considered a slim matrix, and the transpose of this matrix. Defined
operations have lower precedence than any intrinsic operation, so the liberal use
of parentheses is suggested when mixing them.

Modules

Use the appropriate one of the modules:

operation_x

operation_tx

operation_xt

operation_hx

operation_xh

or linear_operators

Optional Variables, Reserved Names

These operators have neither packaged optional variables nor reserved names.

Examples

Compute the matrix times vector y = Ax: y = A .x. x

• Compute the vector times matrix y x AT= : y = x .x.A; y = A .tx. x

• Compute the matrix expression D = B − AC: D = B − (A .x. C)

Operators: .t., .h.
Compute transpose and conjugate transpose of a matrix. The operation may be
read transpose or adjoint, and the results are the mathematical objects in a
precision and data type that matches the operand. The operators apply when the
single operand is a rank-2 or rank-3 array.
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Required Operand

Each of these operators requires a single operand. Since these are unary
operations, they have higher Fortran 90 precedence than any other intrinsic unary
array operation.

Modules

Use the appropriate one of the modules:

operation_t

operation_h

or linear_operators

Optional Variables, Reserved Names

These operators have neither packaged optional variables nor reserved names.

Examples

Compute the matrix times vector
y A xT= : y = .t.A .x. x; y = A .tx. x

Compute the vector times matrix
y x AT= : y = x .x. A; y = A .tx. x

Compute the matrix expression
D B A CH= − : D = B − (A .hx. C); D = B − (.h.A .x. C)

Operator: .i.
Compute the inverse matrix, for square non-singular matrices, or the Moore-
Penrose generalized inverse matrix for singular square matrices or rectangular
matrices. The operation may be read inverse or generalized inverse, and the
results are in a precision and data type that matches the operand. The operator can
be applied to any rank-2 or rank-3 array.
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Required Operand

This operator requires a single operand. Since this is a unary operation, it has
higher Fortran 90 precedence than any other intrinsic array operation.

Modules

Use the appropriate one of the modules:

operation_i

or linear_operators

Optional Variables, Reserved Names

This operator uses the routines lin_sol_gen or lin_sol_lsq (See Chapter
1, “Linear Solvers” lin_sol_gen and lin_sol_lsq).

The option and derived type names are given in the following tables:

Option Names for .i. Option Value

use_lin_sol_gen_only 1

use_lin_sol_lsq_only 2

i_options_for_lin_sol_gen 3

i_options_for_lin_sol_lsq 4

skip_error_processing 5

Derived Type Name of Unallocated Array
s_options s_inv_options(:)

s_options s_inv_iptions_once(:)

d_options d_inv_options(:)

d_options d_inv_options_once(:)

Examples

Compute the matrix times vector

y = A��x: y = .i.A .x. x ; y = A .ix. x

Compute the vector times matrix

y = x7A��: y = x .x. .i.A; y = x .xi. A

Compute the matrix expression

D = B - A��C: D = B − (.i.A .x. C); D = B − (A .ix. C)
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Operators: .ix., .xi.
Compute the inverse matrix times a vector or matrix for square non-singular
matrices or the corresponding Moore-Penrose generalized inverse matrix for
singular square matrices or rectangular matrices. The operation may be read
generalized inverse times or times generalized inverse. The results are in a
precision and data type that matches the most accurate or complex operand.

Required Operand

This operator requires two operands. In the template for usage, y = A .ix. b,
the first operand A can be rank-2 or rank-3. The second operand b can be rank-1,
rank-2 or rank-3. For the alternate usage template, y = b .xi. A, the first
operand b can be rank-1, rank-2 or rank-3. The second operand A can be rank-2
or rank-3.

Modules

Use the appropriate one of the modules:

operation_ix

operation_xi

or linear_operators

Optional Variables, Reserved Names

This operator uses the routines lin_sol_gen or lin_sol_lsq
(See Chapter 1, “Linear Solvers”, lin_sol_gen and lin_sol_lsq).

The option and derived type names are given in the following tables:

Option Names for .ix., .xi. Option Value
use_lin_sol_gen_only 1

use_lin_sol_lsq_only 2

xi_, ix_options_for_lin_sol_gen 3

xi_, ix_options_for_lin_sol_lsq 4

skip_error_processing 5

Derived Type Name of Unallocated Array
s_options s_invx_options(:)

s_options s_invx_options_once(:)

d_options d_invx_options(:)

d_options d_invx_options_once(:)

s_options s_xinv_options(:)

s_options s_xinv_options_once(:)

d_options d_xinv_options(:)

d_options d_xinv_options_once(:)
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Examples

Compute the matrix times vector y = A��x: y = A .ix. x

Compute the vector times matrix y = x7A��: y = x .xi. A

Compute the matrix expression D = B - A��C: D = B - (A .ix. C)

CHOL
Compute the Cholesky factorization of a positive-definite, symmetric or self-

adjoint matrix, A. The factor is upper triangular, R7R = A.

Required Argument

This function requires one argument. This argument must be a rank-2 or rank-3
array that contains a positive-definite, symmetric or self-adjoint matrix. For rank-
3 arrays each rank-2 array, (for fixed third subscript), is a positive-definite,
symmetric or self-adjoint matrix. In this case, the output is a rank-3 array of
Cholesky factors for the individual problems.

Modules

Use the appropriate one of the modules:

chol_int

or linear_operators

Optional Variables, Reserved Names

This function uses lin_sol_self (See Chapter 1, “Linear Solvers,”
lin_sol_self), using the appropriate options to obtain the Cholesky factorization.

The option and derived type names are given in the following tables:

Option Name for CHOL Option Value
use_lin_sol_gen_only 4

use_lin_sol_lsq_only 5

Derived Type Name of Unallocated Array
s_options s_chol_options(:)

s_options s_chol_options_once(:)

d_options d_chol_options(:)

d_options d_chol_options_once(:)
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Example

Compute the Cholesky factor of a positive-definite symmetric matrix:

B = A .tx. A; R = CHOL(B); B = R .tx. R

COND
Compute the condition number of a rectangular matrix, A. The condition number
is the ratio of the largest and the smallest positive singular values,

s srank A1 / 0 5
or huge(A), whichever is smaller.

Required Argument

This function requires one argument. This argument must be a rank-2 or rank-3
array. For rank-3 arrays, each rank-2 array section, (for fixed third subscript), is a
separate problem. In this case, the output is a rank-1 array of condition numbers
for each problem.

Modules

Use the appropriate one of the modules:

cond_int

or linear_operators

Optional Variables, Reserved Names

This function uses lin_sol_svd (see Chapter 1, “Linear Solvers,”
lin_sol_svd), to compute the singular values of A.

The option and derived type names are given in the following tables:

Option Name for COND Option Value
s_cond_set_small 1

s_cond_for_lin_sol_svd 2

d_cond_set_small 1

d_cond_for_lin_sol_svd 2

c_cond_set_small 1

c_cond_for_lin_sol_svd 2

z_cond_set_small 1

z_cond_for_lin_sol_svd 2
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Derived Type Name of Unallocated Array
s_options s_cond_options(:)

s_options s_cond_options_once(:)

d_options d_cond_options(:)

d_options d_cond_options_once(:)

Example

Compute the condition number:
B = A .tx. A; c = COND(B); c = COND(A)**2

DET
Compute the determinant of a rectangular matrix, A. The evaluation is based on
the QR decomposition,

QAP
Rk k=

�
!
  

"
$
##

× 0

0 0

and k = rank(A). Thus det(A) = s × det(R) where s = det(Q) × det(P) = ±1.

Required Argument

This function requires one argument. This argument must be a rank-2 or rank-3
array that contains a rectangular matrix. For rank-3 arrays, each rank-2 array (for
fixed third subscript), is a separate matrix. In this case, the output is a rank-1
array of determinant values for each problem. Even well-conditioned matrices can
have determinants with values that have very large or very tiny magnitudes. The
values may overflow or underflow. For this class of problems, the use of the
logarithmic representation of the determinant found in lin_sol_gen or
lin_sol_lsq is required.

Modules

Use the appropriate one of the modules:

det_int

or linear_operators

Optional Variables, Reserved Names

This function uses lin_sol_lsq (see Chapter 1, “Linear Solvers”
lin_sol_lsq) to compute the QR decomposition of A, and the logarithmic
value of det(A), which is exponentiated for the result.



IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option • 157

The option and derived type names are given in the following tables:

Option Name for DET Option Value
s_det_for_lin_sol_lsq 1

d_det_for_lin_sol_lsq 1

c_det_for_lin_sol_lsq 1

z_det_for_lin_sol_lsq 1

Derived Type Name of Unallocated Array
s_options s_det_options(:)

s_options s_det_options_once(:)

d_options d_det_options(:)

d_options d_det_options_once(:)

Example

Compute the determinant of a matrix and its inverse:
b = DET(A); c = DET(.i.A); b=1./c

DIAG
Construct a square diagonal matrix from a rank-1 array or several diagonal
matrices from a rank-2 array. The dimension of the matrix is the value of the size
of the rank-1 array.

Required Argument

This function requires one argument, and the argument must be a rank-1 or rank-2
array. The output is a rank-2 or rank-3 array, respectively. The use of DIAG may
be obviated by observing that the defined operations
C = diag(x) .x. A or D = B .x. diag(x) are respectively the array
operations C = spread(x, DIM=1,NCOPIES=size(A,1))*A, and
D = B*spread(x,DIM=2,NCOPIES=size(B,2)). These array products are
not as easy to read as the defined operations using DIAG and matrix multiply, but
their use results in a more efficient code.

Modules

Use the appropriate module:

diag_int

or linear_operators

Optional Variables, Reserved Names

This function has neither packaged optional variables nor reserved names.



158 • Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Example

Compute the singular value decomposition of a square matrix A:
S = SVD(A,U=U,V=V)

Then reconstruct A USV T= :
A = U .x.diag(S) .xt. V

DIAGONALS
Extract a rank-1 array whose values are the diagonal terms of a rank-2 array
argument. The size of the array is the smaller of the two dimensions of the rank-2
array. When the argument is a rank-3 array, the result is a rank-2 array consisting
of each separate set of diagonals.

Required Argument

This function requires one argument, and the argument must be a rank-2 or rank-3
array. The output is a rank-1 or rank-2 array, respectively.

Modules

Use the appropriate one of the modules:

diagonals_int

or linear_operators

Optional Variables, Reserved Names

This function has neither packaged optional variables nor reserved names.

Example

Compute the diagonals of the matrix product RR7:

x = DIAGONALS(R .xt. R)

EIG
Compute the eigenvalue-eigenvector decomposition of an ordinary or generalized
eigenvalue problem.

For the ordinary eigenvalue problem, Ax = ex, the optional input “B=” is not
used. With the generalized problem, Ax = eBx, the matrix B is passed as the array
in the right-side of “B=”. The optional output  “D=” is an array required only for
the generalized problem and then only when the matrix B is singular.

The array of real eigenvectors is an optional output for both the ordinary and the
generalized problem. It is used as “V=” where the right-side array will contain
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the eigenvectors. If any eigenvectors are complex, the optional output “W=” must
be present. In that case “V=” should not be used.

Required Argument

This function requires one argument, and the argument must be a square rank-2
array or a rank-3 array with square first rank-2 sections. The output is a rank-1 or
rank-2 complex array of eigenvalues.

Modules

Use the appropriate module:

eig_int

or linear_operators

Optional Variables, Reserved Names

This function uses lin_eig_self, lin_eig_gen, and lin_geig_gen, to
compute the decompositions. See Chapter 2, “Singular Value and Eigenvalue Decomposition"
lin_eig_self,lin_eig_gen, and lin_geig_gen.

The option and derived type names are given in the following tables:

Option Name for EIG Option Value
options_for_lin_eig_self 1

options_for_lin_eig_gen 2

options_for_lin_geig_gen 3

skip_error_processing 5

Derived Type Name of Unallocated Array
s_options s_eig_options(:)

s_options s_eig_options_once(:)

d_options d_eig_options(:)

d_options d_eig_options_once(:)

Example

Compute the maximum magnitude eigenvalue of a square matrix A. (The values
are sorted by EIG() to be non-increasing in magnitude).

E = EIG(A); max_magnitude = abs(E(1))

Compute the eigenexpansion of a square matrix B:

E = EIG(B, W = W); B = W .x. diag(E) .xi. W
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EYE
Create a rank-2 square array whose diagonals are all the value one. The off-
diagonals all have value zero.

Required Argument

This function requires one integer argument, the dimension of the rank-2 array.
The output array is of type and kind REAL(KIND(1E0)).

Modules

Use the appropriate module:

eye_int

or linear_operators

Optional Variables, Reserved Names

This function has neither packaged optional variables nor reserved names.

Example

Check the orthogonality of a set of n vectors, Q:

e = norm(EYE(n) − (Q .hx. Q))

FFT
The Discrete Fourier Transform of a complex sequence and its inverse transform.

Required Argument

The function requires one argument, x. If x is an assumed shape complex array
of rank 1, 2 or 3, the result is the complex array of the same shape and rank
consisting of the DFT.

Modules

Use the appropriate module:

fft_int

or linear_operators

Optional Variables, Reserved Names

The optional argument is “WORK=,”3 a COMPLEX array of the same precision
as the data.  For rank-1 transforms the size of WORK is n+15.  To define this
array for each problem, set WORK(1) = 0. Each additional rank adds the
dimension of the transform plus 15.  Using the optional argument WORK increases
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the efficiency of the transform.  This function uses fast_dft, fast_2dft,
and fast_3dft from Chapter 3.

The option and derived type names are given in the following tables:

Option Name for FFT Option Value
options_for_fast_dft            1

Derived Type Name of Unallocated Array
s_options s_fft_options(:)

s_options s_fft_options_once(:)

d_options d_fft_options(:)

d_options d_fft_options_once(:)

Example

Compute the DFT of a random complex array:
x=rand(x); y=fft(x)

FFT_BOX
The Discrete Fourier Transform of several complex or real sequences.

Required Argument

The function requires one argument, x.  If x is an assumed shape complex array
of rank 2, 3 or 4, the result is the complex array of the same shape and rank
consisting of the DFT for each of the last rank’s indices.

Modules

Use the appropriate module:

fft_box_int

or linear_operators

Optional Variables, Reserved Names

The optional argument is “WORK=,” a COMPLEX array of the same precision as
the data.  For rank-1 transforms the size of WORK is n+15.  To define this array
for each problem, set WORK(1) = 0. Each additional rank adds the dimension of
the transform plus 15.  Using the optional argument WORK increases the
efficiency of the transform.  This function uses routines fast_dft, fast_2dft,
and fast_3dft from Chapter 3.
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The option and derived type names are given in the following tables:

Option Name for FFT Option Value
options_for_fast_dft 1

Derived Type Name of Unallocated Array
s_options s_fft_box_options(:)

s_options s_fft_box_options_once(:)

d_options d_fft_box_options(:)

d_options d_fft_box_options_once(:)

Example

Compute the DFT of a random complex array:
x=rand(x); y=fft_box(x)

IFFT
The inverse of the Discrete Fourier Transform of a complex sequence.

Required Argument

The function requires one argument, x.  If x is an assumed shape complex array
of rank 1, 2 or 3, the result is the complex array of the same shape and rank
consisting of the inverse DFT.

Modules

Use the appropriate module:

ifft_int

or linear_operators

Optional Variables, Reserved Names

The optional argument is “WORK=,” a COMPLEX array of the same precision as
the data.  For rank-1 transforms the size of WORK is n+15.  To define this array
for each problem, set WORK(1) = 0. Each additional rank adds the dimension of
the transform plus 15.  Using the optional argument WORK increases the
efficiency of the transform.  This function uses routines fast_dft, fast_2dft,
and fast_3dft from Chapter 3.
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The option and derived type names are given in the following tables:

Option Name for IFFT Option Value
options_for_fast_dft 1

Derived Type Name of Unallocated Array
s_options s_ifft_options(:)

s_options s_ifft_options_once(:)

d_options d_ifft_options(:)

d_options d_ifft_options_once(:)

Example

Compute the DFT of a random complex array and its inverse transform:
x=rand(x); y=fft(x); x=ifft(y)

IFFT_BOX
The inverse Discrete Fourier Transform of several complex or real sequences.

Required Argument

The function requires one argument, x. If x is an assumed shape complex array
of rank 2, 3 or 4, the result is the complex array of the same shape and rank
consisting of the inverse DFT.

Modules

Use the appropriate module:

ifft_box_int

or linear_operators

Optional Variables, Reserved Names

The optional argument is “WORK=,” a COMPLEX array of the same precision as
the data.  For rank-1 transforms the size of  WORK is n+15.  To define this array
for each problem, set WORK(1) = 0. Each additional rank adds the dimension of
the transform plus 15. Using the optional argument WORK increases the
efficiency of the transform. This function uses routines fast_dft, fast_2dft,
and fast_3dft from Chapter 3.
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The option and derived type names are given in the following tables:

Option Name for IFFT Option Value

options_for_fast_dft 1

Derived Type Name of Unallocated Array

s_options s_ifft_box_options(:)

s_options s_ifft_box_options_once(:)

d_options d_ifft_box_options(:)

d_options d_ifft_box_options_once(:)

Example

Compute the inverse DFT of a random complex array:
x=rand(x); x=ifft_box(y)

isNaN
This is a generic logical function used to test scalars or arrays for occurrence of
an IEEE 754 Standard format of floating point (ANSI/IEEE 1985) NaN, or not-a-
number. Either quiet or signaling NaNs are detected without an exception
occurring in the test itself. The individual array entries are each examined, with
bit manipulation, until the first NaN is located. For non-IEEE formats, the bit
pattern tested for single precision is transfer(not(0),1). For double
precision numbers x, the bit pattern tested is equivalent to assigning the integer
array i(1:2) = not(0), then testing this array with the bit pattern of the
integer array transfer(x,i). This function is likely to be required whenever
there is the possibility that a subroutine blocked the output with NaNs in the
presence of an error condition.

Required Arguments

The argument can be a scalar or array of rank-1, rank-2 or rank-3. The output
value tests .true. only if there is at least one NaN in the scalar or array. The
values can be any of the four intrinsic floating-point types.

Modules

Use one of the modules:

isNaN_int

or linear_operators

Optional Variables, Reserved Names

This function has neither packaged optional variables nor reserved names.
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Example

If there is not a NaN in an array A it is used to solve a linear system:
if(.not. isNaN(A)) x = A .ix. b

NaN
Returns, as a scalar function, a value corresponding to the IEEE 754 Standard
format of floating point (ANSI/IEEE 1985) for NaN. For other floating point
formats a special pattern is returned that tests .true. using the function
isNaN().

Required Arguments

• X   (Input)
Scalar value of the same type and precision as the desired result, NaN. This
input value is used only to match the type of output.

Example 1: Blocking Output

Arrays are assigned all NaN values, using single and double-precision formats.
These are tested using the logical function routine, isNaN.

      use isnan_int

      implicit none

! This is Example 1 for NaN.
      integer, parameter :: n=3
      real(kind(1e0)) A(n,n); real(kind(1d0)) B(n,n)
      real(kind(1e0)), external :: s_NaN
      real(kind(1d0)), external :: d_NaN

! Assign NaNs to both A and B:
      A = s_Nan(1e0); B = d_Nan(1d0)

! Check that NaNs are noted in both A and B:
      if (isNan(A) .and. isNan(B)) then
         write (*,*) ’Example 1 for NaN is correct.’
      end if

      end

Optional Arguments

There are no optional arguments for this routine.
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Description

The bit pattern used for single precision is transfer (not(0),1).  For double
precision, the bit pattern for single precision is replicated by assigning the
temporary integer array i(1:2) = not(0), and then using the double-precision
bit pattern transfer(i,x) for the output value.

Fatal and Terminal Error Messages

This routine has no error messages.

NORM
Compute the norm of a rank-1 or rank-2 array. For rank-3 arrays, the norms of
each rank-2 array, in dimension 3, are computed.

Required Arguments

The first argument must be an array of rank-1, rank-2, or rank-3. An optional,
second position argument can be used that provides a choice between the norms

l l  l1 2, ,  and ∞

If this optional argument, with keyword “ type=” is not present, the l2  norm is
computed. The l l1 and ∞  norms are likely to be less expensive to compute than the
l� norm. Use of the option number ?_reset_default_norm will switch the
default from the l2  to the l l1 or ∞  norms.

Modules

Use the appropriate modules:

norm_int

or linear_operators

Optional Variables, Reserved Names

If the l2  norm is required, this function uses lin_sol_svd (see Chapter 1,
“Linear Solvers,” lin_sol_svd), to compute the largest singular value of A. For
the other norms, Fortran 90 intrinsics are used.
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The option and derived type names are given in the following tables:

Option Name for NORM Option Value
s_norm_for_lin_sol_svd 1

s_reset_default_norm 2

d_norm_for_lin_sol_svd 1

d_reset_default_norm 2

c_norm_for_lin_sol_svd 1

c_reset_default_norm 2

z_norm_for_lin_sol_svd 1

z_reset_default_norm 2

Derived Type Name of Unallocated Array
s_options s_norm_options(:)

s_options s_norm_options_once(:)

d_options d_norm_options(:)

d_options d_norm_options_once(:)

Example

Compute three norms of an array. (Both assignments of n_2 yield the same
value).
A: n_1 = norm(A,1); n_2 = norm(A,type=2); n_2=norm(A); n_inf
= norm(A,huge(1))

ORTH
Orthogonalize the columns of a rank-2 or rank-3 array. The decomposition
A = QR is computed using a forward and backward sweep of the Modified Gram-
Schmidt algorithm.

Required Arguments

The first argument must be an array of rank-2 or rank-3. An optional argument
can be used to obtain the upper-triangular or upper trapezoidal matrix R. If this
optional argument, with keyword “R=”, is present, the decomposition is
complete. The array output contains the matrix Q. If the first argument is rank-3,
the output array and the optional argument are rank-3.

Modules

Use the appropriate one of the modules:

 orth_int

 or linear_operators
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Optional Variables, Reserved Names

The option and derived type names are given in the following tables:

Option Name for ORTH Option Value
skip_error_processing 5

Derived Type Name of Unallocated Array
s_options s_orth_options(:)

s_options s_orth_options_once(:)

d_options d_orth_options(:)

d_options d_orth_options_once(:)

Example

Compute the scaled sample variances, v, of an m × n linear least squares system,
(m > n), Ax ≅ b : Q = ORTH(A,R=R); G=.i. R; x = G .x. (Q .hx. b);
v=DIAGONALS(G .xh. G); v=v*sum((b-(A .x. x))**2)/(m−n)

RAND
Compute a scalar, rank-1, rank-2 or rank-3 array of random numbers. Each
component number is positive and strictly less than one in value.

Required Arguments

The argument must be a scalar, rank-1, rank-2, or rank-3 array of any intrinsic
floating-point type. The output function value matches the required argument in
type, kind and rank. For complex arguments, the output values will be real and
imaginary parts with random values of the same type, kind, and rank.

Modules

Use the appropriate modules:

rand_int

or linear_operators

Optional Variables, Reserved Names

This function uses rand_gen to obtain the number of values required by the
argument. The values are then copied using the RESHAPE intrinsic.

Note: If any of the arrays s_rand_options(:), s_rand_options_once(:),
d_rand_options(:), or d_rand_options_once(:) are allocated, they are
passed as arguments to rand_gen using the keyword “iopt=”.
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The option and derived type names are given in the following table:

Derived Type Name of Unallocated Array

s_options s_rand_options(:)

s_options s_rand_options_once(:)

d_options d_rand_options(:)

d_options d_rand_options_once(:)

Examples

Compute a random digit:

1 ≤ i ≤ n : i=rand(1e0)*n+1

Compute a random vector:

x : x=rand(x)

RANK
Compute the mathematical rank of a rank-2 or rank-3 array.

Required Arguments

The argument must be rank-2 or rank-3 array of any intrinsic floating-point type.
The output function value is an integer with a value equal to the number of
singular values that are greater than a tolerance. The default value for this
tolerance is ε1 2

1
/ s , where ε  is machine precision and s1 is the largest singular

value of the matrix.

Modules

Use the appropriate one of the modules:

rank_int

or linear_operators

Optional Variables, Reserved Names

This function uses lin_sol_svd to compute the singular values of the
argument. The singular values are then compared with the value of the tolerance
to compute the rank.
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The option and derived type names are given in the following tables:

Option Name for RANK Option Value
s_rank_set_small 1

s_rank_for_lin_sol_svd 2

d_rank_set_small 1

d_rank_for_lin_sol_svd 2

c_rank_set_small 1

c_rank_for_lin_sol_svd 2

z_rank_set_small 1

z_rank_for_lin_sol_svd 2

Derived Type Name of Unallocated Array
s_options s_rank_options(:)

s_options s_rank_options_once(:)

d_options d_rank_options(:)

d_options d_rank_options_once(:)

Example

Compute the rank of an array of random numbers and then the rank of an array
where each entry is the value one:
A=rand(A); k=rank(A); A=1; k=rank(A)

SVD
Compute the singular value decomposition of a rank-2 or rank-3 array,
A USV T= .

Required Arguments

The argument must be rank-2 or rank-3 array of any intrinsic floating-point type.
The keyword arguments “U=” and “V=” are optional. The output array names
used on the right-hand side must have sizes that are large enough to contain the
right and left singular vectors, U and V.

Modules

Use the appropriate module:

svd_int

or linear_operators
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Optional Variables, Reserved Names

This function uses one of the routines lin_svd and lin_sol_svd. If a
complete decomposition is required, lin_svd is used. If singular values only, or
singular values and one of the right and left singular vectors are required, then
lin_sol_svd is called.

The option and derived type names are given in the following tables:

Option Name for SVD Option Value

options_for_lin_svd 1

options_for_lin_sol_svd 2

skip_error_processing 5

Derived Type Name of Unallocated Array
s_options s_svd_options(:)

s_options s_svd_options_once(:)

d_options d_svd_options(:)

d_options d_svd_options_once(:)

Example

Compute the singular value decomposition of a random square matrix:
A=rand(A); S=SVD(A,U=U,V=V); A=U .x. diag(S) .xt. V

UNIT
 Normalize the columns of a rank-2 or rank-3 array so each has  Euclidean length
of value one.

Required Arguments

The argument must be a rank-2 or rank-3 array of any intrinsic floating-point
type. The output function value is an array of the same type and kind, where each
column of each rank-2 principal section has Euclidean length of value one.

Modules

Use the appropriate one of the modules:

unit_int

or linear_operators

Optional Variables, Reserved Names

This function uses a rank-2 Euclidean length subroutine to compute the lengths of
the nonzero columns, which are then normalized to have lengths of value one.
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The subroutine carefully avoids overflow or damaging underflow by rescaling the
sums of squares as required. There are no reserved names.

Example

Normalize a set of random vectors: A=UNIT(RAND(A)).

Overloaded =, /=, etc., for Derived Types
To assist users in writing compact and readable code, the IMSL Fortran 90 MP
Library provides overloaded assignment and logical operations for the derived
types s_options, d_options, s_error, and d_error. Each of these
derived types has an individual record consisting of an integer and a floating-
point number. The components of the derived types, in all cases, are named
idummy followed by rdummy. In many cases, the item referenced is the
component idummy. This integer value can be used exactly as any integer by use
of the component selector character (%). Thus, a program could assign a
value and test after calling a routine:
s_epack(1)%idummy = 0
call lin_sol_gen(A,b,x,epack=s_epack)
if (s_epack(1)%idummy > 0) call error_post(s_epack)

Using the overloaded assignment and logical operations, this code fragment can
be written in the more readable form:
s_epack(1) = 0
call lin_sol_gen(A,b,x,epack=s_epack)
if (s_epack(1) > 0) call error_post(s_epack)

Generally the assignments and logical operations refer only to component
idummy. The assignment “s_epack(1)=0” is equivalent to
“s_epack(1)=s_error(0,0E0)”. Thus, the floating-point component rdummy

is assigned the value 0E0. The assignment statement “I=s_epack(1)”, for I an
integer type, is equivalent to “I=s_epack(1)%idummy”. The value of
component rdummy is ignored in this assignment. For the logical operators, a
single element of any of the IMSL Fortran 90 MP Library derived types can be in
either the first or second operand.

Derived Type Overloaded Assignments and Tests
s_options I=s_options(1);s_options(1)=I = = /= < <= > >=

s_options I=d_options(1);d_options(1)=I = = /= < <= > >=

d_epack I=s_epack(1);s_epack(1)=I = = /= < <= > >=

d_epack I=d_epack(1);d_epack(1)=I = = /= < <= > >=

In the examples, operator_ex01, …, _ex37, the overloaded assignments and
tests have been used whenever they improve the readability of the code.
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Operator Examples
This section presents an equivalent implementation of the examples in “Linear
Solvers, “Singular Value and Eigenvalue Decomposition,” and a single example
from “Fourier Tranforms Chapters 1 and 2, and a single example from Chapter
3.” In all cases, the examples have been tested for correctness using equivalent
mathematical criteria. On the other hand, these criteria are not identical to the
corresponding examples in all cases. In Example 1 for lin_sol_gen,
err = maxval(abs(res))/sum(abs(A) + abs(b))is computed. In the
operator revision of this example, operator_ex01, err = norm(b −
(A .x. x))/(norm(A)*norm(x) + norm(b)) is computed.

Both formulas for err yield values that are about epsilon(A). To be safe, the
larger value sqrt(epsilon(A)) is used as the tolerance.

The operator version of the examples are shorter and intended to be easier to
read.

To match the corresponding examples in Chapters 1, 2, and 3 to those using the
operators, consult the following table:

Chapters 1, 2 and 3 Examples Corresponding Operators
lin_sol_gen_ex1,_ex2,_ex3,_ex4 operator_ex01,_ex02,_ex03,_ex04

lin_sol_self_ex1,_ex2,_ex3,_ex4 operator_ex05,_ex06,_ex07,_ex08

lin_sol_lsq_ex1,_ex2,_ex3,_ex4 operator_ex09,_ex10,_ex11,_ex12

lin_sol_svd_ex1,_ex2,_ex3,_ex4 operator_ex13,_ex14,_ex15,_ex16

lin_sol_tri_ex1,_ex2,_ex3,_ex4 operator_ex17,_ex18,_ex19,_ex20

lin_svd_ex1,_ex2,_ex3,_ex4 operator_ex21,_ex22,_ex23,_ex24

lin_eig_self_ex1,_ex2,_ex3,_ex4 operator_ex25,_ex26,_ex27,_ex28

lin_eig_gen_ex1,_ex2,_ex3,_ex4 operator_ex29,_ex30,_ex31,_ex32

lin_geig_gen_ex1,_ex2,_ex3,_ex4 operator_ex33,_ex34,_ex35,_ex36

fast_dft_ex4 operator_ex37

Table A: Examples and Corresponding Operators

Operator_ex01

      use linear_operators
      implicit none

! This is Example 1 for LIN_SOL_GEN, with operators and functions.

      integer, parameter :: n=32
      real(kind(1e0)) :: one=1.0e0, err
      real(kind(1e0)), dimension(n,n) :: A, b, x

! Generate random matrices for A and b:
      A = rand(A); b=rand(b)
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! Compute the solution matrix of Ax = b.
      x = A .ix. b

! Check the results.
      err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))
      if (err <= sqrt(epsilon(one))) &
         write (*,*) ’Example 1 for LIN_SOL_GEN (operators) is correct.’
      end

Operator_ex02

      use linear_operators
      implicit none

! This is Example 2 for LIN_SOL_GEN using operators and functions.

      integer, parameter :: n=32
      real(kind(1e0)) :: one=1e0, err, det_A, det_i
      real(kind(1e0)), dimension(n,n) :: A, inv

! Generate a random matrix.
      A = rand(A)
! Compute the matrix inverse and its determinant.
      inv = .i.A; det_A = det(A)
! Compute the determinant for the inverse matrix.
      det_i = det(inv)
! Check the quality of both left and right inverses.
      err = (norm(EYE(n)-(A .x. inv))+norm(EYE(n)-(inv.x.A)))/cond(A)
      if (err <= sqrt(epsilon(one)) .and. abs(det_A*det_i - one) <= &
                 sqrt(epsilon(one))) &
      write (*,*) ’Example 2 for LIN_SOL_GEN (operators) is correct.’
      end

Operator_ex03

      use linear_operators
      implicit none

! This is Example 3 for LIN_SOL_GEN using operators.
      integer, parameter :: n=32
      real(kind(1e0)) :: one=1e0, zero=0e0, A(n,n), b(n), x(n)
      real(kind(1e0)) change_new, change_old
      real(kind(1d0)) :: d_zero=0d0, c(n), d(n,n), y(n)

! Generate a random matrix and right-hand side.
      A = rand(A); b= rand(b)

! Save double precision copies of the matrix and right-hand side.
      D = A
      c = b
! Compute single precision inverse to compute the iterative refinement.
      A = .i. A

! Start solution at zero.  Update it to an accurate solution
! with each iteration.
      y = d_zero
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      change_old = huge(one)

      iterative_refinement: do
! Compute the residual with higher accuracy than the data.
         b = c - (D .x. y)

! Compute the update in single precision.
         x = A .x. b
         y = x + y
         change_new = norm(x)

! Exit when changes are no longer decreasing.
         if (change_new >= change_old) exit iterative_refinement
         change_old = change_new
      end do iterative_refinement

      write (*,*) ’Example 3 for LIN_SOL_GEN (operators) is correct.’
      end

Operator_ex04

      use linear_operators

      implicit none

! This is Example 4 for LIN_SOL_GEN using operators.

      integer, parameter :: n=32, k=128
      integer i
      real(kind(1e0)), parameter :: one=1e0, t_max=1, delta_t=t_max/(k-1)
      real(kind(1e0)) err, A(n,n)
      real(kind(1e0)) t(k), y(n,k), y_prime(n,k)
      complex(kind(1e0)) x(n,n), z_0(n), y_0(n), d(n)

! Generate a random coefficient matrix.
      A = rand(A)

! Compute the eigenvalue-eigenvector decomposition
! of the system coefficient matrix.
      D = EIG(A, W=X)

! Generate a random initial value for the ODE system.
      y_0 = rand(y_0)

! Solve complex data system that transforms the initial
! values, X z_0=y_0.
      z_0 = X .ix. y_0

! The grid of points where a solution is computed:
      t = (/(i*delta_t,i=0,k-1)/)

! Compute y and y’ at the values t(1:k).
! With the eigenvalue-eigenvector decomposition AX = XD, this
! is an evaluation of EXP(A t)y_0 = y(t).
      y = X .x. exp(spread(d,2,k)*spread(t,1,n))*spread(z_0,2,k)

! This is y’, derived by differentiating y(t).
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      y_prime  = X .x. spread(d,2,k)*exp(spread(d,2,k)*spread(t,1,n))* &
                       spread(z_0,2,k)

! Check results. Is  y’ - Ay = 0?
      err = norm(y_prime-(A .x. y))/(norm(y_prime)+norm(A)*norm(y))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for LIN_SOL_GEN (operators) is correct.’
      end if

      end

Operator_ex05

      use linear_operators
      implicit none

! This is Example 1 for LIN_SOL_SELF using operators and functions.
      integer, parameter :: m=64, n=32
      real(kind(1e0)) :: one=1.0e0, err
      real(kind(1e0)) A(n,n), b(n,n), C(m,n), d(m,n), x(n,n)

! Generate two rectangular random matrices.
      C = rand(C); d=rand(d)

! Form the normal equations for the rectangular system.
      A = C .tx. C; b = C .tx. d

! Compute the solution for Ax = b, A is symmetric.
      x = A .ix. b

! Check the results.
      err = norm(b - (A .x. x))/(norm(A)+norm(b))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_SOL_SELF (operators) is correct.’
      end if

      end

Operator_ex06

      use linear_operators

      implicit none

! This is Example 2 for LIN_SOL_SELF using operators and functions.

      integer, parameter :: m=64, n=32
      real(kind(1e0)) :: one=1e0, zero=0e0, err
      real(kind(1e0)) A(n,n), b(n), C(m,n), d(m), cov(n,n), x(n)

! Generate a random rectangular matrix and right-hand side.
      C = rand(C); d=rand(d)

! Form the normal equations for the rectangular system.
      A = C .tx. C; b = C .tx. d
      COV = .i. CHOL(A); COV = COV .xt. COV
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! Compute the least-squares solution.
       x = C .ix. d

! Compare with solution obtained using the inverse matrix.
      err = norm(x - (COV .x. b))/norm(cov)

! Scale the inverse to obtain the sample covariance matrix.
      COV = sum((d - (C .x. x))**2)/(m-n) * COV
! Check the results.
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_SOL_SELF (operators) is correct.’
      end if

      end

Operator_ex07

      use linear_operators

      implicit none

! This is Example 3 (using operators) for LIN_SOL_SELF.

      integer tries
      integer, parameter :: m=8, n=4, k=2
      integer ipivots(n+1)
      real(kind(1d0)) :: one=1.0d0, err
      real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), &
             e(n), ATEMP(n,n)
      type(d_options) :: iopti(4)

! Generate a random rectangular matrix.
      C = rand(C)

! Generate a random right hand side for use in the inverse
! iteration.
      b = rand(b)

! Compute the positive definite matrix.
      A = C .tx. C; A = (A+.t.A)/2

! Obtain just the eigenvalues.
      E = EIG(A)

! Use packaged option to reset the value of a small diagonal.
      iopti(4) = 0
      iopti(1) = d_options(d_lin_sol_self_set_small,&
                 epsilon(one)*abs(E(1)))

! Use packaged option to save the factorization.
      iopti(2) = d_lin_sol_self_save_factors

! Suppress error messages and stopping due to singularity
! of the matrix, which is expected.
      iopti(3) = d_lin_sol_self_no_sing_mess
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      ATEMP = A

! Compute A-eigenvalue*I as the coefficient matrix.
! Use eigenvalue number k.
      A = A - e(k)*EYE(n)

      do tries=1,2
         call lin_sol_self(A, b, x, &
                     pivots=ipivots, iopt=iopti)
! When code is re-entered, the already computed factorization
! is used.
         iopti(4) = d_lin_sol_self_solve_A

! Reset right-hand side in the direction of the eigenvector.
         B = UNIT(x)
      end do

! Normalize the eigenvector.
      x = UNIT(x)

! Check the results.
      b=ATEMP .x. x
      err =  dot_product(x(1:n,1), b(1:n,1)) - e(k)

! If any result is not accurate, quit with no printing.
      if (abs(err) <= sqrt(epsilon(one))*E(1)) then
        write (*,*) ’Example 3 for LIN_SOL_SELF (operators) is correct.’
      end if

      end

Operator_ex08

      use linear_operators
      implicit none

! This is Example 4 for LIN_SOL_SELF using operators and functions.

      integer, parameter :: m=8, n=4
      real(kind(1e0)) :: one=1e0, zero=0e0
      real(kind(1d0)) :: d_zero=0d0
      integer ipivots((n+m)+1)
      real(kind(1e0)) A(m,n), b(m,1), F(n+m,n+m),&
            g(n+m,1), h(n+m,1)
      real(kind(1e0)) change_new, change_old
      real(kind(1d0)) c(m,1), D(m,n), y(n+m,1)
      type(s_options) ::  iopti(2)

! Generate a random matrix and right-hand side.
      A = rand(A); b = rand(b)

! Save double precision copies of the matrix and right hand side.
      D = A; c = b

! Fill in augmented matrix for accurately solving the least-squares
! problem using iterative refinement.
      F = zero; F(1:m,1:m)=EYE(m)
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      F(1:m,m+1:) = A; F(m+1:,1:m) = .t. A

! Start solution at zero.
      y = d_zero
      change_old = huge(one)

! Use packaged option to save the factorization.
      iopti(1) = s_lin_sol_self_save_factors
      iopti(2) = 0

      iterative_refinement: do
         g(1:m,1) = c(1:m,1) - y(1:m,1) - (D .x. y(m+1:m+n,1))
         g(m+1:m+n,1) = - D .tx. y(1:m,1)
         call lin_sol_self(F, g, h, &
                   pivots=ipivots, iopt=iopti)
         y = h + y
         change_new = norm(h)

! Exit when changes are no longer decreasing.
         if (change_new >= change_old)&
                    exit iterative_refinement
         change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
         iopti(2) = s_lin_sol_self_solve_A
      end do iterative_refinement
      write (*,*) ’Example 4 for LIN_SOL_SELF (operators) is correct.’
      end

Operator_ex09

      use linear_operators
      use Numerical_Libraries
      implicit none

! This is Example 1 for LIN_SOL_LSQ using operators and functions.

      integer i
      integer, parameter :: m=128, n=8
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) A(m,0:n), c(0:n), pi_over_2, x(m), y(m), &
              u(m), v(m), w(m), delta_x
       CHARACTER(2) :: PI(1)

! Generate a random grid of points and transform
! to the interval -1,1.
      x = rand(x); x = x*2 - one

! Get the constant ’PI/2’ from IMSL Numerical Libraries.
      PI=’pi’; pi_over_2 = DCONST(PI)/2

! Generate function data on the grid.
      y = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
      A(:,0) = one; A(:,1) = x
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      do i=2, n
         A(:,i) = 2*x*A(:,i-1) - A(:,i-2)
      end do

! Solve for the series coefficients.
      c = A .ix. y

! Generate an equally spaced grid on the interval.
      delta_x = 2/real(m-1,kind(one))
      x = (/(-one + i*delta_x,i=0,m-1)/)

! Evaluate residuals using backward recurrence formulas.
      u = zero; v = zero
      do i=n, 0, -1
         w = 2*x*u - v + c(i)
         v = u
         u = w
      end do

! Compute residuals at the grid:
      y = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+1 sign changes in the residual curve occur.
! (This test will fail when n is larger.)
      x = one
      x = sign(x,y)

      if (count(x(1:m-1) /= x(2:m)) >= n+1) then
         write (*,*) ’Example 1 for LIN_SOL_LSQ (operators) is correct.’
      end if

      end

Operator_ex10

      use linear_operators
      implicit none

! This is Example 2 for LIN_SOL_LSQ using operators and functions.

      integer i
      integer, parameter :: m=128, n=8
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) A(m,0:n), c(0:n), pi_over_2, x(m), y(m), &
             u(m), v(m), w(m), delta_x, inv(0:n, m)
      real(kind(1d0)), external :: DCONST

! Generate an array of equally spaced points on the interval -1,1.
      delta_x = 2/real(m-1,kind(one))
      x = (/(-one + i*delta_x,i=0,m-1)/)

! Get the constant ’PI/2’ from IMSL Numerical Libraries.
      pi_over_2 = DCONST(’PI’)/2

! Compute data values on the grid.
      y = exp(x) + cos(pi_over_2*x)
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! Fill in the least-squares matrix for the Chebyshev polynomials.
      A(:,0) = one
      A(:,1) = x

      do i=2, n
         A(:,i) = 2*x*A(:,i-1) - A(:,i-2)
      end do

! Compute the generalized inverse of the least-squares matrix.
! Compute the series coefficients using the generalized inverse
! as ’smoothing formulas.’
      inv = .i. A; c = inv .x. y

! Evaluate residuals using backward recurrence formulas.

      u = zero
      v = zero
      do i=n, 0, -1
         w = 2*x*u - v + c(i)
         v = u
         u = w
      end do

! Compute residuals at the grid:
      y = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.
! (This test will fail when n is larger.)

      x = one; x = sign(x,y)

      if (count(x(1:m-1) /= x(2:m)) == n+2) then
         write (*,*) ’Example 2 for LIN_SOL_LSQ (operators) is correct.’
      end if

      end

Operator_ex11

      use operation_ix
      use operation_tx
      use operation_x
      use rand_int
      use norm_int
      implicit none

! This is Example 3 for LIN_SOL_LSQ using operators and functions.
      integer i, j
      integer, parameter :: m=128, n=32, k=2, n_eval=16
      real(kind(1d0)), parameter :: one=1d0, delta_sqr=1d0
      real(kind(1d0)) A(m,n), b(m), c(n), p(k,m), q(k,n), &
              res(n_eval,n_eval), w(n_eval), delta

! Generate a random set of data and center points in k=2 space.
      p = rand(p); q=rand(q)
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! Compute the coefficient matrix for the least-squares system.
      A = sqrt(sum((spread(p,3,n) - spread(q,2,m))**2,dim=1) + delta_sqr)

! Compute the right-hand side of function values.
      b = exp(-sum(p**2,dim=1))

! Compute the least-squares solution.  An error message due
! to rank deficiency is ignored with the flags:

      allocate (d_invx_options(1))
      d_invx_options(1)=skip_error_processing
      c = A .ix. b

! Check the results.
      if (norm(A .tx. (b - (A .x. c)))/(norm(A)+norm(c)) &
          <= sqrt(epsilon(one))) then
         write (*,*) ’Example 3 for LIN_SOL_LSQ (operators) is correct.’
      end if

! Evaluate residuals, known function - approximation at a square
! grid of points.  (This evaluation is only for k=2.)

      delta = one/real(n_eval-1,kind(one))
      w = (/(i*delta,i=0,n_eval-1)/)

      res = exp(-(spread(w,1,n_eval)**2 + spread(w,2,n_eval)**2))
      do j=1, n
         res = res - c(j)*sqrt((spread(w,1,n_eval) - q(1,j))**2 + &
                    (spread(w,2,n_eval) - q(2,j))**2 + delta_sqr)
      end do
! Unload option type for good housekeeping.
      deallocate (d_invx_options)
      end

Operator_ex12

      use linear_operators
      implicit none

! This is Example 4 for LIN_SOL_LSQ using operators and functions.

      integer, parameter :: m=64, n=32
      real(kind(1e0)) :: one=1e0, A(m+1,n), b(m+1), x(n)

! Generate a random matrix and right-hand side.
      A=rand(A); b = rand(b)

! Heavily weight desired constraint.  All variables sum to one.
      A(m+1,:) = one/sqrt(epsilon(one))
      b(m+1)   = one/sqrt(epsilon(one))

! Compute the least-squares solution with this heavy weight.
      x = A .ix. b

! Check the constraint.
      if (abs(sum(x) - one)/norm(x) <= sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for LIN_SOL_LSQ (operators) is correct.’



IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option • 183

      end if

      end

Operator_ex13

      use linear_operators
      implicit none

! This is Example 1 for LIN_SOL_SVD using operators and functions.
      integer, parameter :: m=128, n=32
      real(kind(1d0)) :: one=1d0, err
      real(kind(1d0)) A(m,n), b(m), x(n), U(m,m), V(n,n), S(n), g(m)

! Generate a random matrix and right-hand side.
      A = rand(A); b = rand(b)

! Compute the least-squares solution matrix of Ax=b.
      S = SVD(A, U = U, V = V)
      g = U .tx. b; x = V .x. diag(one/S) .x. g(1:n)

! Check the results.
      err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_SOL_SVD (operators) is correct.’
      end if

      end

Operator_ex14

      use linear_operators
      implicit none

! This is Example 2 for LIN_SOL_SVD using operators and functions.
      integer, parameter :: n=32
      real(kind(1d0)) :: one=1d0, zero=0d0
      real(kind(1d0)) A(n,n), P(n,n), Q(n,n), &
             S_D(n), U_D(n,n), V_D(n,n)

! Generate a random matrix.
      A = rand(A)

! Compute the singular value decomposition.
      S_D = SVD(A, U=U_D, V=V_D)

! Compute the (left) orthogonal factor.
      P = U_D .xt. V_D

! Compute the (right) self-adjoint factor.
      Q = V_D .x. diag(S_D) .xt. V_D

! Check the results.
      if (norm( EYE(n) - (P .xt. P)) &
               <= sqrt(epsilon(one))) then
         if (norm(A - (P .x. Q))/norm(A) &
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               <= sqrt(epsilon(one))) then
            write (*,*) ’Example 2 for LIN_SOL_SVD (operators) is correct.’
         end if
      end if
      end

Operator_ex15

      use linear_operators

      implicit none

! This is Example 3 for LIN_SOL_SVD.
      integer i, j, k
      integer, parameter :: n=32
      real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0
      real(kind(1e0)), dimension(n,n) :: A, S(n), U, V, C

! Fill in value one for points inside the circle,
! zero on the outside.
      A = zero
      DO i=1, n
         DO j=1, n
            if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) A(i,j) = one
         END DO
      END DO

! Compute the singular value decomposition.
      S = SVD(A, U=U, V=V)

! How many terms, to the nearest integer, match the circle?
      k = count(S > half)
      C = U(:,1:k) .x. diag(S(1:k)) .xt. V(:,1:k)

if (count(int(C-A) /= 0) == 0) then
         write (*,*) ’Example 3 for LIN_SOL_SVD (operators) is correct.’
      end if

      end

Operator_ex16

      use linear_operators

      implicit none

! This is Example 4 (operators) for LIN_SOL_SVD.

      integer i, j, k
      integer, parameter :: m=64, n=16
      real(kind(1e0)), parameter :: one=1e0, zero=0e0
      real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), f(n), U_S(m,m), &
              V_S(n,n), S_S(n)
      real(kind(1e0)) :: delta_g, delta_t, rms, oldrms

! Compute collocation equations to solve.
      delta_g = one/real(m+1,kind(one))
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      g = (/(i*delta_g,i=1,m)/)

! Compute equally spaced quadrature points.
      delta_t =one/real(n,kind(one))
      t=(/((j-1)*delta_t,j=1,n+1)/)

! Compute collocation points with an array form of
! Newton’s method.
      s=m
      SOLVE_EQUATIONS: do
        s=s-(exp(-s)-(one-s*g))/(g-exp(-s))
        if (sum(abs((one-exp(-s))/s - g)) <= &
            epsilon(one)*sum(g))exit SOLVE_EQUATIONS
      end do SOLVE_EQUATIONS

! Evaluate the integrals over the quadrature points.
      A = (exp(-spread(t(1:n),1,m)  *spread(s,2,n)) &
        -  exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &
           spread(s,2,n)

! Compute the singular value decomposition.
      S_S = SVD(A, U=U_S, V=V_S)

! Singular values, larger than epsilon, determine
! the rank, k.
      k = count(S_S > epsilon(one))

! Compute U_S**T times right-hand side, g.
      g = U_S .tx. g

! Use the minimum number of singular values that give a good
! approximation to f(t) = 1.
      oldrms = huge(one)
      do i=1,k
         f = V_S(:,1:i) .x. (g(1:i)/S_S(1:i))
         rms = sum((f-one)**2)/n
         if (rms > oldrms) exit
         oldrms = rms
      end do

      write (*,"( ’ Using this number of singular values, ’, &
          &i4 / ’ the approximate R.M.S. error is ’, 1pe12.4)") &
      i-1, oldrms

      if (sqrt(oldrms) <= delta_t**2) then
         write (*,*) ’Example 4 for LIN_SOL_SVD (operators) is correct.’
      end if

      end

Operator_ex17

      use linear_operators
      use lin_sol_tri_int

      implicit none
! This is Example 1 (using operators) for LIN_SOL_TRI.
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integer, parameter :: n=128
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) err
      real(kind(1d0)), dimension(2*n,n) :: d, b, c, x, y, t(n)
      type(d_error) :: d_lin_sol_tri_epack(08) = d_error(0,zero)

! Generate the upper, main, and lower diagonals of the
! n matrices A_i.  For each system a random vector x is used
! to construct the right-hand side, Ax = y.  The lower part
! of each array remains zero as a result.

      c = zero; d=zero; b=zero; x=zero
            c(1:n,:)=rand(c(1:n,:)); d(1:n,:)=rand(d(1:n,:))
            b(1:n,:)=rand(b(1:n,:)); x(1:n,:)=rand(x(1:n,:))

! Add scalars to the main diagonal of each system so that
! all systems are positive definite.
      t = sum(c+d+b,DIM=1)
      d(1:n,1:n) = d(1:n,1:n) + spread(t,DIM=1,NCOPIES=n)

! Set Ax = y.  The vector x generates y.  Note the use
! of EOSHIFT and array operations to compute the matrix
! product, n distinct copies, as one array operation.

     y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &
                c(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &
                b(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)

! Compute the solution returned in y.  (The input values of c,
! d, b, and y are overwritten by lin_sol_tri.)  Check for any
! errors.  This is not recessary but illustrates control
! returning to the calling program unit.
      call lin_sol_tri (c, d, b, y, &
           epack=d_lin_sol_tri_epack)
      call error_post(d_lin_sol_tri_epack)

! Check the size of the residuals, y-x.  They should be small,
! relative to the size of values in x.

      err = norm(x(1:n,1:n) - y(1:n,1:n),1)/norm(x(1:n,1:n),1)
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_SOL_TRI (operators) is correct.’
      end if

      end

Operator_ex18

      use linear_operators
      use lin_sol_tri_int

      implicit none

! This is Example 2 (using operators) for LIN_SOL_TRI.
      integer nopt
      integer, parameter :: n=128
      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0
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      real(kind(1d0)), parameter :: d_one=1d0, d_zero=0d0
      real(kind(1e0)), dimension(2*n,n) :: d, b, c, x, y
      real(kind(1e0)) change_new, change_old, err
      type(s_options) :: iopt(2) = s_options(0,s_zero)
      real(kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &
             x_save, y_save, x_sol
      logical solve_only

      c = s_zero; d=s_zero; b=s_zero; x=s_zero

! Generate the upper, main, and lower diagonals of the
! matrices A.  A random vector x is used to construct the
! right-hand sides: y=A*x.
      c(1:n,:)=rand(c(1:n,:)); d(1:n,:)=rand(d(1:n,:))
      d(1:n,:)=rand(c(1:n,:)); x(1:n,:)=rand(d(1:n,:))

! Save double precision copies of the diagonals and the
! right-hand side.
      c_save = c(1:n,1:n); d_save = d(1:n,1:n)
      b_save = b(1:n,1:n); x_save = x(1:n,1:n)
      y_save(1:n,1:n) = d(1:n,1:n)*x_save + &
               c(1:n,1:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &
               b(1:n,1:n)*EOSHIFT(x_save,SHIFT=-1,DIM=1)

! Iterative refinement loop.
      factorization_choice:  do nopt=0, 1

! Set the logical to flag the first time through.

         solve_only = .false.
         x_sol = d_zero
         change_old = huge(s_one)

         iterative_refinement:  do

! This flag causes a copy of data to be moved to work arrays
! and a factorization and solve step to be performed.
            if (.not. solve_only) then
               c(1:n,1:n)=c_save; d(1:n,1:n)=d_save
               b(1:n,1:n)=b_save
            end if

! Compute current residuals, y - A*x, using current x.
            y(1:n,1:n) = -y_save + &
             d_save*x_sol + &
             c_save*EOSHIFT(x_sol,SHIFT=+1,DIM=1) + &
             b_save*EOSHIFT(x_sol,SHIFT=-1,DIM=1)

            call lin_sol_tri (c, d, b, y, iopt=iopt)

            x_sol = x_sol + y(1:n,1:n)

            change_new = sum(abs(y(1:n,1:n)))

! If size of change is not decreasing, stop the iteration.
            if (change_new >= change_old) exit iterative_refinement

            change_old = change_new
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            iopt(nopt+1) = s_lin_sol_tri_solve_only
            solve_only = .true.

         end do iterative_refinement

! Use Gaussian Elimination if Cyclic Reduction did not get an
! accurate solution.
! It is an exceptional event when Gaussian Elimination is required.
         if (norm(x_sol - x_save,1) / norm(x_save,1) &
           <= sqrt(epsilon(d_one))) exit factorization_choice

         iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim

      end do factorization_choice

! Check on accuracy of solution.

      err = norm(x(1:n,1:n)- x_save,1)/norm(x_save,1)
      if (err <= sqrt(epsilon(d_one))) then
         write (*,*) ’Example 2 for LIN_SOL_TRI (operators) is correct.’
      end if

      end

Operator_ex19

      use linear_operators
      use lin_sol_tri_int
      use rand_int
      use Numerical_Libraries

      implicit none

! This is Example 3 (using operators) for LIN_SOL_TRI.

      integer i, nopt
      integer, parameter :: n=128, k=n/4, ncoda=1, lda=2
      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0
      real(kind(1e0)) A(lda,n), EVAL(k)
      type(s_options) :: iopt(2)
      real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &
           b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k)
      logical small

! This flag is used to get the k largest eigenvalues.
      small = .false.

! Generate the main diagonal and the co-diagonal of the
! tridiagonal matrix.
      b=rand(b); d=rand(d)
      A(1,1:)=b; A(2,1:)=d

! Use Numerical Libraries routine for the calculation of k
! largest eigenvalues.
      CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)
      EVAL_T = EVAL
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! Use Fortran 90 MP Librarytridiagonal solver for inverse iteration
! calculation of eigenvectors.
      factorization_choice:  do nopt=0,1

! Create k tridiagonal problems, one for each inverse
! iteration system.
         b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)
         c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)
         d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &
                        spread(EVAL_T,DIM=1,NCOPIES=n)

! Start the right-hand side at random values, scaled downward
! to account for the expected ’blowup’ in the solution.
         y_t=rand(y_t)

! Do two iterations for the eigenvectors.
         do i=1, 2
            y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)
            call lin_sol_tri(c_t, d_t, b_t, y_t, &
                        iopt=iopt)
            iopt(nopt+1) = s_lin_sol_tri_solve_only
         end do

! Orthogonalize the eigenvectors.  (This is the most
! intensive part of the computing.)
         y_t(1:n,1:k) = ORTH(y_t(1:n,1:k))

! See if the performance ratio is smaller than the value one.
! If it is not the code will re-solve the systems using Gaussian
! Elimination.  This is an exceptional event.  It is a necessary
! complication for achieving reliable results.

         res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &
          spread(b,DIM=2,NCOPIES=k)* &
          EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &
          EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &
            -   y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)

! If the factorization method is Cyclic Reduction and perf_ratio is
! larger than one, re-solve using Gaussian Elimination.  If the
! method is already Gaussian Elimination, the loop exits
! and perf_ratio is checked at the end.
         perf_ratio = norm(res(1:n,1:k),1) / &
                      norm(EVAL_T(1:k),1) / &
                         epsilon(s_one) / (5*n)
         if (perf_ratio <= s_one) exit factorization_choice
         iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim

      end do factorization_choice

      if (perf_ratio <= s_one) then
         write (*,*) ’Example 3 for LIN_SOL_TRI (operators) is correct.’
      end if

      end
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Operator_ex20

      use lin_sol_tri_int
      use Numerical_Libraries

      implicit none

! This is Example 4 (using operators) for LIN_SOL_TRI.

      integer, parameter :: n=1000, ichap=5, iget=1, iput=2, &
         inum=6, irnum=7
      real(kind(1e0)), parameter :: zero=0e0, one = 1e0
      integer    i, ido, in(50), inr(20), iopt(6), ival(7), &
                iwk(35+n)
      real(kind(1e0))      hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &
                tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &
                a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &
                t_g(n), t_diag(2*n,1), t_upper(2*n,1), &
                t_lower(2*n,1), t_sol(2*n,1)
      type(s_options) :: iopti(1)=s_options(0,zero)

! Define initial data.
      t = 0e0; u_0 = one
      u_1 = 0.5; tend = one

! Initial values for the variational equation.
      y = -one; ypr= zero
      pi_value = const((/’pi’/))
      hx = pi_value/(n+1)

      a_diag = 2*hx/3
      a_off  = hx/6
      r_diag = -2/hx
      r_off  = 1/hx

! Get integer and floating point option numbers.
      iopt(1) = inum
      call iumag (’math’, ichap, iget, 1, iopt, in)
      iopt(1) = irnum
      call iumag (’math’, ichap, iget, 1, iopt, inr)

! Set for reverse communication evaluation of the DAE.
      iopt(1) = in(26)
      ival(1) = 0
! Set for use of explicit partial derivatives.
      iopt(2) = in(5)
      ival(2) = 1
! Set for reverse communication evaluation of partials.
      iopt(3) = in(29)
      ival(3) = 0
! Set for reverse communication solution of linear equations.
      iopt(4) = in(31)
      ival(4) = 0
! Storage for the partial derivative array are not allocated or
! required in the integrator.
      iopt(5) = in(34)
      ival(5) = 1
! Set the sizes of iwk, wk for internal checking.
      iopt(6) = in(35)
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      ival(6) = 35 + n
      ival(7) = 41 + 11*n
! Set integer options:
      call iumag (’math’, ichap, iput, 6, iopt, ival)
! Reset tolerances for integrator:
      atol = 1e-3; rtol= 1e-3
      sval(1) = atol; sval(2) = rtol
      iopt(1) = inr(5)
! Set floating point options:
      call sumag (’math’, ichap, iput, 1, iopt, sval)
! Integrate ODE/DAE.  Use dummy external names for g(y,y’)
! and partials: DGSPG, DJSPG.
      ido = 1
      Integration_Loop: do

          call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)
! Find where g(y,y’) goes.  (It only goes in one place here, but can
! vary where divided differences are used for partial derivatives.)
          iopt(1) = in(27)
          call iumag (’math’, ichap, iget, 1, iopt, ival)
! Direct user response:
        select case(ido)

        case(1,4)
! This should not occur.
          write (*,*) ’ Unexpected return with ido = ’, ido
          stop

        case(3)
! Reset options to defaults.  (This is good housekeeping but not
! required for this problem.)
          in = -in
          call iumag (’math’, ichap, iput, 50, in, ival)
          inr = -inr
          call sumag (’math’, ichap, iput, 20, inr, sval)
          exit Integration_Loop
        case(5)
! Evaluate partials of g(y,y’).
          t_y = y; t_ypr = ypr

          t_g = r_diag*t_y + r_off*EOSHIFT(t_y,SHIFT=+1) &
                          + EOSHIFT(r_off*t_y,SHIFT=-1) &
            -  (a_diag*t_ypr + a_off*EOSHIFT(t_ypr,SHIFT=+1) &
                             + EOSHIFT(a_off*t_ypr,SHIFT=-1))
! Move data from assumed size to assumed shape arrays.
          do i=1, n
             wk(ival(1)+i-1) = t_g(i)
          end do
          cycle Integration_Loop

        case(6)
! Evaluate partials of g(y,y’).
! Get value of c_j for partials.
          iopt(1) = inr(9)
          call sumag (’math’, ichap, iget, 1, iopt, sval)

! Subtract c_j from diagonals to compute (partials for y’)*c_j.
! The linear system is tridiagonal.
          t_diag(1:n,1) = r_diag - sval(1)*a_diag
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          t_upper(1:n,1) = r_off - sval(1)*a_off
          t_lower = EOSHIFT(t_upper,SHIFT=+1,DIM=1)

          cycle Integration_Loop

        case(7)
! Compute the factorization.
          iopti(1) = s_lin_sol_tri_factor_only
          call lin_sol_tri (t_upper, t_diag, t_lower, &
                  t_sol, iopt=iopti)
          cycle Integration_Loop

        case(8)
! Solve the system.
          iopti(1) = s_lin_sol_tri_solve_only
! Move data from the assumed size to assumed shape arrays.
          t_sol(1:n,1)=wk(ival(1):ival(1)+n-1)

          call lin_sol_tri (t_upper, t_diag, t_lower, &
                    t_sol, iopt=iopti)

! Move data from the assumed shape to assumed size arrays.
          wk(ival(1):ival(1)+n-1)=t_sol(1:n,1)

          cycle Integration_Loop

        case(2)
! Correct initial value to reach u_1 at t=tend.
          u_0 = u_0 - (u_0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)

! Finish up internally in the integrator.
          ido = 3
          cycle Integration_Loop
      end select
      end do Integration_Loop

      write (*,*) ’The equation u_t = u_xx, with u(0,t) = ’, u_0
      write (*,*) ’reaches the value ’,u_1, ’ at time = ’, tend, ’.’
      write (*,*) ’Example 4 for LIN_SOL_TRI (operators) is correct.’

   end

Operator_ex21

      use linear_operators

      implicit none

! This is Example 1 (using operators) for LIN_SVD.

      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) err
      real(kind(1d0)), dimension(n,n) :: A, U, V, S(n)

! Generate a random n by n matrix.
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      A = rand(A)

! Compute the singular value decomposition.
      S=SVD(A, U=U, V=V)

! Check for small residuals of the expression A*V - U*S.
      err = norm((A .x. V) - (U .x. diag(S)))/norm(S)
      if (err  <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_SVD (operators) is correct.’
      end if

      end

Operator_ex22

      use linear_operators

      implicit none

! This is Example 2 (using operators) for LIN_SVD.

      integer, parameter :: m=64, n=32, k=4
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
      real(kind(1d0)) a(m,n), s(n), u(m,m), v(n,n), &
             b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &
             delta_lamda(k), t_g(n,k), s_sq(n), phi(n,k), &
             phi_dot(n,k), move(k), err

! Generate a random matrix for both A and B.
      A=rand(A); b=rand(b)

! Compute the singular value decomposition.
      S = SVD(A, U=u, V=v)

! Choose alpha so that the lengths of the regularized solutions
! are 0.25 times lengths of the non-regularized solutions.

      g =  u .tx. b; x = v .x. diag(one/S) .x. g(1:n,:)
      alpha = 0.25*sqrt(sum(x**2,DIM=1))
      t_g = diag(S) .x. g(1:n,:); s_sq = s**2; lamda = zero

      solve_for_lamda:  do
         x = one/(spread(s_sq,DIM=2,NCOPIES=k)+ &
                  spread(lamda,DIM=1,NCOPIES=n))

         phi = (t_g*x)**2; phi_dot = -2*phi*x
         delta_lamda = (sum(phi,DIM=1)-alpha**2)/sum(phi_dot,DIM=1)

! Make Newton method correction to solve the secular equations for
! lamda.
         lamda = lamda - delta_lamda

! Test for convergence and quit when it happens.
          if (norm(delta_lamda) <= &
          sqrt(epsilon(one))*norm(lamda)) EXIT solve_for_lamda

! Correct any bad moves to a positive restart.



194 • Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

         move = rand(move); where (lamda < 0) lamda = s(1) * move

      end do solve_for_lamda

! Compute solutions and check lengths.
      x = v .x. (t_g/(spread(s_sq, DIM=2,NCOPIES=k)+ &
                      spread(lamda,DIM=1,NCOPIES=n)))

      err = norm(sum(x**2,DIM=1) - alpha**2)/norm(alpha)**2
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_SVD (operators) is correct.’
      end if

      end

Operator_ex23

      use linear_operators

      implicit none

! This is Example 3 (using operators) for LIN_SVD.

      integer, parameter :: n=32
      integer i
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)), dimension(n,n) :: d(2*n,n), x, u_d(2*n,2*n), &
             v_d, v_c, u_c, v_s, u_s, &
             s_d(n), c(n), s(n), sc_c(n), sc_s(n)
      real(kind(1d0)) err1, err2

! Generate random square matrices for both A and B.
! Construct D; A is on the top; B is on the bottom.
      D = rand(D)!   D(1:n,:) = A; D(n+1:,:) = B

! Compute the singular value decompositions used for the GSVD.
      S_D= SVD(D,U=u_d,V=v_d)
      C  = SVD(u_d(1:n, 1:n), u=u_c,v=v_c)
      S  = SVD(u_d(n+1:,1:n), u=u_s,v=v_s)

! Rearrange c(:) so it is non-increasing.  Move singular
! vectors accordingly.  (The use of temporary objects sc_c and
! x is required.)
      sc_c = c(n:1:-1); c = sc_c
      x = u_c(1:n,n:1:-1); u_c = x; x = v_c(1:n,n:1:-1); v_c = x

! The columns of v_c and v_s have the same span.  They are
! equivalent by taking the signs of the largest magnitude values
! positive.
      do i=1, n
         sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(1:n,i)))),i))
         sc_s(i) = sign(one,v_s(sum(maxloc(abs(v_s(1:n,i)))),i))
      end do

      v_c = v_c .x. diag(sc_c); u_c =  u_c .x. diag(sc_c)
      v_s = v_s .x. diag(sc_s); u_s =  u_s .x. diag(sc_s)
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! In this form of the GSVD, the matrix X can be unstable if D
! is ill-conditioned.
      X = v_d .x. diag(one/s_d) .x. v_c

! Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and
! B*X = u_s*diag(s_1, ..., s_n).

      err1 = norm((D(1:n, :) .x. X) - (u_c .x. diag(C)))/s_d(1)
      err2 = norm((D(n+1:,:) .x. X) - (u_s .x. diag(S)))/s_d(1)

      if (err1 <= sqrt(epsilon(one)) .and. &
          err2 <= sqrt(epsilon(one))) then
         write (*,*) ’Example 3 for LIN_SVD (operators) is correct.’
      end if

      end

Operator_ex24

      use linear_operators

      implicit none

! This is Example 4 (using operators) for LIN_SVD.

      integer i
      integer, parameter :: m=32, n=16, p=10, k=4
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda
      real(kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &
              s_sq(n), u(m,m), v(n,n), c_lamda(p,k), &
              lamda(k), x(n,k), res(n,k)

! Generate random rectangular matrices for A and right-hand
! sides, b.  Generate random weights for each of the
! right-hand sides.
      A=rand(A); b=rand(b); w=rand(w)

! Compute the singular value decomposition.
      S = SVD(A, U=U, V=V)
      g = U .tx. b; s_sq = s**2

      log_lamda = log(10.*s(1)); log_lamda_t=log_lamda
      delta_log_lamda = (log_lamda - log(0.1*s(n))) / (p-1)

! Choose lamda to minimize the "cross-validation" weighted
! square error.  First evaluate the error at a grid of points,
! uniform in log_scale.

      cross_validation_error:  do i=1, p
         t = s_sq/(s_sq+exp(log_lamda))
         c_lamda(i,:) = sum(w*((b-(U(1:m,1:n) .x. g(1:n,1:k)* &
                        spread(t,DIM=2,NCOPIES=k)))/ &
         (one-(u(1:m,1:n)**2 .x. spread(t,DIM=2,NCOPIES=k))))**2,DIM=1)
         log_lamda = log_lamda - delta_log_lamda
      end do cross_validation_error
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! Compute the grid value and lamda corresponding to the minimum.
      do i=1, k
         lamda(i) = exp(log_lamda_t -  delta_log_lamda* &
                       (sum(minloc(c_lamda(1:p,i)))-1))
      end do

! Compute the solution using the optimum "cross-validation"
! parameters.
      x = V .x. g(1:n,1:k)*spread(s,DIM=2,NCOPIES=k)/ &
                     (spread(s_sq,DIM=2,NCOPIES=k)+ &
                      spread(lamda,DIM=1,NCOPIES=n))
! Check the residuals, using normal equations.
      res = (A .tx. (b - (A .x. x))) - &
            spread(lamda,DIM=1,NCOPIES=n)*x
      if (norm(res)/s_sq(1) <=  sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for LIN_SVD (operators) is correct.’
      end if

      end

Operator_ex25

      use linear_operators

      implicit none

! This is Example 1 (using operators) for LIN_EIG_SELF.

      integer, parameter :: n=64
      real(kind(1e0)), parameter :: one=1e0
      real(kind(1e0)) :: A(n,n), D(n), S(n)

! Generate a random matrix and from it
! a self-adjoint matrix.
      A = rand(A); A = A + .t.A

! Compute the eigenvalues of the matrix.
      D = EIG(A)

! For comparison, compute the singular values and check for
! any error messages for either decomposition.
      S = SVD(A)

! Check the results:  Magnitude of eigenvalues should equal
! the singular values.

      if (norm(abs(D) - S) <= sqrt(epsilon(one))*S(1)) then
         write (*,*) ’Example 1 for LIN_EIG_SELF (operators) is correct.’
      end if

      end
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Operator_ex26

      use linear_operators

      implicit none

! This is Example 2 (using operators) for LIN_EIG_SELF.

      integer, parameter :: n=8
      real(kind(1e0)), parameter :: one=1e0
      real(kind(1e0)), dimension(n,n) :: A, d(n), v_s

! Generate a random self-adjoint matrix.
      A = rand(A); A = A + .t.A

! Compute the eigenvalues and eigenvectors.
      D = EIG(A,V=v_s)

! Check the results for small residuals.
      if (norm((A .x. v_s) - (v_s .x. diag(D)))/abs(d(1)) <= &
             sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_EIG_SELF (operators) is correct.’
      end if

      end

Operator_ex27

      use linear_operators

      implicit none

! This is Example 3 (using operators) for LIN_EIG_SELF.

      integer i
      integer, parameter :: n=64, k=08
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) err
      real(kind(1d0)), dimension(n,n) :: A, D(n),&
               res(n,k), v(n,k)

! Generate a random self-adjoint matrix.
      A = rand(A); A = A + .t.A

! Compute just the eigenvalues.
      D = EIG(A); V = rand(V)

! Ready options to skip error processing and reset
! tolerance for linear solver.
      allocate (d_invx_options(5))

      do i=1, k

! Use packaged option to reset the value of a small diagonal.
      d_invx_options(1) = skip_error_processing
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      d_invx_options(2) = ix_options_for_lin_sol_gen
        d_invx_options(3) = 2
        d_invx_options(4) = d_options&
        (d_lin_sol_gen_set_small, epsilon(one)*abs(d(i)))
        d_invx_options(5) = d_lin_sol_gen_no_sing_mess

! Compute the eigenvectors with inverse iteration.
         V(1:,i)= (A - EYE(n)*d(i)).ix. V(1:,i)
      end do
      deallocate (d_invx_options)

! Orthogonalize the eigenvectors.
      V = ORTH(V)

! Check the results for both orthogonality of vectors and small
! residuals.

      res(1:k,1:k) = (V .tx. V) - EYE(k)
      err = norm(res(1:k,1:k)); res= (A .x. V) - (V .x. diag(D(1:k)))
      if (err <= sqrt(epsilon(one)) .and. &
         norm(res)/abs(d(1)) <= sqrt(epsilon(one))) then
           write (*,*) ’Example 3 for LIN_EIG_SELF (operators) is correct.’
      end if
      end

Operator_ex28

      use linear_operators

      implicit none

! This is Example 4 (using operators) for LIN_EIG_SELF.

      integer, parameter :: n=64
      real(kind(1e0)), parameter :: one=1d0
      real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &
               S(n), vb_d, X, res

! Generate random self-adjoint matrices.
      A = rand(A); A = A + .t.A
      B = rand(B); B = B + .t.B

! Add a scalar matrix so B is positive definite.
      B = B + norm(B)*EYE(n)

! Get the eigenvalues and eigenvectors for B.
      S = EIG(B,V=vb_d)

! For full rank problems, convert to an ordinary self-adjoint
! problem.  (All of these examples are full rank.)
      if (S(n) > epsilon(one)) then
         D = one/sqrt(S)
         C = diag(D) .x. (vb_d .tx. A .x. vb_d) .x. diag(D)
         C = (C + .t.C)/2

! Get the eigenvalues and eigenvectors for C.
         lambda = EIG(C,v=X)
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! Compute and normalize the generalized eigenvectors.
         X = UNIT(vb_d .x. diag(D) .x. X)
         res = (A .x. X) - (B .x. X .x. diag(lambda))

! Check the results.
         if(norm(res)/(norm(A)+norm(B)) <= &
            sqrt(epsilon(one))) then
            write (*,*) ’Example 4 for LIN_EIG_SELF (operators) is correct.’
         end if

      end if

      end

Operator_ex29

      use linear_operators

      implicit none

! This is Example 1 (using operators) for LIN_EIG_GEN.

      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) err
      real(kind(1d0)), dimension(n,n) :: A
      complex(kind(1d0)), dimension(n) :: E, E_T, V(n,n)

! Generate a random matrix.
      A = rand(A)

! Compute only the eigenvalues.
      E = EIG(A)

! Compute the decomposition, A*V = V*values,
! obtaining eigenvectors.
      E_T = EIG(A, W = V)

! Use values from the first decomposition, vectors from the
! second decomposition, and check for small residuals.
      err = norm((A .x. V) - (V .x. diag(E)))/&
            (norm(A)+norm(E))

      if (err  <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_EIG_GEN (operators) is correct.’
      end if

      end
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Operator_ex30

      use linear_operators

      implicit none

! This is Example 2 (using operators) for LIN_EIG_GEN.

      integer i
      integer, parameter :: n=12
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      complex(kind(1d0)), dimension(n) :: a(n,n), b, e, f, fg

      b = rand(b)

! Define the companion matrix with polynomial coefficients
! in the first row.
      A = zero; A = EOSHIFT(EYE(n),SHIFT=1,DIM=2); a(1,1:) = - b

! Compute complex eigenvalues of the companion matrix.
      E = EIG(A)

! Use Horner’s method for evaluation of the complex polynomial
! and size gauge at all roots.
      f=one; fg=one
      do i=1, n
         f = f*E + b(i)
         fg = fg*abs(E) + abs(b(i))
      end do

! Check for small errors at all roots.
      if (norm(f/fg) <= sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_EIG_GEN (operators) is correct.’
      end if

      end

Operator_ex31

      use linear_operators

      implicit none

! This is Example 3 (using operators) for LIN_EIG_GEN.

      integer, parameter :: n=32, k=2
      real(kind(1e0)), parameter :: one=1e0, zero=0e0
      real(kind(1e0)) a(n,n), b(n,k), x(n,k), h
      complex(kind(1e0)),dimension(n,n) :: W, T, e(n), z(n,k)
      type(s_options) :: iopti(2)

      A = rand(A); b=rand(b)

      iopti(1) = s_lin_eig_gen_out_tri_form
      iopti(2) = s_lin_eig_gen_no_balance
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! Compute the Schur decomposition of the matrix.
      call lin_eig_gen(a, e, v=w, &
           tri=t,iopt=iopti)

! Choose a value so that A+h*I is non-singular.
      h = one

! Solve for (A+h*I)x=b using the Schur decomposition.
      z = W .hx. b

! Solve intermediate upper-triangular system with implicit
! additive diagonal, h*I.  This is the only dependence on
! h in the solution process.
      z = (T + h*EYE(n)) .ix. z

! Compute the solution.  It should be the same as x, but will not be
! exact due to rounding errors.  (The quantity real(z,kind(one)) is
! the real-valued answer when the Schur decomposition method is used.)
      z = W .x. z

! Compute the solution by solving for x directly.
      x = (A + EYE(n)*h) .ix. b

! Check that x and z agree approximately.
      if (norm(x-z)/norm(z) <= sqrt(epsilon(one))) then
         write (*,*) ’Example 3 for LIN_EIG_GEN (operators) is correct.’
      end if

      end

Operator_ex32

      use linear_operators

      implicit none
! This is Example 4 (using operators) for LIN_EIG_GEN.

      integer, parameter :: n=17
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)), dimension(n,n) :: A, C
      real(kind(1d0)) variation(n), eta
      complex(kind(1d0)), dimension(n,n) :: U, V, e(n), d(n)

! Generate a random matrix.
      A = rand(A)

! Compute the eigenvalues, left- and right- eigenvectors.
      D = EIG(A, W=V); E = EIG(.t.A, W=U)

! Compute condition numbers and variations of eigenvalues.
      variation = norm(A)/abs(diagonals( U .hx. V))

! Now perturb the data in the matrix by the relative factors
! eta=sqrt(epsilon) and solve for values again.  Check the
! differences compared to the estimates.  They should not exceed
! the bounds.
      eta = sqrt(epsilon(one))
      C = A + eta*(2*rand(A)-1)*A
      D = EIG(C)
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! Looking at the differences of absolute values accounts for
! switching signs on the imaginary parts.
      if (count(abs(d)-abs(e) > eta*variation) == 0) then
         write (*,*) ’Example 4 for LIN_EIG_GEN (operators) is correct.’
      end if

      end

Operator_ex33

      use linear_operators

      implicit none

! This is Example 1 (using operators) for LIN_GEIG_GEN.

      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1d0
      real(kind(1d0)) A(n,n), B(n,n), beta(n), beta_t(n), err
      complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)

! Generate random matrices for both A and B.
      A = rand(A); B = rand(B)

! Compute the generalized eigenvalues.
      alpha = EIG(A, B=B, D=beta)

! Compute the full decomposition once again, A*V = B*V*values,
! and check for any error messages.
      alpha_t = EIG(A, B=B, D=beta_t, W = V)

! Use values from the first decomposition, vectors from the
! second decomposition, and check for small residuals.
      err = norm((A .x. V .x. diag(beta)) - (B .x. V .x. diag(alpha)),1)/&
            (norm(A,1)*norm(beta,1) + norm(B,1)*norm(alpha,1))
      if (err  <= sqrt(epsilon(one))) then
         write (*,*) ’Example 1 for LIN_GEIG_GEN (operators) is correct.’
      end if

      end

Operator_ex34

      use linear_operators

      implicit none

! This is Example 2 (using operators) for LIN_GEIG_GEN.

      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) err, alpha(n)
      complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V

! Generate random matrices for both A and B.
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      C = rand(C); D = rand(D)
      A = C + .h.C; B = D .hx. D; B = (B + .h.B)/2

      ALPHA = EIG(A, B=B, W=V)

! Check that residuals are small.  Use a real array for  alpha
! since the eigenvalues are known to be real.
      err= norm((A .x. V) - (B .x. V .x. diag(alpha)),1)/&
           (norm(A,1)+norm(B,1)*norm(alpha,1))
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 2 for LIN_GEIG_GEN (operators) is correct.’
      end if

      end

Operator_ex35

      use rand_int
      use eig_int
      use isnan_int
      use norm_int
      use lin_sol_lsq_int

      implicit none

! This is Example 3 (using operators) for LIN_GEIG_GEN.

      integer, parameter :: n=6
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)), dimension(n,n) :: A, B, d_beta(n)
      complex(kind(1d0)) alpha(n)

! Generate random matrices for both A and B.
      A = rand(A); B = rand(B)

! Make columns of A and B zero, so both are singular.
      A(1:n,n) = 0; B(1:n,n) = 0

! Set the option, a larger tolerance than default for lin_sol_lsq.
! Skip showing any error messages.
      allocate(d_eig_options(6))
      d_eig_options(1) = skip_error_processing
      d_eig_options(2) = options_for_lin_geig_gen
      d_eig_options(3) = 3
        d_eig_options(4) = d_lin_geig_gen_for_lin_sol_lsq
        d_eig_options(5) = 1
        d_eig_options(6) = d_options(d_lin_sol_lsq_set_small,&
                           sqrt(epsilon(one))*norm(B,1))

! Compute the generalized eigenvalues.
      ALPHA = EIG(A, B=B, D=d_beta)

! See if singular DAE system is detected.
      if (isNaN(ALPHA)) then
         write (*,*) ’Example 3 for LIN_GEIG_GEN (operators) is correct.’
      end if
! Clean up allocated option arrays for good housekeeping.
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      deallocate(d_eig_options)
      end

Operator_ex36

      use linear_operators

      implicit none

! This is Example 4 for LIN_GEIG_GEN (using operators).

      integer, parameter :: n=32
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) a(n,n), b(n,n), beta(n), err
      complex(kind(1d0)) alpha(n), v(n,n)

! Generate random matrices for both A and B.
      A = rand(A); B = rand(B)

! Set the option, a larger tolerance than default for lin_sol_lsq.
      allocate(d_eig_options(6))
      d_eig_options(1) = options_for_lin_geig_gen
      d_eig_options(2) = 4
        d_eig_options(3) = d_lin_geig_gen_for_lin_sol_lsq
        d_eig_options(4) = 2
        d_eig_options(5) = d_options(d_lin_sol_lsq_set_small,&
                           sqrt(epsilon(one))*norm(B,1))
        d_eig_options(6) = d_lin_sol_lsq_no_sing_mess

! Compute the generalized eigenvalues.
      alpha = EIG(A, B=B, D=beta, W=V)

! Check the residuals.
      err = norm((A .x. V .x. diag(beta)) - (B .x. V .x. diag(alpha)),1)/&
            (norm(A,1)*norm(beta,1)+norm(B,1)*norm(alpha,1))

      if (err  <= sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for LIN_GEIG_GEN (operators) is correct.’
      end if
! Clean up the allocated array.  This is good housekeeping.
      deallocate(d_eig_options)
      end

Operator_ex37

      use rand_gen_int
      use fft_int
      use ifft_int
      use linear_operators
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      implicit none

! This is Example 4 for FAST_DFT (using operators).

      integer j
      integer, parameter :: n=40
      real(kind(1e0)) :: err, one=1e0
      real(kind(1e0)), dimension(n) :: a, b, c, yy(n,n)
      complex(kind(1e0)), dimension(n) ::  f

! Generate two random periodic sequences ’a’ and ’b’.
      a=rand(a); b=rand(b)

! Compute the convolution ’c’ of ’a’ and ’b’.
      yy(1:,1)=b
      do j=2,n
        yy(2:,j)=yy(1:n-1,j-1)
        yy(1,j)=yy(n,j-1)
      end do

      c=yy .x. a

! Compute f=inverse(transform(a)*transform(b)).
      f=ifft(fft(a)*fft(b))

! Check the Convolution Theorem:
! inverse(transform(a)*transform(b)) = convolution(a,b).
      err = norm(c-f)/norm(c)
      if (err <= sqrt(epsilon(one))) then
         write (*,*) ’Example 4 for FAST_DFT (operators) is correct.’
      end if

      end
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Parallel Examples

MPI REQUIRED

This section presents a variation of  key examples listed above or in other parts
of the document. In all cases the examples appear to be simple, use  parallel
computing, deliver results to the root,  and have been tested for correctness by
validating small residuals or other first principles. Program names are
parallel_exnn, where nn=01,02,...  The numerical digit part of the
name matches the example number.

Parallel Examples 1-2 comments

These show the box data type used for solving several systems and then
checking the results using matrix products and norms or other mathematical
relationships.  Note the first call to the function MP_SETUP() that initiates
MPI.  The call to the function MP_SETUP(’Final’) shuts down MPI and
retrieves any error messages from the nodes.  It is only here that error messages
will print, in reverse node order, at the root node.  Note that the results are
checked for correctness at the root node.  (This is common to all the parallel
examples.)

Parallel Example 1

 use linear_operators
      use mpi_setup_int

      implicit none

! This is Parallel Example 1 for .ix., with box data types
! and functions.

      integer, parameter :: n=32, nr=4
      real(kind(1e0)) :: one=1e0
      real(kind(1e0)), dimension(n,n,nr) :: A, b, x, err(nr)

! Setup for MPI.
      MP_NPROCS=MP_SETUP()

! Generate random matrices for A and b:
      A = rand(A); b=rand(b)

! Compute the box solution matrix of Ax = b.
      x = A .ix. b

! Check the results.
      err = norm(b - (A .x. x))/(norm(A)*norm(x)+norm(b))
      if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) &
        write (*,*) ’Parallel Example 1 is correct.’

! See to any error messages and quit MPI.
      MP_NPROCS=MP_SETUP(’Final’)

      end
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Parallel Example 2

      use linear_operators
      use mpi_setup_int

      implicit none

! This is Parallel Example 2 for .i. and det() with box
! data types, operators and functions.

      integer, parameter :: n=32, nr=4
      integer J
      real(kind(1e0)) :: one=1e0
      real(kind(1e0)), dimension(nr) :: err, det_A, det_i
      real(kind(1e0)), dimension(n,n,nr) :: A, inv, R, S

! Setup for MPI.
      MP_NPROCS=MP_SETUP()
! Generate a random matrix.
      A = rand(A)
! Compute the matrix inverse and its determinant.
      inv = .i.A; det_A = det(A)
! Compute the determinant for the inverse matrix.
      det_i = det(inv)
! Check the quality of both left and right inverses.
      DO J=1,nr; R(:,:,J)=EYE(N); END DO

      S=R; R=R-(A .x. inv); S=S-(inv .x. A)
      err = (norm(R)+norm(S))/cond(A)
      if (ALL(err <= sqrt(epsilon(one)) .and. &
        abs(det_A*det_i - one) <= sqrt(epsilon(one)))&
       .and. MP_RANK == 0) &
        write (*,*) ’Parallel Example 2 is correct.’

! See to any error messages and quit MPI.
      MP_NPROCS=MP_SETUP(’Final’)

      end

Parallel Example 3

This example shows the box data type used while obtaining an accurate solution
of several systems.  Important in this example is the fact that only the root will
achieve convergence, which controls program flow out of the loop.  Therefore
the nodes must share the root’s view of convergence, and that is the reason for
the broadcast of the update from root to the nodes.  Note that when writing an
explicit call to an MPI routine there must be the line INCLUDE ‘mpif.h’,
placed just after the IMPLICIT NONE statement.  Any number of nodes can
be used.

      use linear_operators
      use mpi_setup_int

      implicit none
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      INCLUDE ’mpif.h’

! This is Parallel Example 3 for .i. and iterative
! refinement with box date types, operators and functions.
      integer, parameter :: n=32, nr=4
      integer IERROR
      real(kind(1e0)) :: one=1e0, zero=0e0
      real(kind(1e0)) :: A(n,n,nr), b(n,1,nr), x(n,1,nr)
      real(kind(1e0)) change_old(nr), change_new(nr)
      real(kind(1d0)) :: d_zero=0d0, c(n,1,nr), D(n,n,nr), y(n,1,nr)

! Setup for MPI.
      MP_NPROCS=MP_SETUP()

! Generate a random matrix and right-hand side.
      A = rand(A); b= rand(b)

! Save double precision copies of the matrix and right-hand side.
      D = A
      c = b

! Get single precision inverse to compute the iterative refinement.
      A = .i. A

! Start solution at zero.  Update it to a more accurate solution
! with each iteration.
      y = d_zero
      change_old = huge(one)

      ITERATIVE_REFINEMENT: DO

! Compute the residual with higher accuracy than the data.
         b = c - (D .x. y)

! Compute the update in single precision.
         x = A .x. b
         y = x + y
         change_new = norm(x)

! All processors must share the root’s test of convergence.
         CALL MPI_BCAST(change_new, nr, MPI_REAL, 0, &
           MP_LIBRARY_WORLD, IERROR)

! Exit when changes are no longer decreasing.
         if (ALL(change_new >= change_old)) exit iterative_refinement
         change_old = change_new
      end DO ITERATIVE_REFINEMENT

        IF(MP_RANK == 0) write (*,*) ’Parallel Example 3 is correct.’

! See to any error messages and quit MPI.
      MP_NPROCS=MP_SETUP(’Final’)
      end
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Parallel Example 4

Here an alternate node is used to compute the majority of a single application,
and the user does not need to make any explicit calls to MPI routines.  The
time-consuming parts are the evaluation of  the eigenvalue-eigenvector
expansion, the solving step, and the residuals.  To do this, the rank-2 arrays are
changed to a box data type with a unit third dimension.  This uses parallel
computing.  The node priority order is established by the initial function call,
MP_SETUP(n). The root is restricted from working on the box data type by
assigning MPI_ROOT_WORKS=.false. This example anticipates that the
most efficient node, other than the root, will perform the heavy computing.
Two nodes are required to execute.

      use linear_operators
      use mpi_setup_int

      implicit none

! This is Parallel Example 4 for matrix exponential.
! The box dimension has a single rack.
      integer, parameter :: n=32, k=128, nr=1
      integer i
      real(kind(1e0)), parameter :: one=1e0, t_max=one, delta_t=t_max/(k-1)
      real(kind(1e0)) err(nr), sizes(nr), A(n,n,nr)
      real(kind(1e0)) t(k), y(n,k,nr), y_prime(n,k,nr)
      complex(kind(1e0)), dimension(n,nr) :: x(n,n,nr), z_0, &
        Z_1(n,nr,nr), y_0, d

! Setup for MPI.  Establish a node priority order.
! Restrict the root from significant computing.
! Illustrates using the ’best’ performing node that
! is not the root for a single task.
      MP_NPROCS=MP_SETUP(n)

      MPI_ROOT_WORKS=.false.

! Generate a random coefficient matrix.
      A = rand(A)

! Compute the eigenvalue-eigenvector decomposition
! of the system coefficient matrix on an alternate node.
      D = EIG(A, W=X)

! Generate a random initial value for the ODE system.
      y_0 = rand(y_0)

! Solve complex data system that transforms the initial
! values, X z_0=y_0.

      z_1= X .ix. y_0 ; z_0(:,nr) = z_1(:,nr,nr)

! The grid of points where a solution is computed:
      t = (/(i*delta_t,i=0,k-1)/)
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! Compute y and y’ at the values t(1:k).
! With the eigenvalue-eigenvector decomposition AX = XD, this
! is an evaluation of EXP(A t)y_0 = y(t).
      y = X .x.exp(spread(d(:,nr),2,k)*spread(t,1,n))*spread(z_0(:,nr),2,k)

! This is y’, derived by differentiating y(t).
      y_prime  = X .x. &
spread(d(:,nr),2,k)*exp(spread(d(:,nr),2,k)*spread(t,1,n))* &
                spread(z_0(:,nr),2,k)

! Check results. Is  y’ - Ay = 0?
      err = norm(y_prime-(A .x. y))
      sizes=norm(y_prime)+norm(A)*norm(y)
      if (ALL(err <= sqrt(epsilon(one))*sizes) .and. MP_RANK == 0) &
        write (*,*) ’Parallel Example 4 is correct.’

! See to any error messages and quit MPI.
      MP_NPROCS=MP_SETUP(’Final’)

      end

Parallel Example 5-6 comments

The computations performed in these examples are for linear least-squares
solutions.  There is use of the box data type and MPI.  Otherwise these are
similar to Parallel Examples 1-2 except they use alternate operators and
functions.  Any number of nodes can be used.

Parallel Example 5

      use linear_operators
      use mpi_setup_int

      implicit none

! This is Parallel Example 5 using box data types, operators
! and functions.

      integer, parameter :: m=64, n=32, nr=4
      real(kind(1e0)) :: one=1e0, err(nr)
      real(kind(1e0)), dimension(n,n,nr) :: A, b, x
      real(kind(1e0)), dimension(m,n,nr) :: C, d

! Setup for MPI.
      mp_nprocs = mp_setup()

! Generate two rectangular random matrices, only
! at the root node.
      if (mp_rank == 0) then
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      C = rand(C); d=rand(d)
      endif

! Form the normal equations for the rectangular system.
      A = C .tx. C; b = C .tx. d

! Compute the solution for Ax = b.
      x = A .ix. b

! Check the results.
      err = norm(b - (A .x. x))/(norm(A)+norm(b))
      if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) &
         write (*,*) ’Parallel Example 5 is correct.’

! See to any error messages and quit MPI.
      mp_nprocs = mp_setup(’Final’)

      end

Parallel Example 6

      use linear_operators
      use mpi_setup_int

      implicit none

! This is Parallel Example 6 for box data types, operators and
! functions.

      integer, parameter :: m=64, n=32, nr=4
      real(kind(1e0)) :: one=1e0, zero=0e0, err(nr)
      real(kind(1e0)), dimension(m,n,nr) :: C, d(m,1,nr)
      real(kind(1e0)), dimension(n,n,nr) :: A, cov
      real(kind(1e0)), dimension(n,1,nr) :: b, x

! Setup for MPI:
      mp_nprocs=mp_setup()

! Generate a random rectangular matrix and right-hand side.
      if(mp_rank == 0) then
         C = rand(C); d=rand(d)
      endif

! Form the normal equations for the rectangular system.
      A = C .tx. C; b = C .tx. d
      COV = .i. CHOL(A); COV = COV .xt. COV

! Compute the least-squares solution.
       x = C .ix. d

! Compare with solution obtained using the inverse matrix.
      err = norm(x - (COV .x. b))/norm(cov)

! Check the results.
      if (ALL(err <= sqrt(epsilon(one))) .and. mp_rank == 0) &
         write (*,*) ’Parallel Example 6 is correct.’
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! See to any eror messages and quit MPI
      mp_nprocs=mp_setup(’Final’)

      end

Parallel Example 7

In this example alternate nodes are used for computing with the EIG()
function.  Inverse iteration is used to obtain eigenvectors for the second most
dominant eigenvalue for each rack of the box. The factorization and solving
steps for the eigenvectors are executed only at the root node.

      use linear_operators
      use mpi_setup_int

      implicit none

! This is Parallel Example 7 for box data types, operators
! and functions.

      integer tries, nrack
      integer, parameter :: m=8, n=4, k=2, nr=4
      integer ipivots(n+1)
      real(kind(1d0)) :: one=1D0, err(nr), E(n,nr)
      real(kind(1d0)), dimension(m,n,nr) ::  C
      real(kind(1d0)), dimension(n,n,nr) ::  A, ATEMP
      real(kind(1d0)), dimension(n,1,nr) ::  b, x
      type(d_options) :: iopti(4)
      logical, dimension(nr) :: results_are_true

! Setup for MPI:
      mp_nprocs = mp_setup()

! Generate a random rectangular matrix.
      if (mp_rank == 0) C = rand(C)

! Generate a random right hand side for use in the
! inverse iteration.
      if (mp_rank == 0) b = rand(b)

! Compute a positive definite matrix.
      A = C .tx. C; A = (A + .t.A)/2

! Obtain just the eigenvalues.
      E = EIG(A)

      ATEMP = A

! Compute A-eigenvalue*I as the coefficient matrix.
! Use eigenvalue number k.

      do nrack = 1,nr
         IF(MP_RANK > 0) EXIT
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! Use packaged option to reset the value of a small diagonal.

         iopti(1) = d_options(d_lin_sol_self_set_small,&
                 epsilon(one)*abs(E(1,nrack)))

! Use packaged option to save the factorization.
         iopti(2) = d_lin_sol_self_save_factors

! Suppress error messages and stopping due to singularity
! of the matrix, which is expected.
         iopti(3) = d_lin_sol_self_no_sing_mess
         iopti(4) = 0
         A(:,:,nrack) = A(:,:,nrack) - E(k,nrack)*EYE(n)

         do tries=1,2
            call lin_sol_self(A(:,:,nrack), &
                     b(:,:,nrack), x(:,:,nrack), &
                     pivots=ipivots, iopt=iopti)
! When code is re-entered, the already computed factorization
! is used.
            iopti(4) = d_lin_sol_self_solve_A

! Reset right-hand side in the direction of the eigenvector.
            B(:,:,nrack) = UNIT(x(:,:,nrack))
         end do

         end do

! Normalize the eigenvector.

      IF(MP_RANK == 0) x = UNIT(x)

! Check the results.
      b = ATEMP .x. x

      do nrack = 1,nr
         err(nrack) =  &
           dot_product(x(1:n,1,nrack), b(1:n,1,nrack)) - E(k,nrack)
         results_are_true(nrack) = &
           (abs(err(nrack)) <= sqrt(epsilon(one))*E(1,nrack))
      enddo

! Check the results.
      if (ALL(results_are_true) .and. MP_RANK == 0) &
        write (*,*) ’Parallel Example 7 is correct.’

! See to any error messages and quit MPI.
      mp_nprocs = mp_setup(’Final’)
      end
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Parallel Example 8

This example, similar to Parallel Example 3,  shows the box data type used
while obtaining an accurate solution of several linear least-squares systems.
Computation of the residuals for the box data type is executed in parallel. Only
the root node performs the factorization and update step during iterative
refinement.

      use linear_operators
      use mpi_setup_int

      implicit none

      INCLUDE ’mpif.h’

! This is Parallel Example 8.  All nodes share in
! just part of the work.

      integer, parameter :: m=8, n=4 , nr=4
      real(kind(1e0)) :: one=1e0, zero=0e0
      real(kind(1d0)) :: d_zero=0d0
      integer ipivots((n+m)+1), ierror, nrack
      real(kind(1e0)) A(m,n,nr), b(m,1,nr), F(n+m,n+m,nr),&
            g(n+m,1,nr), h(n+m,1,nr)
      real(kind(1e0)) change_new(nr), change_old(nr)
      real(kind(1d0)) c(m,1,nr), D(m,n,nr), y(n+m,1,nr)
      type(s_options) ::  iopti(2)

! Setup for MPI:
      mp_nprocs=mp_setup()

! Generate a random matrix and right-hand side.
      if(mp_rank == 0) then
         A = rand(A); b = rand(b)
      endif

! Save double precision copies of the matrix and right hand side.
      D = A; c = b

! Fill in augmented matrix for accurately solving the least-squares
! problem using iterative refinement.
      F = zero
      do nrack = 1,nr
         F(1:m,1:m,nrack)=EYE(m)
      enddo
      F(1:m,m+1:,:) = A; F(m+1:,1:m,:) = .t. A

! Start solution at zero.
      y = d_zero
      change_old = huge(one)

! Use packaged option to save the factorization.
      iopti(1) = s_lin_sol_self_save_factors
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      iopti(2) = 0
      h = zero

         ITERATIVE_REFINEMENT: DO
            g(1:m,:,:) = c(1:m,:,:) - y(1:m,:,:) &
                            - (D .x.  y(m+1:m+n,:,:))
            g(m+1:m+n,:,:) = - D .tx. y(1:m,:,:)
            if(mp_rank == 0) then
               do nrack = 1,nr
                  call lin_sol_self(F(:,:,nrack), &
               g(:,:,nrack), h(:,:,nrack), pivots=ipivots, iopt=iopti)
               enddo
               y = h + y
            endif

            change_new = norm(h)

! All processors share the root’s test for convergence
            call mpi_bcast(change_new, nr, MPI_REAL,0, MP_LIBRARY_WORLD,
IERROR)

! Exit when changes are no longer decreasing.
            if (ALL(change_new >= change_old) )&
                    exit iterative_refinement
            change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
            iopti(2) = s_lin_sol_self_solve_A
         end do iterative_refinement

      if(mp_rank == 0)&
        write (*,*) ’Parallel Example 8 is correct.’

! See to any error message and quit MPI.
      mp_nprocs=mp_setup(’Final’)

      end

Parallel Example 9

This is a variation of Parallel Example 8.  A single problem is converted to a
box data type with one rack.  The use of the function call MP_SETUP(M+N)
allocates and defines the array MPI_NODE_PRIORITY(:), the node priority
order.  By setting MPI_ROOT_WORKS=.false., the computation of the
residual is off-loaded to the node with highest priority, wherein we expect the
results to be computed the fastest.  The remainder of the computation, including
the factorization and solve step, are executed at the root node. This example
requires  two nodes to execute.

use linear_operators
      use mpi_setup_int
      implicit none

      INCLUDE ’mpif.h’
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! This is Parallel Example 9, showing iterative
! refinement with only one non-root node working.
! There is only one problem in this example.
      integer, parameter :: m=8, n=4, nr=1
      real(kind(1e0)) :: one=1e0, zero=0e0
      real(kind(1d0)) :: d_zero=0d0
      integer ipivots((n+m)+1), nrack, ierror
      real(kind(1e0)) A(m,n,nr), b(m,1,nr), F(n+m,n+m,nr),&
            g(n+m,1,nr), h(n+m,1,nr)
      real(kind(1e0)) change_new(nr), change_old(nr)
      real(kind(1d0)) c(m,1,nr), D(m,n,nr), y(n+m,1,nr)
      type(s_options) ::  iopti(2)
!
! Setup for MPI.  Establish a node priority order.
! Restrict the root from significant computing.
! Illustrates the "best" performing non-root node
! computing a single task.
      mp_nprocs=mp_setup(m+n)

      MPI_ROOT_WORKS = .false.

! Generate a random matrix and right-hand side.
      A = rand(A); b = rand(b)

! Save double precision copies of the matrix and right hand side.
      D = A; c = b

! Fill in augmented matrix for accurately solving the least-squares
! problem using iterative refinement.
      F = zero;

      do nrack = 1,nr; F(1:m,1:m,nrack)=EYE(m); end do

      F(1:m,m+1:,:) = A; F(m+1:,1:m,:) = .t. A

! Start solution at zero.
      y = d_zero
      change_old = huge(one)

! Use packaged option to save the factorization.
      iopti(1) = s_lin_sol_self_save_factors
      iopti(2) = 0

      h = zero
      ITERATIVE_REFINEMENT: DO
         g(1:m,:,:) = c(1:m,:,:) - y(1:m,:,:) - (D .x. y(m+1:m+n,:,:))
         g(m+1:m+n,:,:) = - D .tx. y(1:m,:,:)
         IF (MP_RANK == 0) THEN

           call lin_sol_self(F(:,:,nr), g(:,:,nr), &
             h(:,:,nr), pivots=ipivots, iopt=iopti)

         y = h + y
         END IF

         change_new = norm(h)
!
! All processors share the root’s test for convergence



IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option • 217

         call mpi_bcast(change_new, nr, mpi_real, 0, mp_library_world,
ierror)

! Exit when changes are no longer decreasing.
         if (ALL(change_new >= change_old))&
                    exit ITERATIVE_REFINEMENT
         change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
         iopti(2) = s_lin_sol_self_solve_A
      end do ITERATIVE_REFINEMENT

      if(mp_rank == 0) &
      write (*,*) ’Parallel Example 9 is correct.’
! See to any error messages and quit MPI.
      mp_nprocs = mp_setup(’Final’)
      end

Parallel Example 10

This illustrates the computation of a box data type least-squares
polynomial data fitting problem.   The problem is generated at
the root node.  The alternate nodes are used to solve the least-
squares problems.  Results are checked at the root node.  Any
number of nodes can be used.

      use linear_operators
      use mpi_setup_int
      use Numerical_Libraries, only : DCONST
      implicit none

! This is Parallel Example 10 for .ix..
      integer i, nrack
      integer, parameter :: m=128, n=8, nr=4
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) A(m,0:n,nr), c(0:n,1,nr), pi_over_2, &
        x(m,1,nr), y(m,1,nr), u(m,1,nr), v(m,1,nr), &
        w(m,1,nr), delta_x

! Setup for MPI:
      mp_nprocs = mp_setup()

! Generate a random grid of points and transform
! to the interval (-1,1).
      if(mp_rank == 0) x = rand(x)
      x = x*2 - one

! Get the constant ’PI’/2 from IMSL Numerical Libraries.
      pi_over_2 = DCONST((/’PI’/))/2

! Generate function data on the grid.
      y = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
      A(:,0,:) = one; A(:,1,:) = x(:,1,:)
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      do i=2, n
         A(:,i,:) = 2*x(:,1,:)*A(:,i-1,:) - A(:,i-2,:)
      end do

! Solve for the series coefficients.
      c = A .ix. y

! Generate an equally spaced grid on the interval.
      delta_x = 2/real(m-1,kind(one))
      do nrack = 1,nr
         x(:,1,nrack) = (/(-one + i*delta_x,i=0,m-1)/)
      enddo

! Evaluate residuals using backward recurrence formulas.
      u = zero; v = zero
      do nrack =1,nr
         do i=n, 0, -1
            w(:,:,nrack) = 2*x(:,:,nrack)*u(:,:,nrack) - &
              v(:,:,nrack) + c(i,1,nrack)
            v(:,:,nrack) = u(:,:,nrack)
            u(:,:,nrack) = w(:,:,nrack)
         end do
      enddo

! Compute residuals at the grid:
      y = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+1 sign changes in the residual curve occur.
      x = one
      x = sign(x,y)

      if (count(x(1:m-1,1,:) /= x(2:m,1,:)) >= n+1) then
         if(mp_rank == 0)&
         write (*,*) ’Parallel Example 10 is correct.’
      end if

! See to any error messages and exit MPI.
      MP_NPROCS = MP_SETUP(’Final’)
      end

Parallel Example 11

In this example a single problem is elevated by using the box data type with one
rack.  The function call MP_SETUP(M) may take longer to compute than the
computation of the generalized inverse, which follows.  Other methods for
determining the node priority order, perhaps based on specific knowledge of the
network environment, may be better suited for this application. This example
requires two nodes to execute.

      use linear_operators
      use mpi_setup_int
      use Numerical_Libraries, only : DCONST
      implicit none

! This is Parallel Example 11 using a priority order with
! only the fastest alternate node working.
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      integer i
      integer, parameter :: m=128, n=8, nr=1
      real(kind(1d0)), parameter :: one=1d0, zero=0d0
      real(kind(1d0)) A(m,0:n,nr), c(0:n,1,nr), pi_over_2, x(m), &
        y(m,1,nr), u(m), v(m), w(m), delta_x, inv(0:n, m, nr)

! Setup for MPI.  Create a priority order list.  Force the
! problem to work on the fastest non-root machine.
      mp_nprocs = mp_setup(m)
      MPI_ROOT_WORKS = .false.

! Generate an array of equally spaced points on the interval (-1,1).
      delta_x = 2/real(m-1,kind(one))
      x = (/(-one + i*delta_x,i=0,m-1)/)

! Get the constant ’PI’/2 from IMSL Numerical Libraries.
      pi_over_2 = DCONST((/’PI’/))/2

! Compute data values on the grid.
      y(:,1,1) = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
      A(:,0,1) = one
      A(:,1,1) = x

      do i=2, n
         A(:,i,1) = 2*x*A(:,i-1,1) - A(:,i-2,1)
      end do

! Compute the generalized inverse of the least-squares matrix.
! Compute the series coefficients using the generalized inverse
! as ’smoothing formulas.’
      inv = .i. A; c = inv .x. y
! Evaluate residuals using backward recurrence formulas.

      u = zero
      v = zero
      do i=n, 0, -1
         w = 2*x*u - v + c(i,1,1)
         v = u
         u = w
      end do

! Compute residuals at the grid:
      y(:,1,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.
      x = one; x = sign(x,y(:,1,1))

      if (count(x(1:m-1) /= x(2:m)) == n+2) then
         if(mp_rank == 0)&
         write (*,*) ’Parallel Example 11 is correct.’
      end if

! See to any error messages and exit MPI
      mp_nprocs = mp_setup(’Final’)
      end
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Parallel Example 12

This illustrates a surface fitting problem using radial basis functions and a box data
type.   It is of interest because this problem fits three component functions of the
same form in a space of dimension two.  The racks of the box represent the
separate problems for the three coordinate functions.  The coefficients are obtained
with the .ix. operator.  When the least-squares fitting process requires more
elaborate software, it may be necessary to send the data to the nodes, compute, and
send the results back to the root.  See Parallel Example 18 for more details. Any
number of nodes can be used.

      use linear_operators
      use mpi_setup_int
      implicit none

! This is Parallel Example 12 for
! .ix. , NORM, .tx. and .x. operators.
      integer i, j, nrack
      integer, parameter :: m=128, n=32, k=2, n_eval=16, nr=3
      real(kind(1d0)), parameter :: one=1d0, delta_sqr=1d0
      real(kind(1d0)) A(m,n,nr), b(m,1,nr), c(n,1,nr), p(k,m,nr), q(k,n,nr)

! Setup for MPI:
      mp_nprocs = mp_setup()

! Generate a random set of data and center points in k=2 space.
      if( mp_rank == 0) then
         p = rand(p); q=rand(q)

! Compute the coefficient matrix for the least-squares system.
         do nrack=1,nr
            A(:,:,nrack) = sqrt(sum((spread(p(:,:,nrack),3,n) - &
              spread(q(:,:,nrack),2,m))**2,dim=1) + delta_sqr)

! Compute the right-hand side of function values.
            b(:,1,nrack) = exp(-sum(p(:,:,nrack)**2,dim=1))
         enddo

      endif

! Compute the least-squares solution.  An error message due
! to rank deficiency is ignored with the flags:

      allocate (d_invx_options(1))
      d_invx_options(1)=skip_error_processing
      c = A .ix. b

! Check the results.
      if (ALL(norm(A .tx. (b - (A .x. c)))/(norm(A)+norm(c)) &
          <= sqrt(epsilon(one)))) then
         if(mp_rank == 0) &
            write (*,*) ’Parallel Example 12 is correct.’
      end if

! Unload option type for good housekeeping.
      deallocate (d_invx_options)
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! See to any error messages and quit MPI.

      mp_nprocs = mp_setup(’Final’)

      end

Parallel Example 13

Here least-squares problems are solved, each with an equality constraint that the
variables sum to the value one.  A box data type is used and the solution
obtained with the .ix. operator. Any number of nodes can be used.

      use linear_operators
      use mpi_setup_int
      implicit none

! This is Parallel Example 13 for .ix. and NORM

      integer, parameter :: m=64, n=32, nr=4
      real(kind(1e0)) :: one=1e0, A(m+1,n,nr), b(m+1,1,nr), x(n,1,nr)

! Setup for MPI:
      mp_nprocs=mp_setup()

      if(mp_rank == 0) then
! Generate a random matrix and right-hand side.
         A=rand(A); b = rand(b)

! Heavily weight desired constraint.  All variables sum to one.
         A(m+1,:,:) =   one/sqrt(epsilon(one))
         b(m+1,:,:) =   one/sqrt(epsilon(one))

      endif

! Compute the least-squares solution with this heavy weight.
      x = A .ix. b

! Check the constraint.
      if (ALL(abs(sum(x(:,1,:),dim=1) - one)/norm(x) &
            <= sqrt(epsilon(one)))) then
         if(mp_rank == 0) &
         write (*,*) ’Parallel Example 13 is correct.’
      endif

! See to any error messages and exit MPI
      mp_nprocs=mp_setup(’Final’)

      end
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Parallel Example 14

Systems of  least-squares problems are solved, but now using the SVD()
function.  A box data type is used.  This is an example which uses optional
arguments and a generic function overloaded for parallel execution of a box
data type.  Any number of nodes can be used.

      use linear_operators
      use mpi_setup_int
      implicit none

! This is Parallel Example 14
! for SVD, .tx. , .x. and NORM.
      integer, parameter :: m=128, n=32, nr=4
      real(kind(1d0)) :: one=1d0, err(nr)
      real(kind(1d0)) A(m,n,nr), b(m,1,nr), x(n,1,nr), U(m,m,nr), &
        V(n,n,nr), S(n,nr), g(m,1,nr)

! Setup for MPI:
      mp_nprocs=mp_setup()

      if(mp_rank == 0) then
! Generate a random matrix and right-hand side.
         A = rand(A); b = rand(b)
      endif

! Compute the least-squares solution matrix of Ax=b.
      S = SVD(A, U = U, V = V)
      g = U .tx. b
      x = V .x. (diag(one/S) .x. g(1:n,:,:))

! Check the results.
      err = norm(A .tx. (b - (A .x. x)))/(norm(A)+norm(x))
      if (ALL(err <= sqrt(epsilon(one)))) then
         if(mp_rank == 0) &
         write (*,*) ’Parallel Example 14 is correct.’
      end if

! See to any error messages and quit MPI
      mp_nprocs = mp_setup(’Final’)

      end

Parallel Example 15

A “Polar Decomposition” of several matrices are computed.  The box data type
and the SVD() function are used.  Orthogonality and small residuals are
checked to verify that the results are correct.

      use linear_operators
      use mpi_setup_int
      implicit none

! This is Parallel Example 15 using operators and
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! functions for a polar decomposition.
      integer, parameter :: n=33, nr=3
      real(kind(1d0)) :: one=1d0, zero=0d0
      real(kind(1d0)),dimension(n,n,nr) :: A, P, Q, &
             S_D(n,nr), U_D, V_D
      real(kind(1d0)) TEMP1(nr), TEMP2(nr)

! Setup for MPI:
      mp_nprocs = mp_setup()

! Generate a random matrix.
      if(mp_rank == 0) A = rand(A)

! Compute the singular value decomposition.
      S_D = SVD(A, U=U_D, V=V_D)

! Compute the (left) orthogonal factor.
      P = U_D .xt. V_D

! Compute the (right) self-adjoint factor.
      Q = V_D .x. diag(S_D) .xt. V_D
! Check the results for orthogonality and
! small residuals.
      TEMP1 = NORM(spread(EYE(n),3,nr) - (p .xt. p))
      TEMP2 = NORM(A -(P .X. Q)) / NORM(A)
      if (ALL(TEMP1 <= sqrt(epsilon(one))) .and. &
          ALL(TEMP2 <= sqrt(epsilon(one)))) then
            if(mp_rank == 0)&
            write (*,*) ’Parallel Example 15 is correct.’
      end if

! See to any error messages and exit MPI.
      mp_nprocs = mp_setup(’Final’)

      end

Parallel Example 16

A compute-intensive single task, in this case the singular values decomposition  of
a matrix, is computed and partially reconstructed with matrix products.  This
result is sent back to the root node.   The node of highest priority, not the root, is
used for the computation except when only the root is available.

      use linear_operators
      use mpi_setup_int
      implicit none
      INCLUDE ’mpif.h’

! This is Parallel Example 16 for SVD.
      integer i, j, IERROR, BEST
      integer, parameter :: n=32
      real(kind(1e0)), parameter :: half=5e-1, one=1e0, zero=0e0
      real(kind(1e0)), dimension(n,n) :: A, S(n), U, V, C
      integer k, STATUS(MPI_STATUS_SIZE)

! Setup for MPI:
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      mp_nprocs = mp_setup(n)

BEST=1
BLOCK: DO

! Fill in value one for points inside the circle,
! zero on the outside.
      A = zero
      DO i=1, n
         DO j=1, n
            if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) A(i,j) = one
         END DO
      END DO
IF(MP_NPROCS > 1 .and. MPI_NODE_PRIORITY(1) == 0) BEST=2

! Only the most effective node does this job.
! The rest set idle.
   IF(MP_RANK /= MPI_NODE_PRIORITY(BEST)) EXIT BLOCK

! Compute the singular value decomposition.
      S = SVD(A, U=U, V=V)

! How many terms, to the nearest integer, match the circle?
      k = count(S > half)
      C = U(:,1:k) .x. diag(S(1:k)) .xt. V(:,1:k)

! If root is not the most efficient node, send C back.
      IF(MPI_NODE_PRIORITY(BEST) > 0) &
      CALL MPI_SEND(C, N**2, MPI_REAL, 0, MP_RANK, MP_LIBRARY_WORLD, IERROR)
      EXIT BLOCK
END DO BLOCK

! There may be a matrix to receive from the "best" node.
      IF(MPI_NODE_PRIORITY(BEST) > 0 .and. MP_RANK == 0) &
        CALL MPI_RECV (C, N**2, MPI_REAL, MPI_ANY_SOURCE, MPI_ANY_TAG, &
          MP_LIBRARY_WORLD, STATUS, IERROR)

       if (count(int(C-A) /= 0) == 0 .and. MP_RANK == 0) &
         write (*,*) ’Parallel Example 16 is correct.’

! See to any error messages and exit MPI.
      mp_nprocs = mp_setup(’Final’)
      end

Parallel Example 17

Occasionally it is necessary to print output from all nodes of a communicator.
This example has each non-root node prepare the output it will print in a
character buffer.  Then, each node in turn, the character buffer is transmitted to
the root.  The root prints the buffer, line-by-line, which contains an indication
of where the output originated.  Note that the root directs the order of results by
broadcasting an integer value (BATON) giving the index of the node to
transmit.  The random numbers generated at the nodes and then listed are not
checked. There is a final printed line indicating that the example is completed.
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 use show_int
use rand_int

      use mpi_setup_int

implicit none
        INCLUDE ’mpif.h’

! This is Parallel Example 17.  Each non-root node transmits
! the contents of an array that is the output of SHOW.
! The root receives the characters and prints the lines from
! alternate nodes.

integer, parameter :: n=7, BSIZE=(72+2)*4
        integer k, p, q, ierror, status(MPI_STATUS_SIZE)
        integer I, BATON

real(kind(1e0)) s_x(-1:n)
        type (s_options) options(7)
        CHARACTER (LEN=BSIZE) BUFFER
        character (LEN=12) PROC_NUM

! Setup for MPI:
        mp_nprocs = mp_setup()
if (mp_rank > 0) then
! The data types printed are real(kind(1e0)) random numbers.
s_x=rand(s_x)

! Convert node rank to CHARACTER data.
write(proc_num,’(I3)’) mp_rank

! Show 7 digits per number and  according to the
! natural or declared size of the array.
! Prepare the output lines in array BUFFER.
! End each line with ASCII sequence CR-NL.
        options(1)=show_significant_digits_is_7

        options(2)=show_starting_index_is
        options(3)= -1 ! The starting  value.

        options(4)=show_end_of_line_sequence_is
        options(5)=  2 ! Use 2 EOL characters.
        options(6)= 10 ! The ASCII code for CR.
        options(7)= 13 ! The ASCII code for NL.

        BUFFER= ’ ’    ! Blank out the buffer.

! Prepare the output in BUFFER.
 call show (s_x, &
   ’Rank-1, REAL with 7 digits, natural indexing from rank # ’//&
   trim(adjustl(PROC_NUM)), IMAGE=BUFFER,  IOPT=options)

 do i=1,mp_nprocs-1
! A handle or baton is received by the non-root nodes.
    call mpi_bcast(BATON, 1, MPI_INTEGER, 0, &
      MP_LIBRARY_WORLD, ierror)

! If this node has the baton, it transmits its buffer.
    if(BATON == mp_rank)&
      call mpi_send(buffer, BSIZE, MPI_CHARACTER, 0, mp_rank, &
        MP_LIBRARY_WORLD, ierror)
 end do
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else
    DO I=1,MP_NPROCS-1

! The root sends out a handle to a node.  It is received as
! the value BATON.
      call mpi_bcast(I, 1, MPI_INTEGER, 0, &
        MP_LIBRARY_WORLD, ierror)

! A buffer of data arrives from a node.
      call mpi_recv(buffer, BSIZE, MPI_CHARACTER, MPI_ANY_SOURCE, &
        MPI_ANY_TAG, MP_LIBRARY_WORLD, STATUS, IERROR)

! Display BUFFER as a CHARACTER array. Discard blanks
! on the ends.  Look for non-printable characters as limits.
        p=0
        k=LEN(TRIM(BUFFER))
        DISPLAY:DO
          DO
            IF (p >= k) EXIT DISPLAY
            p=p+1
            IF(ICHAR(BUFFER(p:p)) >= ICHAR(’ ’)) EXIT
          END DO
          q=p-1
          DO
            q=q+1
            IF (ICHAR(BUFFER(q:q)) < ICHAR(’ ’)) EXIT
          END DO
          WRITE(*,’(1x,A)’) BUFFER(p:q-1)
          p=q
        END DO DISPLAY
    END DO
end if
  IF(MP_RANK ==0 ) &
    write(*,*) ’Parallel Example 17 is finished.’

! See to any error messages and quit MPI
    mp_nprocs = mp_setup(’Final’)

        end

Parallel Example 18

Here we illustrate a surface fitting problem implemented using tensor product
B-splines with constraints.  There are three functions, each depending on two
parametric variables, for the spatial coordinates.  Fitting each coordinate
function to the data is a natural example of parallel computing in the sense that
there are three separate problems of the same type.  The approach is to break
the problem into three data fitting computations.  Each of these computations
are allocated to nodes.  Note that the data is sent from the root to the nodes.

Every node completes the least-squares fitting, and sends the spline coefficients
back to the root node.  This example requires four nodes to execute.
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      USE surface_fitting_int
      USE rand_int
      USE norm_int
      USE Numerical_Libraries, only : DCONST
      USE mpi_setup_int
      implicit none

      INCLUDE ’mpif.h’

! This is a Parallel Example 18 for SURFACE_FITTING, or
! tensor product B-splines approximation.  Fit x, y, z parametric
! functions for points on the surface of a sphere of radius "A".
! Random values of latitude and longitude are used to generate
! data.  The functions are evaluated at a rectangular grid
! in latitude and longitude and checked so they lie on the
! surface of the sphere.

      integer :: i, j, ierror, status(MPI_STATUS_SIZE)
      integer, parameter :: ngrid=5, nord=8, ndegree=nord-1, &
        nbkpt=ngrid+2*ndegree, ndata =400, nvalues=50, NOPT=4
      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0
      real(kind(1d0)), parameter :: TOLERANCE=1d-3
      real(kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &
         coeff(ngrid+ndegree-1,ngrid+ndegree-1, 3), delta, sizev, &
         pi, A, x(nvalues), y(nvalues), values(nvalues, nvalues), &
         data(4,ndata)

      real(kind(1d0)), pointer :: pointer_bkpt(:)
      type (d_surface_constraints), allocatable :: C(:)
      type (d_spline_knots) knotsx, knotsy
      type (d_options) OPTIONS(NOPT)

! Setup for MPI:
      MP_NPROCS = MP_SETUP()
BLOCK: DO
! This program needs at least three nodes plus a root to execute.
! As many as three error messages may print.
      if(mp_nprocs < 4) then
        call e1sti (1, MP_NPROCS)
        call e1mes (5, 1, "Parallel Example 18 requires FOUR nodes"//&
          ’ to execute. Number of nodes is now %(I1).’)
        EXIT BLOCK
      endif

! Get the constant "pi" and a random radius, > 1.
      pi = DCONST((/’pi’/)); A=one+rand(A)

! Generate random (latitude, longitude) pairs and evaluate the
! surface parameters at these points.
      spline_data(1:2,:,1)=pi*(two*rand(spline_data(1:2,:,1))-one)
      spline_data(1:2,:,2)=spline_data(1:2,:,1)
      spline_data(1:2,:,3)=spline_data(1:2,:,1)

! Evaluate x, y, z parametric points.
      spline_data(3,:,1)=A*cos(spline_data(1,:,1))*cos(spline_data(2,:,1))
      spline_data(3,:,2)=A*cos(spline_data(1,:,2))*sin(spline_data(2,:,2))
      spline_data(3,:,3)=A*sin(spline_data(1,:,3))

! The values are equally uncertain.
      spline_data(4,:,:)=one
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! Define the knots for the tensor product data fitting problem.
         delta = two*pi/(ngrid-1)
         bkpt(1:ndegree) = -pi
         bkpt(nbkpt-ndegree+1:nbkpt) =  pi
         bkpt(nord:nbkpt-ndegree)=(/(-pi+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.
      pointer_bkpt => bkpt
      knotsx=d_spline_knots(ndegree, pointer_bkpt)
      knotsy=knotsx

! Fit a data surface for each coordinate.
! Set default regularization parameters to zero and compute
! residuals of the individual points. These are returned
! in DATA(4,:).
      allocate (C(2*ngrid))
! "Sew" the ends of the parametric surfaces together:
      do i=0,ngrid-1
        C(i+1)=surface_constraints(point=(/-pi,-pi+i*delta/),&
          type=’.=.’, periodic=(/pi,-pi+i*delta/))
      end do
      do i=0,ngrid-1
        C(ngrid+i+1)=surface_constraints(point=(/-pi+i*delta,-pi/),&
          type=’.=.’, periodic=(/-pi+i*delta,pi/))
      end do

      if (mp_rank == 0) then
! Send the data to a node.
         do j=1,3
           call mpi_send(spline_data(:,:,j), 4*ndata, &
            MPI_DOUBLE_PRECISION, j, j, MP_LIBRARY_WORLD, ierror)
         enddo
         do i=1,3
! Receive the coefficients back.
   call mpi_recv(coeff(:,:,i), (ngrid+ndegree-1)**2, &

             MPI_DOUBLE_PRECISION, i, i, MP_LIBRARY_WORLD, &
             status, ierror)
         enddo
      else if (mp_rank < 4) then

! Receive the data from the root.
        call mpi_recv(data, 4*ndata, MPI_DOUBLE_PRECISION, 0, &
          mp_rank, MP_LIBRARY_WORLD, status, ierror)
        OPTIONS(1)=d_options(surface_fitting_thinness,zero)
        OPTIONS(2)=d_options(surface_fitting_flatness,zero)
        OPTIONS(3)=d_options(surface_fitting_smallness,zero)
        OPTIONS(4)=surface_fitting_residuals

! Compute the coefficients at this node.
        coeff(:,:,mp_rank) = surface_fitting(data, knotsx, knotsy,&
          CONSTRAINTS=C, IOPT=OPTIONS)

! Send the coefficients back to the root.
call mpi_send(coeff(:,:,mp_rank),(ngrid+ndegree-1)**2,&

          MPI_DOUBLE_PRECISION, 0, mp_rank, MP_LIBRARY_WORLD,IERROR)
      end if

! Evaluate the function at a grid of points inside the rectangle of
! latitude and longitude covering the sphere just once.  Add the
! sum of squares. They should equal "A**2" but will not due to
! truncation and rounding errors.
      delta=pi/(nvalues+1)
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      x=(/(-pi/two+i*delta,i=1,nvalues)/); y=two*x
      values=zero
      do j=1,3
        values=values + surface_values((/0,0/), x, y, knotsx, knotsy,&
          coeff(:,:,j))**2
      end do
      values=values-A**2

! Compute the R.M.S. error:
      sizev=norm(pack(values, (values == values)))/nvalues
      if (sizev <= TOLERANCE) then
        if(mp_rank == 0) &
        write(*,*) "Parallel Example 18 is correct."
      end if
     EXIT BLOCK
END DO BLOCK

! See to any error messages and exit MPI.
      mp_nprocs = mp_setup(’Final’)

      end
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Chapter 7: ScaLAPACK Utilities and
Large-Scale Parallel Solvers

Introduction

MPI REQUIRED

This chapter describes the use of ScaLAPACK, a suite of dense linear algebra
solvers, applicable when a single problem size is large. We have integrated usage of
Fortran 90 MP Library with this library.  However, the ScaLAPACK library,
including libraries for BLACS and PBLAS, are not part of Fortran 90 MP Library.  To
use ScaLAPACK software, the required libraries must be installed on the user’s
computer system.  We adhered to the specification of Blackford, et al. (1997), but
use only MPI for communication.  The ScaLAPACK library includes certain
LAPACK routines, Anderson, et al. (1995),  redesigned for distributed memory
parallel computers. It is written in a Single Program, Multiple Data (SPMD) style
using explicit message passing for communication.  Matrices are laid out in a two-
dimensional block-cyclic decomposition.  Using High Performance Fortran (HPF)
directives, Koelbel, et al. (1994), and a static p q×  processor array, and following
declaration of the array, A(*,*), this is illustrated by:

INTEGER, PARAMETER :: N=500, P= 2, Q=3, MB=32, NB=32

!HPF$ PROCESSORS PROC(P,Q)

!HPF$ DISTRIBUTE A(cyclic(MB), cyclic(NB)) ONTO PROC

Our integration work provides modules that describe the interface to the
ScaLAPACK library.  We recommend that users include these modules when using
ScaLAPACK or ancillary packages, including BLACS and PBLAS.  For the job of
distributing data within a user’s application to the block-cyclic decomposition
required by ScaLAPACK solvers, we provide a utility that reads data from an
external file and arranges the data within the distributed machines for a
computational step.  Another utility writes the results into an external file.

The data types supported for these utilities are integer; single precision, real;
double precision, real; single precision, complex, and double precision,
complex.
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A ScaLAPACK library normally includes routines for:

• the solution of full-rank linear systems of equations,

• general and symmetric, positive-definite, banded linear systems of equations,

• general and symmetric, positive-definite, tri-diagonal, linear systems of
equations,

• condition number estimation and iterative refinement for LU and Cholesky
factorization,

• matrix inversion,

• full-rank linear least-squares problems,

• orthogonal and generalized orthogonal factorizations,

• orthogonal transformation routines,

• reductions to upper Hessenberg, bidiagonal and tridiagonal form,

• reduction of a symmetric-definite, generalized eigenproblem to standard form,

• the self-adjoint or Hermitian eigenproblem,

• the generalized self-adjoint or Hermitian eigenproblem, and

• the non-symmetric eigenproblem

ScaLAPACK routines are available in four data types: single precision, real;
double precision; real, single precision, complex, and double precision,
complex. At present, the non-symmetric eigenproblem is only available in single
and double precision.  More background information and user documentation is
available on the World Wide Web at location
http://www.netlib.org/scalapack/slug/scalapack_slug.html

For users with rank deficiency or simple constraints in their linear systems or least-
squares problem, we have routines for:

• full or deficient rank least-squares problems with non-negativity constraints

• full or deficient rank least-squares problems with simple upper and lower
bound constraints

These are available in two data types: single precision, real, and double
precision, real, and they are not part of ScaLAPACK. The matrices are distributed
in a general block-column layout.
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ScaLAPACK Supporting Modules

MPI REQUIRED

We recommend that users needing routines from ScaLAPACK, PBLAS or
BLACS, Version 1.4, use modules that describe the interface to individual
codes.  This practice, including use of the declaration directive, IMPLICIT
NONE, is a reliable way of writing ScaLAPACK application code, since the
routines may have lengthy lists of arguments.  Using the modules is helpful to
avoid the mistakes such as missing arguments or mismatches involving Type,
Kind or Rank (TKR).  The modules are part of the Fortran 90 MP Library
product. There is a comprehensive module, ScaLAPACK_Support, that
includes use of all the modules in the table below.  This module decreases the
number of lines of code for checking the interface, but at the cost of increasing
source compilation time compared with using individual modules.

Module Name Contents of the Module
ScaLAPACK_Support All of the following modules

ScaLAPACK_Int All interfaces to ScaLAPACK routines

PBLAS_Int All interfaces to parallel BLAS, or PBLAS

BLACS_Int All interfaces to basic linear algebra communication routines, or
BLACS

TOOLS_Int Interfaces to ancillary routines used by ScaLAPACK, but not in
other packages

LAPACK_Int All interfaces to LAPACK routines required by ScaLAPACK

ScaLAPACK_IO_Int All interfaces to ScaLAPACK_Read, ScaLAPACK_Write
utility routines.  See this Chapter.

MPI_Node_Int The module holding data describing the MPI communicator,
MP_LIBRARY_WORLD.  See Chapter 6.

ScaLAPACK_READ
This routine reads matrix data from a file and transmits it into the two-
dimensional block-cyclic form required by ScaLAPACK routines.  This routine
contains a call to a barrier routine so that if one process is writing the file and
an alternate process is to read it, the results will be synchronized.
All processors in the BLACS context call the routine.
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Required Arguments

File_Name— (Input)
A character variable naming the file containing the matrix data.  This file is
opened with STATUS=“OLD.”   If the name is misspelled or the file does not
exist, or any access violation happens, a type = terminal  error message
will occur.  After the contents are read, the file is closed. This file is read
with a loop logically equivalent to groups of reads:

READ() ((BUFFER(I,J), I=1,M), J=1, NB)

or (optionally):

READ() ((BUFFER(I,J), J=1,N), I=1, MB)

DESC_A(*)—(Input)
The nine integer parameters associated with the ScaLAPACK matrix descriptor.
Values for NB,MB,LDA are contained in this array.

A(LDA,*)—(Output)
This is an assumed-size array, with leading dimension LDA, that will
contain this processor’s piece of the block-cyclic matrix.  The data type for
A(*,*) is any of five Fortran intrinsic types, integer, single precision, real;
double precision, real; single precision, complex, and double precision-
complex.

Optional Arguments

Format—(Input)
A character variable containing a format to be used for reading the file
containing matrix data.  If this argument is not present, an unformatted, or
list-directed read is used.

iopt— (Input)
Derived type array with the same precision as the array A(*,*) , used for
passing optional data to ScaLAPACK_READ. The options are as follows:

Packaged Options for ScaLAPACK_READ

Option Prefix = ? Option Name Option Value

s_, d_ ScaLAPACK_READ_UNIT 1

s_, d_ ScaLAPACK_READ_FROM_PROCESS 2

s_, d_ ScaLAPACK_READ_BY_ROWS 3
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iopt(IO) = ScaLAPACK_READ_UNIT

Sets the unit number to the value in iopt(IO + 1)%idummy.  The default
unit number is the value 11.

iopt(IO) = ScaLAPACK_READ_FROM_PROCESS

Sets the process number that reads the named file to the value in
iopt(IO + 1)%idummy.  The default process number is the value 0.

iopt(IO) = ScaLAPACK_READ_BY_ROWS

Read the matrix by rows from the named file.  By default the matrix is read
by columns.

Algorithm

Subroutine ScaLAPACK_READ reads columns or rows of a problem matrix so
that it is usable by a ScaLAPACK routine.  It uses the two-dimensional block-
cyclic array descriptor for the matrix to place the data in the desired assumed-
size arrays on the processors.  The blocks of data are read, then transmitted and
received.  The block sizes, contained in the array descriptor, determines the
data set size for each blocking send and receive pair.  The number of these
synchronization points is proportional to M N MB NB× ×/ (  ) .  A temporary

local buffer is allocated for staging the matrix data.  It is of size M by NB, when
reading by columns, or N by MB, when reading by rows.

ScaLAPACK_WRITE

This routine writes the matrix data to a file.  The data is transmitted from the
two-dimensional block-cyclic form used by ScaLAPACK.  This routine contains
a call to a barrier routine so that if one process is writing the file
and an alternate process is to read it, the results will be synchronized. All
processors in the BLACS context call the routine.

Required Arguments

File_Name— (Input)
A character variable naming the file to receive the matrix data.  This file is
opened with “STATUS=”UNKNOWN.”  If any access violation happens, a
type = terminal error message will occur.  If the file already exists it will be
overwritten.  After the contents are written, the file is closed. This file is
written with a loop logically equivalent to groups of writes:

WRITE() ((BUFFER(I,J), I=1,M), J=1, NB)

or (optionally):

WRITE() ((BUFFER(I,J), J=1,N), I=1, MB)

DESC_A(*)—(Input)
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The nine integer parameters associated with the ScaLAPACK matrix
descriptor. Values for NB,MB,LDA are contained in this array.

A(LDA,*) —(Input)
This is an assumed-size array, with leading dimension LDA, containing this
processor’s piece of the block-cyclic matrix.  The data type for A(*,*) is
any of five Fortran intrinsic types, integer, single precision, real, double
precision, real, single precision, complex, and double precision-
complex.

Optional Arguments

Format—(Input)
A character variable containing a format to be used for writing the file that
receives matrix data.  If this argument is not present, an unformatted, or
list-directed write is used.

iopt— (Input)
Derived type array with the same precision as the array A(*,*) , used for
passing optional data to ScaLAPACK_WRITE. Use single precision when
A(*,*)  is type INTEGER.  The options are as follows:

Packaged Options for ScaLAPACK_WRITE

Option Prefix = ? Option Name Option Value

s_, d_ ScaLAPACK_WRITE_UNIT 1

s_, d_ ScaLAPACK_WRITE_FROM_PROCESS 2

s_, d_ ScaLAPACK_WRITE_BY_ROWS 3

iopt(IO) =ScaLAPACK_WRITE_UNIT

Sets the unit number to the integer component of
iopt(IO + 1)%idummy .  The default unit number is the value 11.

iopt(IO) = ScaLAPACK_WRITE_FROM_PROCESS

Sets the process number that writes the named file to the integer
component of iopt(IO + 1)%idummy .  The default process number is
the value 0.

iopt(IO) = ScaLAPACK_WRITE_BY_ROWS

Write the matrix by rows to the named file.  By default the matrix is written
by columns.

Algorithm

Subroutine ScaLAPACK_WRITE writes columns or rows of a problem matrix
output by a ScaLAPACK routine.  It uses the two-dimensional block-cyclic
array descriptor for the matrix to extract the data from the assumed-size
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arrays on the processors.  The blocks of data are transmitted and received,
then written.  The block sizes, contained in the array descriptor, determines
the data set size for each blocking send and receive pair. The number of
these synchronization points is proportional to M N MB NB× ×/ ( ) .  A

temporary local buffer is allocated for staging the matrix data.  It is of size
M by NB, when writing by columns, or N by MB, when writing by rows.

Example 1:  Distributed Transpose of a Matrix, In Place

The program SCPK_EX1 illustrates an in-situ transposition of a matrix.  An
m n× matrix, A , is written to a file, by rows.  The n m× matrix, B AT= ,
overwrites storage for A .  Two temporary files are created and deleted.  There
is usage of the BLACS to define the process grid and provide further
information identifying each process.  This algorithm for transposing a matrix is
not efficient.  We use it to illustrate the read and write routines and optional
arguments for writing of data by matrix rows.

  program scpk_ex1
! This is Example 1 for ScaLAPACK_READ and ScaLAPACK_WRITE.
! It shows in-situ or in-place transposition of a
! block-cyclic matrix.
USE ScaLAPACK_SUPPORT
USE ERROR_OPTION_PACKET
USE MPI_SETUP_INT

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: M=6, N=6, MB=2, NB=2, NIN=10
INTEGER CONTXT, DESC_A(9), NPROW, NPCOL, MYROW, &
  MYCOL, IERROR, I, J, K, L, LDA, TDA
real(kind(1d0)), allocatable :: A(:,:), d_A(:,:)
real(kind(1d0)) ERROR
TYPE(d_OPTIONS) IOPT(1)
   MP_NPROCS=MP_SETUP()

   CALL BLACS_PINFO(MP_RANK, MP_NPROCS)
! Make initialization for BLACS.
   CALL BLACS_GET(0,0, CONTXT)

! Approximate processor grid to be nearly square.
   NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW
   IF(NPROW*NPCOL < MP_NPROCS) THEN
     NPROW=1; NPCOL=MP_NPROCS
   END IF
   CALL BLACS_GRIDINIT(CONTXT, ’Rows’, NPROW, NPCOL)
! Get this processor’s role in the process grid.
   CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL)
BLOCK: DO

LDA=NUMROC(M, MB, MYROW, 0, NPROW)
TDA=NUMROC(N, NB, MYCOL, 0, NPCOL)
  ALLOCATE(d_A(LDA,TDA))

! A root process is used to create the matrix data for the test.
IF(MP_RANK == 0) THEN
  ALLOCATE(A(M,N))
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! Fill array with a pattern that is easy to recognize.
  K=0
  DO
   K=K+1; IF(10**K > N) EXIT
  END DO

  DO J=1,N
    DO I=1,M
! The values will appear, as decimals I.J, where I is
! the row and J is the column.
      A(I,J)=REAL(I)+REAL(J)*10d0**(-K)
    END DO
  END DO

  OPEN(UNIT=NIN, FILE=’test.dat’, STATUS=’UNKNOWN’)
! Write the data by columns.
  DO J=1,N,NB
    WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(N,J+NB-1))
  END DO
  CLOSE(NIN)
END IF

IF(MP_RANK == 0) THEN
  DEALLOCATE(A)
  ALLOCATE(A(N,M))
END IF

! Define the descriptor for the global matrix.
DESC_A=(/1, CONTXT, M, N, MB, NB, 0, 0, LDA/)

! Read the matrix into the local arrays.
CALL ScaLAPACK_READ(’test.dat’, DESC_A, d_A)

! To transpose, write the matrix by rows as the first step.
! This requires an option since the default is to write
! by columns.
IOPT(1)=ScaLAPACK_WRITE_BY_ROWS
CALL ScaLAPACK_WRITE("TEST.DAT", DESC_A, &
  d_A, IOPT=IOPT)

! Resize the local storage and read the transpose matrix.
  DEALLOCATE(d_A)
  LDA=NUMROC(N, MB, MYROW, 0, NPROW)
  TDA=NUMROC(M, NB, MYCOL, 0, NPCOL)
  ALLOCATE(d_A(LDA,TDA))

! Reshape the descriptor for the transpose of the matrix.
! The number of rows and columns are swapped.
DESC_A=(/1, CONTXT, N, M, MB, NB, 0, 0, LDA/)

CALL ScaLAPACK_READ("TEST.DAT", DESC_A, d_A)

IF(MP_RANK == 0) THEN

! Open the used files and delete when closed.
  OPEN(UNIT=NIN, FILE=’test.dat’, STATUS=’OLD’)
  CLOSE(NIN,STATUS=’DELETE’)
  OPEN(UNIT=NIN, FILE=’TEST.DAT’, STATUS=’OLD’)
  DO J=1,M,MB
    READ(NIN,*) ((A(I,L), I=1,N),L=J,min(M,J+MB-1))
  END DO
  CLOSE(NIN,STATUS=’DELETE’)
  DO I=1,N
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    DO J=1,M
! The values will appear, as decimals I.J, where I is the row
!  and J is the column.
      A(I,J)=REAL(J)+REAL(I)*10d0**(-K) - A(I,J)
    END DO
  END DO
  ERROR=SUM(ABS(A))
 END IF

! The processors in use now exit the loop.
  EXIT BLOCK
END DO BLOCK

! See to any error messages.
  call e1pop("Mp_setup")

! Check results on just one process.
IF(ERROR <= SQRT(EPSILON(ERROR)) .and. &
  MP_RANK == 0) THEN
  write(*,*) " Example 1 for BLACS is correct."
END IF

! Deallocate storage arrays and exit from BLACS.
IF(ALLOCATED(A)) DEALLOCATE(A)
IF(ALLOCATED(d_A)) DEALLOCATE(d_A)

! Exit from using this process grid.
  CALL BLACS_GRIDEXIT( CONTXT )
  CALL BLACS_EXIT(0)
END

Example 2:  Distributed Matrix Product with PBLAS

The program SCPK_EX2 illustrates computation of the matrix product
C A Bm n m k k n× × ×= .  The matrices on the right-hand side are random.  Three temporary
files are created and deleted.  There is usage of the BLACS and PBLAS.  The problem
sizes is such that the results are checked on one process.

  program scpk_ex2
! This is Example 2 for ScaLAPACK_READ and ScaLAPACK_WRITE.
! The product of two matrices is computed with PBLAS
! and checked for correctness.

USE ScaLAPACK_SUPPORT
USE MPI_SETUP_INT

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: &
  K=32, M=33, N=34, MB=16, NB=16, NIN=10
INTEGER CONTXT, NPROW, NPCOL, MYROW, MYCOL, &
  INFO, IA, JA, IB, JB, IC, JC, LDA_A, TDA_A,&
  LDA_B, TDA_B, LDA_C, TDA_C, IERROR, I, J, L,&
  DESC_A(9), DESC_B(9), DESC_C(9)
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real(kind(1d0)) :: ALPHA, BETA, ERROR=1d0, SIZE_C
real(kind(1d0)), allocatable, dimension(:,:) :: A,B,C,X(:),&
d_A, d_B, d_C

   MP_NPROCS=MP_SETUP()
! Routines with the "BLACS_" prefix are from the BLACS library.
! This is an adjunct library to the ScaLAPACK library.
   CALL BLACS_PINFO(MP_RANK, MP_NPROCS)

! Make initialization for BLACS.
   CALL BLACS_GET(0,0, CONTXT)

! Approximate processor grid to be nearly square.
   NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW
   IF(NPROW*NPCOL < MP_NPROCS) THEN
     NPROW=1; NPCOL=MP_NPROCS
   END IF
   CALL BLACS_GRIDINIT(CONTXT, ’Rows’, NPROW, NPCOL)

! Get this processor’s role in the process grid.
   CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL)

! Associate context (BLACS) with IMSL communicator:
   CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD)

BLOCK: DO

! Allocate local space for each array.
LDA_A=NUMROC(M, MB, MYROW, 0, NPROW)
TDA_A=NUMROC(K, NB, MYCOL, 0, NPCOL)
LDA_B=NUMROC(K, NB, MYROW, 0, NPROW)
TDA_B=NUMROC(N, NB, MYCOL, 0, NPCOL)
LDA_C=NUMROC(M, MB, MYROW, 0, NPROW)
TDA_C=NUMROC(N, NB, MYCOL, 0, NPCOL)

ALLOCATE(d_A(LDA_A,TDA_A), d_B(LDA_B,TDA_B),&
  d_C(LDA_C,TDA_C))

! A root process is used to create the matrix data for the test.
IF(MP_RANK == 0) THEN
  ALLOCATE(A(M,K), B(K,N), C(M,N), X(M))
  CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(B)

  OPEN(UNIT=NIN, FILE=’Atest.dat’, STATUS=’UNKNOWN’)
! Write the data by columns.
  DO J=1,K,NB
    WRITE(NIN,*) ((A(I,L),I=1,M),L=J,min(K,J+NB-1))
  END DO
  CLOSE(NIN)

  OPEN(UNIT=NIN, FILE=’Btest.dat’, STATUS=’UNKNOWN’)
! Write the data by columns.
  DO J=1,N,NB
    WRITE(NIN,*) ((B(I,L),I=1,K),L=J,min(N,J+NB-1))
  END DO
  CLOSE(NIN)
END IF

! Define the descriptor for the global matrices.
DESC_A=(/1, CONTXT, M, K, MB, NB, 0, 0, LDA_A/)
DESC_B=(/1, CONTXT, K, N, NB, NB, 0, 0, LDA_B/)
DESC_C=(/1, CONTXT, M, N, MB, NB, 0, 0, LDA_C/)
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! Read the factors into the local arrays.
CALL ScaLAPACK_READ(’Atest.dat’, DESC_A, d_A)
CALL ScaLAPACK_READ(’Btest.dat’, DESC_B, d_B)

! Compute the distributed product C = A x B.
ALPHA=1d0; BETA=0d0
IA=1; JA=1; IB=1; JB=1; IC=1; JC=1
d_C=0
CALL pdGEMM &
  ("No", "No", M, N, K, ALPHA, d_A, IA, JA,&
  DESC_A, d_B, IB, JB, DESC_B, BETA,&
  d_C, IC, JC, DESC_C )

! Put the product back on the root node.
Call ScaLAPACK_WRITE(’Ctest.dat’, DESC_C, d_C)

IF(MP_RANK == 0) THEN

! Read the residuals and check them for size.
  OPEN(UNIT=NIN, FILE=’Ctest.dat’, STATUS=’OLD’)

! Read the data by columns.
  DO J=1,N,NB
    READ(NIN,*) ((C(I,L),I=1,M),L=J,min(N,J+NB-1))
  END DO

  CLOSE(NIN,STATUS=’DELETE’)
  SIZE_C=SUM(ABS(C)); C=C-matmul(A,B)
  ERROR=SUM(ABS(C))/SIZE_C

! Open other temporary files and delete them.
  OPEN(UNIT=NIN, FILE=’Atest.dat’, STATUS=’OLD’)
  CLOSE(NIN,STATUS=’DELETE’)
  OPEN(UNIT=NIN, FILE=’Btest.dat’, STATUS=’OLD’)
  CLOSE(NIN,STATUS=’DELETE’)

END IF

! The processors in use now exit the loop.
  EXIT BLOCK
END DO BLOCK

! See to any error messages.
   call e1pop("Mp_Setup")
! Deallocate storage arrays and exit from BLACS.
IF(ALLOCATED(A)) DEALLOCATE(A)
IF(ALLOCATED(B)) DEALLOCATE(B)
IF(ALLOCATED(C)) DEALLOCATE(C)
IF(ALLOCATED(X)) DEALLOCATE(X)
IF(ALLOCATED(d_A)) DEALLOCATE(d_A)
IF(ALLOCATED(d_B)) DEALLOCATE(d_B)
IF(ALLOCATED(d_C)) DEALLOCATE(d_C)

! Check the results.
IF(ERROR <= SQRT(EPSILON(ALPHA)) .and. &
  MP_RANK == 0) THEN
  write(*,*) " Example 2 for BLACS and PBLAS is correct."
END IF

! Exit from using this process grid.
  CALL BLACS_GRIDEXIT( CONTXT )
  CALL BLACS_EXIT(0)
END
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Example 3:  Distributed Linear Solver with ScaLAPACK

The program SCPK_EX3 illustrates solving a system of linear-algebraic equations,
Ax b= .  The right-hand side is produced by defining A  and y  to have random values.
Then the matrix-vector product b Ay=  is computed.  The problem size is such that the
residuals, x y− ≈ 0  are checked on one process.  Three temporary files are created and
deleted.  There is usage of the BLACS to define the process grid and provide further
information identifying each process.  Then ScaLAPACK is used to compute the
approximate solution, x .

  program scpk_ex3
! This is Example 3 for ScaLAPACK_READ and ScaLAPACK_WRITE.
! A linear system is solved with ScaLAPACK and checked.
USE ScaLAPACK_SUPPORT
USE ERROR_OPTION_PACKET
USE MPI_SETUP_INT

IMPLICIT NONE

INCLUDE "mpif.h"
INTEGER, PARAMETER :: N=9, MB=3, NB=3, NIN=10
INTEGER CONTXT, NPROW, NPCOL, MYROW, MYCOL, &
  INFO, IA, JA, IB, JB, LDA_A, TDA_A,&
  LDA_B, TDA_B, IERROR, I, J, L, DESC_A(9),&
  DESC_B(9), DESC_X(9), BUFF(3), RBUF(3)

LOGICAL :: COMMUTE = .true.
INTEGER, ALLOCATABLE :: IPIV(:)
real(kind(1d0)) :: ERROR=0d0, SIZE_X
real(kind(1d0)), allocatable, dimension(:,:) :: A, B(:), &
  X(:), d_A, d_B

   MP_NPROCS=MP_SETUP()
! Routines with the "BLACS_" prefix are from the BLACS library.
   CALL BLACS_PINFO(MP_RANK, MP_NPROCS)
! Make initialization for BLACS.
   CALL BLACS_GET(0,0, CONTXT)

! Approximate processor grid to be nearly square.
   NPROW=sqrt(real(MP_NPROCS)); NPCOL=MP_NPROCS/NPROW
   IF(NPROW*NPCOL < MP_NPROCS) THEN
     NPROW=1; NPCOL=MP_NPROCS
   END IF
   CALL BLACS_GRIDINIT(CONTXT, ’Rows’, NPROW, NPCOL)

! Get this processor’s role in the process grid.
   CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYROW, MYCOL)

! Associate context (BLACS) with DNFL communicator:
   CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD)

BLOCK: DO

! Allocate local space for each array.
LDA_A=NUMROC(N, MB, MYROW, 0, NPROW)
TDA_A=NUMROC(N, NB, MYCOL, 0, NPCOL)
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LDA_B=NUMROC(N, MB, MYROW, 0, NPROW)
TDA_B=1

ALLOCATE(d_A(LDA_A,TDA_A), d_B(LDA_B,TDA_B),&
  IPIV(LDA_A+MB))

! A root process is used to create the matrix data for the test.
IF(MP_RANK == 0) THEN
  ALLOCATE(A(N,N), B(N), X(N))
  CALL RANDOM_NUMBER(A); CALL RANDOM_NUMBER(X)

! Compute the correct result.
  B=MATMUL(A,X); SIZE_X=SUM(ABS(X))
  OPEN(UNIT=NIN, FILE=’Atest.dat’, STATUS=’UNKNOWN’)

! Write the data by columns.
  DO J=1,N,NB
    WRITE(NIN,*) ((A(I,L),I=1,N),L=J,min(N,J+NB-1))
  END DO
  CLOSE(NIN)

  OPEN(UNIT=NIN, FILE=’Btest.dat’, STATUS=’UNKNOWN’)
! Write the data by columns.
  WRITE(NIN,*) (B(I),I=1,N)
  CLOSE(NIN)
END IF

! Define the descriptor for the global matrices.
DESC_A=(/1, CONTXT, N, N, MB, NB, 0, 0, LDA_A/)
DESC_B=(/1, CONTXT, N, 1, MB, NB, 0, 0, LDA_B/)
DESC_X=DESC_B

! Read the factors into the local arrays.
CALL ScaLAPACK_READ(’Atest.dat’, DESC_A, d_A)
CALL ScaLAPACK_READ(’Btest.dat’, DESC_B, d_B)

! Compute the distributed product solution to A x = b.
IA=1; JA=1; IB=1; JB=1

CALL pdGESV &
  (N, 1, d_A, IA, JA, DESC_A, IPIV, &
  d_B, IB, JB, DESC_B, INFO)

! Put the result on the root node.
Call ScaLAPACK_WRITE(’Xtest.dat’, DESC_B, d_B)

IF(MP_RANK == 0) THEN

! Read the residuals and check them for size.
  OPEN(UNIT=NIN, FILE=’Xtest.dat’, STATUS=’OLD’)

! Read the approximate solution data.
      READ(NIN,*) B
      B=B-X

  CLOSE(NIN,STATUS=’DELETE’)
  ERROR=SUM(ABS(B))/SIZE_X

! Delete temporary files.
  OPEN(UNIT=NIN, FILE=’Atest.dat’, STATUS=’OLD’)
  CLOSE(NIN,STATUS=’DELETE’)
  OPEN(UNIT=NIN, FILE=’Btest.dat’, STATUS=’OLD’)
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  CLOSE(NIN,STATUS=’DELETE’)

END IF

! The processors in use now exit the loop.
  EXIT BLOCK
END DO BLOCK

! See to any error messages.
  call e1pop("Mp_Setup")

! Deallocate storage arrays and exit from BLACS.
IF(ALLOCATED(A)) DEALLOCATE(A)
IF(ALLOCATED(B)) DEALLOCATE(B)
IF(ALLOCATED(X)) DEALLOCATE(X)
IF(ALLOCATED(d_A)) DEALLOCATE(d_A)
IF(ALLOCATED(d_B)) DEALLOCATE(d_B)
IF(ALLOCATED(IPIV)) DEALLOCATE(IPIV)

IF(ERROR <= SQRT(EPSILON(ERROR)) .and.&
  MP_RANK == 0) THEN
  write(*,*) &
  " Example 3 for BLACS and ScaLAPACK solver is correct."
END IF

! Exit from using this process grid.
  CALL BLACS_GRIDEXIT( CONTXT )
  CALL BLACS_EXIT(0)
END
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Parallel Constrained Least-Squares Solvers
Usage Notes

Solving Constrained Least-Squares Systems

The routine PARALLEL_NONNEGATIVE_LSQ is used to solve dense least-
squares systems.  These are represented by Ax b≅  where A is an m n×
coefficient data matrix, b is a given right-hand side m-vector, and x  is the
solution n -vector being computed.  Further, there is a constraint requirement,
x ≥ 0.  The routine PARALLEL_BOUNDED_LSQ is used when the problem has
lower and upper bounds for the solution, α β≤ ≤x .  By making the bounds
large, individual constraints can be eliminated.  There are no restrictions on  the
relative sizes of  m and n .  When n  is large,  these codes can substantially
reduce computer time and storage requirements, compared with using a routine
for solving a constrained system and a single processor.

The user provides the matrix partitioned by blocks of columns:
A A A Ak= 1 2| |...| .  An individual block of the partitioned matrix, say Ap , is

located entirely on the processor with rank MP_ RANK = p −1, where
MP_RANK is packaged in the module MPI_SETUP_INT.  This module, and the
function MP_SETUP(),defines the Fortran 90 MP Library MPI communicator,
MP_LIBRARY_WORLD.  See Chapter 6, Parallelism Using MPI.

PARALLEL_NONNEGATIVE_LSQ

Solve a linear, non-negative constrained least-squares system.

Usage Notes

CALL PARALLEL_NONNEGATIVE_LSQ&

  (A,B,X,RNORM,W,INDEX,IPART,IOPT = IOPT)

Required Arguments

A(1:M,:)— (Input/Output)  Columns of the matrix with limits given by entries
in the array IPART(1:2,1:max(1,MP_NPROCS)).  On output Ak  is
replaced by the product QAk , where Q is an orthogonal matrix.  The value
SIZE(A,1) defines the value of M.  Each processor starts and exits with its
piece of the partitioned matrix.

B(1:M) — (Input/Output)  Assumed-size array of length M containing the right-
hand side vector, b . On output b  is replaced by the product Qb , where
Q is the orthogonal matrix applied toA .  All processors in the
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communicator start and exit with the same vector.

X(1:N) — (Output)  Assumed-size array of length N containing the solution,
x ≥ 0 .  The value SIZE(X) defines the value of  N.  All processors exit
with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length
of the residual vector, Ax b− .  All processors exit with the same value.

W(1:N) — (Output)  Assumed-size array of length N containing the dual vector,
w A b AxT= − ≤1 6 0.  All processors exit with the same vector.

INDEX(1:N) — (Output)  Assumed-size array of length N containing the
NSETP indices of columns in the positive solution, and the remainder that
are at their constraint.  The  number of positive components in the
solutionx is give by the Fortran intrinsic function value,
NSETP=COUNT(X > 0).  All processors exit with the same array.

IPART(1:2,1:max(1,MP_NPROCS))  — (Input)  Assumed-size array
containing the partitioning describing the matrixA .  The value MP_NPROCS
is the number of processors in the communicator,
except when MPI has been finalized with a call to the routine
MP_SETUP(‘Final’) .  This causes MP_NPROCS to be assigned 0.
Normally users will give the partitioning to processor of rank =
MP_RANK by setting IPART(1,MP_RANK+1)=  first column index, and
IPART(2,MP_RANK+1)= last column index.   The number of columns per
node is typically based on their relative computing power.  To avoid a node
with rank MP_RANK doing any work except communication, set
IPART(1,MP_RANK+1) = 0  and IPART(2,MP_RANK+1)= -1 .  In this
exceptional case there is no reference to the array A(:,:) at that node.

Optional Argument

IOPT(:)— (Input)  Assumed-size array of derived type S_OPTIONS or
D_OPTIONS.  This argument is used to change internal parameters of the
algorithm.  Normally users will not be concerned about this argument, so
they would not include it in the argument list for the routine.

Packaged Options for PARALLEL_NONNEGATIVE_LSQ

Option Name Option Value
PNLSQ_SET_TOLERANCE 1

PNLSQ_SET_MAX_ITERATIONS 2

PNLSQ_SET_MIN_RESIDUAL 3



IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers • 247

IOPT(IO)=?_OPTIONS(PNLSQ_SET_TOLERANCE, TOLERANCE) Replaces
the default rank tolerance for using a column, from
EPSILON(TOLERANCE) to TOLERANCE.  Increasing the value of
TOLERANCE will cause fewer columns to be moved from their
constraints, and may  cause the minimum residual RNORM to increase.

IOPT(IO)=?_OPTIONS(PNLSQ_SET_MIN_RESIDUAL, RESID) Replaces
the default target for the minimum residual vector length from 0 to RESID.
Increasing the value of RESID can result in fewer iterations and thus
increased efficiency. The descent in the optimization will stop at the first
point where the minimum residual RNORM is smaller than RESID. Using this
option may result in the dual vector not satisfying its optimality conditions,
as noted above.

IOPT(IO)= PNLSQ_SET_MAX_ITERATIONS

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum
number of iterations from 3*N to NEW_MAX_ITERATIONS.  Note that this
option requires two entries in the derived type array.

Algorithm

Subroutine PARALLEL_NONNEGATIVE_LSQ solves the linear least-squares
system Ax b x≅ ≥, 0, using the algorithm NNLS found in Lawson and Hanson,
(1995), pages 160-161.  The code now updates the dual vector w of  Step 2,
page 161.  The remaining new steps involve exchange of required data, using
MPI.

Example 1: Distributed Linear Inequality Constraint Solver

The program PNLSQ_EX1 illustrates the computation of the minimum Euclidean
length solution of an m n’ ’×  system of linear inequality constraints , Gy h≥ .
The solution algorithm is based on Algorithm LDP, page 165-166, loc. cit.  The
rows of E G h= : are partitioned and assigned random values.  When the

minimum Euclidean length solution to the inequalities has been calculated, the
residuals r Gy h= − ≥ 0 are computed, with the dual variables to the NNLS
problem indicating  the entries of  r  that are precisely zero.

The fact that matrix products involving both E  and E T  are needed to compute
the constrained solution y  and the residuals r , implies that message passing is
required.  This occurs after the NNLS solution is computed.

      PROGRAM PNLSQ_EX1
! Use Parallel_nonnegative_LSQ to solve an inequality
! constraint problem, Gy >= h. This algorithm uses
! Algorithm LDP of Solving Least Squares Problems,
! page 165. The constraints are allocated to the
! processors, by rows, in columns of the array A(:,:).
        USE PNLSQ_INT
        USE MPI_SETUP_INT
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        USE RAND_INT
        USE SHOW_INT

        IMPLICIT NONE
        INCLUDE "mpif.h"

        INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, N=MP

        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0
        REAL(KIND(1D0)), ALLOCATABLE :: &
          A(:,:), B(:), X(:), Y(:), W(:), ASAVE(:,:)
        REAL(KIND(1D0)) RNORM
        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

        INTEGER K, L, DN, J, JSHIFT, IERROR
        LOGICAL :: PRINT=.false.

! Setup for MPI:
        MP_NPROCS=MP_SETUP()

        DN=N/max(1,max(1,MP_NPROCS))-1
        ALLOCATE(IPART(2,max(1,MP_NPROCS)))

! Spread constraint rows evenly to the processors.
        IPART(1,1)=1
        DO L=2,MP_NPROCS
           IPART(2,L-1)=IPART(1,L-1)+DN
           IPART(1,L)=IPART(2,L-1)+1
        END DO
        IPART(2,MP_NPROCS)=N

! Define the constraint data using random values.
        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
        ALLOCATE(A(M,K), ASAVE(M,K), X(N), W(N), &
          B(M), Y(M), INDEX(N))

! The use of ASAVE can be removed by regenerating
! the data for A(:,:) after the return from
! Parallel_nonnegative_LSQ.
        A=rand(A); ASAVE=A
        IF(MP_RANK == 0 .and. PRINT) &
          CALL SHOW(IPART, &
            "Partition of the constraints to be solved")

! Set the right-hand side to be one in the last component, zero elsewhere.
        B=ZERO;B(M)=ONE

! Solve the dual problem.
        CALL Parallel_nonnegative_LSQ &
          (A, B, X, RNORM, W, INDEX, IPART)

! Each processor multiplies its block times the part of
! the dual corresponding to that part of the partition.
        Y=ZERO
        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
           JSHIFT=J-IPART(1,MP_RANK+1)+1
           Y=Y+ASAVE(:,JSHIFT)*X(J)
        END DO

! Accumulate the pieces from all the processors. Put sum into B(:)
! on rank 0 processor.
        B=Y
        IF(MP_NPROCS > 1) &
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          CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,&
           MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)
        IF(MP_RANK == 0) THEN

! Compute constrained solution at the root.
! The constraints will have no solution if B(M) = ONE.
! All of these example problems have solutions.
           B(M)=B(M)-ONE;B=-B/B(M)
        END IF

! Send the inequality constraint solution to all nodes.
      IF(MP_NPROCS > 1) &
        CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, &
         0, MP_LIBRARY_WORLD, IERROR)

! For large problems this printing needs to be removed.
      IF(MP_RANK == 0 .and. PRINT) &
CALL SHOW(B(1:NP), &

          "Minimal length solution of the constraints")

! Compute residuals of the individual constraints.
! If only the solution is desired, the program ends here.
        X=ZERO
        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
           JSHIFT=J-IPART(1,MP_RANK+1)+1
           X(J)=dot_product(B,ASAVE(:,JSHIFT))
        END DO

! This cleans up residuals that are about rounding
! error unit (times) the size of the constraint
! equation and right-hand side.  They are replaced
! by exact zero.
        WHERE(W == ZERO) X=ZERO; W=X

! Each group of residuals is disjoint, per processor.
! We add all the pieces together for the total set of
! constraints.
        IF(MP_NPROCS > 1) &
          CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION,&
            MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)
        IF(MP_RANK == 0 .and. PRINT) &
          CALL SHOW(W, "Residuals for the constraints")

! See to any errors and shut down MPI.
        MP_NPROCS=MP_SETUP(’Final’)
        IF(MP_RANK == 0) THEN
          IF(COUNT(W < ZERO) == 0) WRITE(*,*)&
          " Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct."
END IF

     END

Example 2: Distributed Non-negative Least-Squares

The program PNLSQ_EX2 illustrates the computation of the solution to a system
of linear least-squares equations with simple constraints:
a x b i mi

T
i≅ =, ,..., ,1 subject to x ≥ 0.  In this example we write the row vectors

a bi
T

i:  on a file.  This illustrates reading the data by rows and arranging the



250 • Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

data by columns, as required by PARALLEL_NONNEGATIVE_LSQ.  After
reading the data, the right-hand side vector is broadcast to the group before
computing a solution, x .  The block-size is chosen so that each participating
processor receives the same number of columns, except any remaining columns
sent to the processor with largest rank.  This processor contains the right-hand
side before the broadcast.

This example illustrates connecting a BLACS ‘context’ handle and the
Fortran 90 MP Library MPI communicator, MP_LIBRARY_WORLD, described
in Chapter 6.

   PROGRAM PNLSQ_EX2
! Use Parallel_Nonnegative_LSQ to solve a least-squares
! problem, A x = b, with x >= 0. This algorithm uses a
! distributed version of NNLS,  found in the book
! Solving Least Squares Problems, page 165. The data is
! read from a file, by rows, and sent to the processors,
! as array columns.

   USE PNLSQ_INT
   USE SCALAPACK_IO_INT
   USE BLACS_INT

   USE MPI_SETUP_INT
   USE RAND_INT
   USE ERROR_OPTION_PACKET

   IMPLICIT NONE
   INCLUDE "mpif.h"

   INTEGER, PARAMETER :: M=128, N=32, NP=N+1, NIN=10

   real(kind(1d0)), ALLOCATABLE, DIMENSION(:) :: &
     d_A(:,:), A(:,:), B, C, W, X, Y
   real(kind(1d0)) RNORM, ERROR
   INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

   INTEGER I, J, K, L, DN, JSHIFT, IERROR, &
     CONTXT, NPROW, MYROW, MYCOL, DESC_A(9)
   TYPE(d_OPTIONS) IOPT(1)

! Routines with the "BLACS_" prefix are from the
! BLACS library.
   CALL BLACS_PINFO(MP_RANK, MP_NPROCS)

! Make initialization for BLACS.
   CALL BLACS_GET(0,0, CONTXT)

! Define processor grid to be 1 by MP_NPROCS.
   NPROW=1
   CALL BLACS_GRIDINIT(CONTXT, ’N/A’, NPROW, MP_NPROCS)

! Get this processor’s role in the process grid.
   CALL BLACS_GRIDINFO(CONTXT, NPROW, MP_NPROCS, &
     MYROW, MYCOL)

! Connect BLACS context with communicator MP_LIBRARY_WORLD.
   CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD)

! Setup for MPI:
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   MP_NPROCS=MP_SETUP()

   DN=max(1,NP/MP_NPROCS)
   ALLOCATE(IPART(2,MP_NPROCS))

! Spread columns evenly to the processors.  Any odd
! number of columns are in the processor with highest
! rank.
   IPART(1,:)=1; IPART(2,:)=0
   DO L=2,MP_NPROCS
     IPART(2,L-1)=IPART(1,L-1)+DN
     IPART(1,L)=IPART(2,L-1)+1
   END DO
   IPART(2,MP_NPROCS)=NP
   IPART(2,:)=min(NP,IPART(2,:))

! Note which processor (L-1) receives the right-hand side.
   DO L=1,MP_NPROCS
     IF(IPART(1,L) <= NP .and. NP <= IPART(2,L)) EXIT
   END DO

   K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
   ALLOCATE(d_A(M,K), W(N), X(N), Y(N),&
     B(M), C(M), INDEX(N))

   IF(MP_RANK == 0 ) THEN
     ALLOCATE(A(M,N))
! Define the matrix data using random values.
     A=rand(A); B=rand(B)

! Write the rows of data to an external file.
     OPEN(UNIT=NIN, FILE=’Atest.dat’, STATUS=’UNKNOWN’)
     DO I=1,M
       WRITE(NIN,*) (A(I,J),J=1,N), B(I)
     END DO
     CLOSE(NIN)
   ELSE

! No resources are used where this array is not saved.
     ALLOCATE(A(M,0))
   END IF

! Define the matrix descriptor.  This includes the
! right-hand side as an additional column.  The row
! block size, on each processor, is arbitrary, but is
! chosen here to match the column block size.
   DESC_A=(/1, CONTXT, M, NP, DN+1, DN+1, 0, 0, M/)

! Read the data by rows.
   IOPT(1)=ScaLAPACK_READ_BY_ROWS
   CALL ScaLAPACK_READ ("Atest.dat", DESC_A, &
    d_A, IOPT=IOPT)

! Broadcast the right-hand side to all processors.
   JSHIFT=NP-IPART(1,L)+1
   IF(K > 0) B=d_A(:,JSHIFT)
   IF(MP_NPROCS > 1) &
     CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION , L-1, &
       MP_LIBRARY_WORLD, IERROR)

! Adjust the partition of columns to ignore the
! last column, which is the right-hand side. It is
! now moved to B(:).
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   IPART(2,:)=min(N,IPART(2,:))

! Solve the constrained distributed problem.
       C=B
       CALL Parallel_Nonnegative_LSQ &
       (d_A, B, X, RNORM, W, INDEX, IPART)

! Solve the problem on one processor, with data saved
! for a cross-check.
       IPART(2,:)=0; IPART(2,1)=N; MP_NPROCS=1

! Since all processors execute this code, all arrays
! must be allocated in the main program.
       CALL Parallel_Nonnegative_LSQ &
       (A, C, Y, RNORM, W, INDEX, IPART)

! See to any errors.
       CALL e1pop("Mp_Setup")

! Check the differences in the two solutions.  Unique solutions
! may differ in the last bits, due to rounding.
   IF(MP_RANK == 0) THEN
     ERROR=SUM(ABS(X-Y))/SUM(Y)
     IF(ERROR <= sqrt(EPSILON(ERROR))) write(*,*) &
       ’ Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.’
     OPEN(UNIT=NIN, FILE=’Atest.dat’, STATUS=’OLD’)
     CLOSE(NIN, STATUS=’Delete’)
   END IF

! Exit from using this process grid.
  CALL BLACS_GRIDEXIT( CONTXT )
  CALL BLACS_EXIT(0)

  END

PARALLEL_BOUNDED_LSQ

Solve a linear least-squares system with bounds on the unknowns.

Usage Notes
CALL PARALLEL_BOUNDED_LSQ &
(A, B, BND, X, RNORM, W, INDEX, IPART,&

  NSETP, NSETZ, IOPT=IOPT)

Required Arguments

A(1:M,:)— (Input/Output)  Columns of the matrix with limits given by
entries in the array IPART(1:2,1:max(1,MP_NPROCS)).  On
output Ak  is replaced by the product QAk , where Q is an orthogonal
matrix.  The value SIZE(A,1) defines the value of M.  Each
processor starts and exits with its piece of the partitioned matrix.
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B(1:M) — (Input/Output)  Assumed-size array of length M containing the
right-hand side vector, b . On output b  is replaced by the product
Q b Ag−1 6, where Q is the orthogonal matrix applied toA  and g  is a

set of active bounds for the solution.  All processors in the
communicator start and exit with the same vector.

BND(1:2,1:N) — (Input)  Assumed-size array containing the bounds for
x .  The lower bound α j  is in BND(1,J), and the upper bound β j  is

in BND(2,J).

X(1:N) — (Output)  Assumed-size array of length N containing the
solution, α β≤ ≤x .  The value SIZE(X) defines the value of  N.  All
processors exit with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares
length of the residual vector, Ax b− .  All processors exit with the

same value.

W(1:N) — (Output)  Assumed-size array of length N containing the dual
vector, w A b AxT= −1 6 .  At a solution exactly one of the following is

true for each j j n, ,1≤ ≤

• = =

• = ≤

• = ≥

• < <

α β

α
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α β

j j j j

j j j

j j j
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x w

x w
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,

,

,

and  arbitrary

and 0

and 

and = 0

0

All processors exit with the same vector.

INDEX(1:N) — (Output)  Assumed-size array of length N containing the
NSETP indices of columns in the solution interior to bounds, and the
remainder that are at a constraint. All processors exit with the same
array.

IPART(1:2,1:max(1,MP_NPROCS))  — (Input)  Assumed-size array
containing the partitioning describing the matrixA .  The value
MP_NPROCS is the number of processors in the communicator, except
when MPI has been finalized with a call to the routine
MP_SETUP(‘Final’).   This causes MP_NPROCS to be assigned 0.
Normally users will give the partitioning to processor of rank =
MP_RANK by setting IPART(1,MP_RANK+1)=  first column index,
and IPART(2,MP_RANK+1)= last column index.   The number of
columns per node is typically based on their relative computing
power.  To avoid a node with rank MP_RANK doing any work except
communication, set IPART(1,MP_RANK+1) = 0  and
IPART(2,MP_RANK+1)= -1 .  In this exceptional case there is no
reference to the array A(:,:) at that node.



254 • Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

NSETP— (Output) An INTEGER indicating the number of solution
components not at constraints.  The column indices are output in the
array INDEX(:).

NSETZ— (Output) An INTEGER indicating the solution  components
held at fixed values.  The column indices are output in the array
INDEX(:).

Optional Argument

IOPT(:)— (Input)  Assumed-size array of derived type S_OPTIONS or
D_OPTIONS.  This argument is used to change internal parameters of
the algorithm.  Normally users will not be concerned about this
argument, so they would not include it in the argument list for the
routine.

Packaged Options for PARALLEL_BOUNDED_LSQ

Option Name Option Value

PBLSQ_SET_TOLERANCE 1

PBLSQ_SET_MAX_ITERATIONS 2

PBLSQ_SET_MIN_RESIDUAL 3

IOPT(IO)=?_OPTIONS(PBLSQ_SET_TOLERANCE, TOLERANCE) Replaces the
default rank tolerance for using a column, from EPSILON(TOLERANCE) to
TOLERANCE.  Increasing the value of TOLERANCE will cause fewer columns
to be increased from their constraints, and may  cause the minimum residual
RNORM to increase.

IOPT(IO)=?_OPTIONS(PBLSQ_SET_MIN_RESIDUAL, RESID) Replaces the
default target for the minimum residual vector length from 0 to RESID.
Increasing the value of RESID can result in fewer iterations and thus
increased efficiency. The descent in the optimization will stop at the first
point where the minimum residual RNORM is smaller than RESID.  Using this
option may result in the dual vector not satisfying its optimality conditions, as
noted above.

IOPT(IO)= PBLSQ_SET_MAX_ITERATIONS

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number
of iterations from 3*N to NEW_MAX_ITERATIONS.  Note that this option
requires two entries in the derived type array.
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Algorithm

Subroutine PARALLEL_BOUNDED_LSQ solves the least-squares linear system
Ax b x≅ ≤ ≤, α β , using the algorithm BVLS found in Lawson and Hanson,
(1995), pages 279-283.  The new steps involve updating the dual vector and
exchange of required data, using MPI.  The optional changes to default
tolerances, minimum residual, and the number of iterations are new features.

Example 1: Distributed Equality and Inequality Constraint Solver

The program PBLSQ_EX1 illustrates the computation of the minimum Euclidean
length solution of an m n’ ’×  system of linear inequality constraints , Gy h≥ .
Additionally the first f > 0 of the constraints are equalities.  The solution
algorithm is based on Algorithm LDP, page 165-166, loc. cit.  By allowing the
dual variables to be free,  the constraints become equalities.  The rows of
E G h= : are partitioned and assigned random values.  When the minimum

Euclidean length solution to the inequalities has been calculated, the residuals
r Gy h= − ≥ 0 are computed, with the dual variables to the BVLS problem
indicating  the entries of  r  that are exactly zero.

      PROGRAM PBLSQ_EX1
! Use Parallel_bounded_LSQ to solve an inequality
! constraint problem, Gy >= h. Force F of the constraints
! to be equalities. This algorithm uses LDP of
! Solving Least Squares Problems, page 165.
! Forcing equality constraints by freeing the dual is
! new here. The constraints are allocated to the
! processors, by rows, in columns of the array A(:,:).
        USE PBLSQ_INT
        USE MPI_SETUP_INT
        USE RAND_INT
        USE SHOW_INT

        IMPLICIT NONE
        INCLUDE "mpif.h"

        INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, &
          N=MP, F=NP/10

        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0
        REAL(KIND(1D0)), ALLOCATABLE :: &
  A(:,:), B(:), BND(:,:), X(:), Y(:), &

          W(:), ASAVE(:,:)
        REAL(KIND(1D0)) RNORM
        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

        INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, NSETZ
        LOGICAL :: PRINT=.false.

! Setup for MPI:
        MP_NPROCS=MP_SETUP()

        DN=N/max(1,max(1,MP_NPROCS))-1
        ALLOCATE(IPART(2,max(1,MP_NPROCS)))
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! Spread constraint rows evenly to the processors.
        IPART(1,1)=1
        DO L=2,MP_NPROCS
           IPART(2,L-1)=IPART(1,L-1)+DN
           IPART(1,L)=IPART(2,L-1)+1
        END DO
        IPART(2,MP_NPROCS)=N

! Define the constraints using random data.
        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
        ALLOCATE(A(M,K), ASAVE(M,K), BND(2,N), &
          X(N), W(N), B(M), Y(M), INDEX(N))

! The use of ASAVE can be replaced by regenerating the
! data for A(:,:) after the return from
! Parallel_bounded_LSQ
        A=rand(A); ASAVE=A
        IF(MP_RANK == 0 .and. PRINT) &
          call show(IPART,&
            "Partition of the constraints to be solved")

! Set the right-hand side to be one in the last
! component, zero elsewhere.
        B=ZERO;B(M)=ONE

! Solve the dual problem. Letting the dual variable
! have no constraint forces an equality constraint
! for the primal problem.
        BND(1,1:F)=-HUGE(ONE); BND(1,F+1:)=ZERO
        BND(2,:)=HUGE(ONE)
        CALL Parallel_bounded_LSQ &
          (A, B, BND, X, RNORM, W, INDEX, IPART, &
            NSETP, NSETZ)

! Each processor multiplies its block times the part
! of the dual corresponding to that partition.
        Y=ZERO
        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
           JSHIFT=J-IPART(1,MP_RANK+1)+1
           Y=Y+ASAVE(:,JSHIFT)*X(J)
        END DO

! Accumulate the pieces from all the processors.
! Put sum into B(:) on rank 0 processor.
        B=Y
        IF(MP_NPROCS > 1) &
          CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,&
           MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)
        IF(MP_RANK == 0) THEN

! Compute constraint solution at the root.
! The constraints will have no solution if B(M) = ONE.
! All of these example problems have solutions.
           B(M)=B(M)-ONE;B=-B/B(M)
        END IF

! Send the inequality constraint or primal solution to all nodes.
  IF(MP_NPROCS > 1) &
    CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, 0, &
      MP_LIBRARY_WORLD, IERROR)

! For large problems this printing may need to be removed.
        IF(MP_RANK == 0 .and. PRINT) &



IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers • 257

          call show(B(1:NP), &
            "Minimal length solution of the constraints")

! Compute residuals of the individual constraints.
        X=ZERO
        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
           JSHIFT=J-IPART(1,MP_RANK+1)+1
           X(J)=dot_product(B,ASAVE(:,JSHIFT))
        END DO

! This cleans up residuals that are about rounding error
! unit (times) the size of the constraint equation and
! right-hand side.  They are replaced by exact zero.
        WHERE(W == ZERO) X=ZERO
        W=X

! Each group of residuals is disjoint, per processor.
! We add all the pieces together for the total set of
! constraints.
      IF(MP_NPROCS > 1) &
        CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION, &
          MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)
        IF(MP_RANK == 0 .and. PRINT) &
          call show(W, "Residuals for the constraints")

! See to any errors and shut down MPI.
        MP_NPROCS=MP_SETUP(’Final’)
        IF(MP_RANK == 0) THEN
          IF(COUNT(W < ZERO) == 0 .and.&
    COUNT(W == ZERO) >= F) WRITE(*,*)&

            " Example 1 for PARALLEL_BOUNDED_LSQ is correct."
        END IF
     END

Example 2: Distributed Newton-Raphson Method with Step Control

The program PBLSQ_EX2 illustrates the computation of the solution of a non-
linear system of equations.  We use a constrained Newton-Raphson method.
This algorithm works with the problem chosen for illustration.  The step-size
control used here, employing only simple bounds, may not work on other non-
linear systems of equations.  Therefore we do not recommend the simple non-
linear solving technique illustrated here for an arbitrary problem.  The test case is
Brown’s Almost Linear Problem, Moré, et al. (1982).  The components are given
by:

• = + − + = −

• = −
=

∑f x x x n i n

f x x x
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The functions are zero at the pointx n T
= −δ δ δ,..., , 14 9 , where δ > 1 is a particular

root of the polynomial equation n nn nδ δ− + + =−1 1 011 6 .   To avoid convergence

to the local minimum x n
T= +0 0 1,..., ,1 6 , we start at the standard point
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x
T= 1 2 1 2 1 2/ ,..., / , /1 6 and develop the Newton method using the linear terms

f x y f x J x y− ≈ − ≅1 6 1 6 1 6 0, where J x1 6is the Jacobian matrix.  The update is

constrained so that the first n −1 components satisfy x yj j− ≥ 1 2/ , or

y xj j≤ −1 2/ .  The last component is bounded from both sides,

0 1 2< − ≤x yn n / ,  or x y xn n n> ≥ −1 2/1 6 .  These bounds avoid the local

minimum and allow us to replace the last equation by  ln x j
j

n

3 8
=

∑ =
1

0, which is

better scaled than the original.   The positive lower bound for x yn n−  is replaced
by the strict bound, EPSILON(1D0), the arithmetic precision, which restricts the
relative accuracy of xn .  The input for routine PARALLEL_BOUNDED_LSQ

expects each processor to obtain that part of J x1 6 it owns.  Those columns of the

Jacobian matrix correspond to the partition given in the array IPART(:,:).  Here
the columns of the matrix are evaluated, in parallel, on the nodes where they are
required.

      PROGRAM PBLSQ_EX2
! Use Parallel_bounded_LSQ to solve a non-linear system
! of equations. The example is an ACM-TOMS test problem,
! except for the larger size.  It is "Brown’s Almost Linear
! Function."
        USE ERROR_OPTION_PACKET
        USE PBLSQ_INT
        USE MPI_SETUP_INT
        USE SHOW_INT
        USE Numerical_Libraries, ONLY : N1RTY

        IMPLICIT NONE

        INTEGER, PARAMETER :: N=200, MAXIT=5

        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0,&
          HALF=5D-1, TWO=2D0
        REAL(KIND(1D0)), ALLOCATABLE :: &
         A(:,:), B(:), BND(:,:), X(:), Y(:), W(:)
        REAL(KIND(1D0)) RNORM
        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

        INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, &
          NSETZ, ITER
        LOGICAL :: PRINT=.false.
        TYPE(D_OPTIONS) IOPT(3)

! Setup for MPI:
        MP_NPROCS=MP_SETUP()

        DN=N/max(1,max(1,MP_NPROCS))-1
        ALLOCATE(IPART(2,max(1,MP_NPROCS)))

! Spread Jacobian matrix columns evenly to the processors.
        IPART(1,1)=1
        DO L=2,MP_NPROCS
           IPART(2,L-1)=IPART(1,L-1)+DN
           IPART(1,L)=IPART(2,L-1)+1
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        END DO
        IPART(2,MP_NPROCS)=N

        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
        ALLOCATE(A(N,K), BND(2,N), &
          X(N), W(N), B(N), Y(N), INDEX(N))

! This is Newton’s method on "Brown’s almost
! linear function."
        X=HALF
ITER=0

! Turn off messages and stopping for FATAL class errors.
        CALL ERSET (4, 0, 0)

NEWTON_METHOD: DO

! Set bounds for the values after the step is taken.
! All variables are positive and bounded below by HALF,
! except for variable N, which has an upper bound of HALF.
        BND(1,1:N-1)=-HUGE(ONE)
        BND(2,1:N-1)=X(1:N-1)-HALF
BND(1,N)=X(N)-HALF

        BND(2,N)=X(N)-EPSILON(ONE)

! Compute the residual function.
        B(1:N-1)=SUM(X)+X(1:N-1)-(N+1)
B(N)=LOG(PRODUCT(X))
if(mp_rank == 0 .and. PRINT) THEN
  CALL SHOW(B, &

            "Developing non-linear function residual")
END IF

        IF (MAXVAL(ABS(B(1:N-1))) <= SQRT(EPSILON(ONE)))&
          EXIT NEWTON_METHOD

! Compute the derivatives local to each processor.
        A(1:N-1,:)=ONE
        DO J=1,N-1
          IF(J < IPART(1,MP_RANK+1)) CYCLE
          IF(J > IPART(2,MP_RANK+1)) CYCLE
  JSHIFT=J-IPART(1,MP_RANK+1)+1
  A(J,JSHIFT)=TWO
END DO

        A(N,:)=ONE/X(IPART(1,MP_RANK+1):IPART(2,MP_RANK+1))

! Reset the linear independence tolerance.
        IOPT(1)=D_OPTIONS(PBLSQ_SET_TOLERANCE,&
          sqrt(EPSILON(ONE)))
IOPT(2)=PBLSQ_SET_MAX_ITERATIONS

! If N iterations was not enough on a previous iteration, reset to 2*N.
IF(N1RTY(1) == 0) THEN
  IOPT(3)=N

        ELSE
          IOPT(3)=2*N
  CALL E1POP(’MP_SETUP’)

          CALL E1PSH(’MP_SETUP’)
        END IF

        CALL parallel_bounded_LSQ &
          (A, B, BND, Y, RNORM, W, INDEX, IPART, NSETP, &
            NSETZ,IOPT=IOPT)
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! The array Y(:) contains the constrained Newton step.
! Update the variables.
        X=X-Y
        
       IF(mp_rank == 0 .and. PRINT) THEN
          CALL show(BND, "Bounds for the moves")
          CALL SHOW(X, "Developing Solution")
          CALL SHOW((/RNORM/), &
            "Linear problem residual norm")
        END IF

! This is a safety measure for not taking too many steps.
ITER=ITER+1
IF(ITER > MAXIT) EXIT NEWTON_METHOD

      END DO NEWTON_METHOD

      IF(MP_RANK == 0) THEN
        IF(ITER <= MAXIT) WRITE(*,*)&
        " Example 2 for PARALLEL_BOUNDED_LSQ is correct."
      END IF

! See to any errors and shut down MPI.
        MP_NPROCS=MP_SETUP(’Final’)

     END
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Introduction
This chapter describes an algorithm and a corresponding integrator subroutine
PDE_1D_MG for solving a system of partial differential equations

u
u

t
f u x t x x x t tt L R≡ =  < < >∂

∂
( , , ),  , 0

Equation 1

This software is a one-dimensional solver.  It requires initial and boundary

conditions in addition to values of ut .  The integration method is noteworthy due
to the maintenance of grid lines in the space variable, x .  Details for choosing
new grid lines are given in Blom and Zegeling, (1994).  The class of Equation 1
problems solved with PDE_1D_MG is expressed by equations:
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The vector 
u u u NPDE T

≡ 1 ,...,
is the solution.  The integer value NPDE ≥ 1 is the

number of differential equations.  The functions 
R Qj j and 

 can be regarded, in

special cases, as flux and source terms.  The functions 
u C R Qj k j j, ,,  and 

 are
expected to be continuous.  Allowed values m m m= = =0 1 2, , and  are for
problems in Cartesian, cylindrical polar, and spherical polar coordinates.  In the

two cases m > 0, the interval x xL R,  must not contain x = 0 as an interior point.

The boundary conditions have the master equation form

β γj j x j x

L R

x t R x t u u x t u u

x x x x j NPDE

, , , , , , , ,

, ,...,

1 6 1 6 1 6=

= = =at  and  1

Equation 3

In the boundary conditions the 
β γj j and 

are continuous functions of their
arguments.  In the two cases m > 0 and an endpoint occurs at 0,  the finite value
of the solution at x = 0 must be ensured.  This requires the specification of the

solution at x = 0, or implies that 
Rj x xL=

= 0
 or 

Rj x xR=
= 0

.  The initial values

satisfy u x t u x x x xL R, , ,0 01 6 1 6= ∈ , where u0 is a piece-wise continuous vector
function of x  with NPDE  components.

The user must pose the problem so that mathematical definitions are known for

the functions 
C R Q uk j j j j j, , , , , ,β γ  and 0 .  These functions are provided to the

routine PDE_1D_MG in the form of  three subroutines.  Optionally, this
information can be provided by reverse communication.  These forms of the
interface are explained below and illustrated with examples.  Users may turn
directly to the examples if they are comfortable with the description of the
algorithm.

Algorithm Summary

The equation u f u x t x x x t tt L R= < < >( , , ), , 0, is approximated at N  time-

dependent grid values x x x t x t x xL i i N R= < < < < < =+0 1... ...1 6 1 6 .  Using the total
differential

du

dt
u u

dx

dtt x= +

 transforms the differential equation to

 

du

dt
u

dx

dt
u f u x tx t− = = , ,1 6

.

Using central divided differences for the factor ux leads to the system of ordinary
differential equations in implicit form
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The terms U Fi i,  respectively represent the approximate solution to the partial

differential equation and the value of f u x t, ,1 6  at the point 
x t x t ti, ,1 6 1 62 7=

.  The
truncation error is second-order in the space variable, x .  The above ordinary
differential equations are underdetermined, so additional equations are added for
the variation of the time-dependent grid points.  It is necessary to discuss these
equations, since they contain parameters that can be adjusted by the user.  Often it
will be necessary to modify these parameters to solve a difficult problem.  For
this purpose the following quantities are defined1:
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The values ni  are the so-called point concentration of the grid, and κ ≥ 0 denotes
a spatial smoothing parameter.  Now the grid points are defined implicitly so that
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where τ ≥ 0 is a time-smoothing parameter.  Choosing τ  very large results in a
fixed grid. Increasing the value of τ  from its default avoids the error condition
where grid lines cross.  The divisors are
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The value κ  determines the level of clustering or spatial smoothing of the grid
points.  Decreasing κ  from its default decrease the amount of spatial smoothing.

The parameters Mi  approximate arc length and help determine the shape of the

grid or xi -distribution.  The parameter τ prevents the grid movement from

adjusting immediately to new values of the Mi , thereby avoiding oscillations in
the grid that cause large relative errors.  This is important when applied to
solutions with steep gradients.

The discrete form of the differential equation and the smoothing equations are
combined to yield the implicit system of differential equations

                                                          
1 The three-tiered equal sign, used here and below, is read “a b≡ or a  and b  are exactly the same
object or value.”
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This is frequently a stiff differential-algebraic system.  It is solved using the
integrator DASPG and its subroutines, including D2SPG.  These are documented in
the IMSL Fortran Numerical Library, Chapter 5.  Note that DASPG is restricted to
use within PDE_1D_MG until the routine exits with the flag
IDO = 3.  If DASPG is needed during the evaluations of the differential equations
or boundary conditions, use of a second processor and inter-process
communication is required.  The only options for DASPG set by PDE_1D_MG are
the Maximum BDF Order, and the absolute and relative error values, ATOL and
RTOL.  Users may set other options using the Options Manager.  This is described
in Chapter 5, for DASPG, and generally in Chapter 10 of the IMSL Fortran
Numerical Library.

PDE_1D_MG_INT
Invoke a module, with the statement USE PDE_1D_MG_INT, near the second line
of the program unit.  The integrator is provided with single or double precision
arithmetic, and a generic named interface is provided.  We do not recommend
using 32-bit floating point arithmetic here.  The routine is called within the
following loop, and is entered with each value of IDO.  The loop continues until a
value of IDO results in an exit.

IDO=1

DO

CASE(IDO == 1) {Do required initialization steps}

CASE(IDO == 2) {Save solution, update T0 and TOUT }

IF{Finished with integration} IDO=3

CASE(IDO == 3) EXIT {Normal}

CASE(IDO == 4) EXIT {Due to errors}

CASE(IDO == 5) {Evaluate initial data}

CASE(IDO == 6) {Evaluate differential equations}

CASE(IDO == 7) {Evaluate boundary conditions}

CASE(IDO == 8) {Prepare to solve banded system}

CASE(IDO == 9) {Solve banded system}

CALL PDE_1D_MG (T0, TOUT, IDO, U,&
initial_conditions,&
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pde_system_definition,&
boundary_conditions, IOPT)

END DO

The arguments to PDE_1D_MG are required or optional.

Required Arguments

T0—(Input/Output)

This is the value of the independent variable t where the integration of ut

begins.  It is set to the value TOUT on return.

TOUT—(Input)

This is the value of the independent variable t where the integration of ut

ends.  Note:  Values of T0 < TOUT imply integration in the forward
direction.  While Values of T0 > TOUT imply integration in the backward
direction.  Either direction is permitted.

IDO—(Input/Output)
This in an integer flag that directs program control and user action.  Its value
is used for initialization, termination, and for directing user response during
reverse communication.

IDO=1  This value is assigned by the user for the start of a new problem.
Internally it causes allocated storage to be reallocated, conforming to the
problem size.  Various initialization steps are performed.

IDO=2  This value is assigned by the routine when the integrator has successfully
reached the end point, TOUT.

IDO=3  This value is assigned by the user at the end of a problem. The routine is
called by the user with this value.  Internally it causes termination steps to be
performed.

IDO=4  This value is assigned by the integrator when a type FATAL or TERMINAL
error condition has occurred, and error processing is set NOT to STOP for
these types of errors.  It is not necessary to make a final call to the integrator
with IDO=3 in this case.

Values of IDO = 5,6,7,8,9 are reserved for applications that provide problem
information or linear algebra computations using reverse communication.
When problem information is provided using reverse communication, the
differential equations, boundary conditions and initial data must all be given.
The absence of optional subroutine names in the calling sequence directs the
routine to use reverse communication.  In the module PDE_1D_MG_INT,
scalars and arrays for evaluating results are named below.  The names are
preceded by the prefix “s_pde_1d_mg_” or “d_pde_1d_mg_”, depending
on the precision.  We use the prefix “?_pde_1d_mg_”, for the appropriate
choice.
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IDO=5  This value is assigned by the integrator, requesting data for the initial
conditions.  Following this evaluation the integrator is re-entered.

(Optional) Update the grid of values in array locations
U NPDE j j N( , ), ,...,+ = −1 2 1.  This grid is returned to the user
equally spaced, but can be updated as desired, provided the values
are increasing.

(Required) Provide initial values for all components of the system at the

grid of values U NPDE j j N( , ), ,...,+ =1 1 .  If the optional step of
updating the initial grid is performed, then the initial values are
evaluated at the updated grid.

IDO=6  This value is assigned by the integrator, requesting data for the
differential equations.  Following this evaluation the integrator is re-entered.
Evaluate the terms of the system of Equation 2.  A default value of m = 0  is
assumed, but this can be changed to one of the other choices m = 1 2 or .  Use
the optional argument IOPT(:) for that purpose.  Put the values in the arrays
as indicated2.

x pde d mg x

t pde d mg t

u pde d mg u j

u

x
u pde d mg dudx j

pde d mg c j k C x t u u

pde d mg r j r x t u u

pde d mg q j q x t u u

j k NPDE

j

j

x
j

j k x

j x

j x

≡
≡

≡

= ≡

=

=

=

=

?_ _ _ _

?_ _ _ _

?_ _ _ _

?_ _ _ _

?_ _ _ _

?_ _ _ _

?_ _ _ _

1

1

1

1

1

1

1

1

( )

( , ) : , , ,

: , , ,

: , , ,

, ,...,

,

∂
∂

1 6
1 6

1 6 1 6
1 6 1 6

If any of the functions cannot be evaluated, set pde_1d_mg_ires=3.  Otherwise
do not change its value.

IDO=7  This value is assigned by the integrator, requesting data for the boundary
conditions, as expressed in Equation 3.  Following the evaluation the
integrator is re-entered.

                                                          
2 The assign-to equality, a b:= , used here and below, is read “the expressionb  is evaluated and

then assigned to the location a .”
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x pde d mg x

t pde d mg t

u pde d mg u j

u

x
u pde d mg dudx j

pde d mg beta j x t u u

pde d mg gamma j x t u u

j NPDE

j

j

x
j

j x

j x

≡
≡

≡

= ≡

=

=

=

?_ _ _ _

?_ _ _ _

?_ _ _ _

?_ _ _ _

?_ _ _ _

?_ _ _ _

1

1

1

1

1

1

1

( )

: , , ,

: , , ,

,...,

∂
∂

β

γ

1 6
1 6 1 6

1 6 1 6

The value x x xL R∈ ,; @ , and the logical flag pde_1d_mg_LEFT=.TRUE. for
x xL= .  It has the value pde_1d_mg_LEFT=.FALSE. for x xR= . If any of the
functions cannot be evaluated, set pde_1d_mg_ires=3.  Otherwise do not
change its value.

IDO=8  This value is assigned by the integrator, requesting the calling program to
prepare for solving a banded linear system of algebraic equations.  This value
will occur only when the option for “reverse communication solving” is set in
the array IOPT(:), with option PDE_1D_MG_REV_COMM_FACTOR_SOLVE.
The matrix data for this system is in Band Storage Mode, described in the
section: Reference Material for the IMSL Fortran Numerical Libraries.

PDE_1D_MG_IBAND Half band-width of linear system

PDE_1D_MG_LDA The value 3*PDE_1D_MG_IBAND+1, with
NEQ NPDE N= +11 6

?_PDE_1D_MG_A Array of size PDE_1D_MG_LDA by NEQ
holding the problem matrix in Band Storage
Mode

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the linear
system is detected as singular

IDO=9  This value is assigned by the integrator , requesting the calling program to
solve a linear system with the matrix defined as noted with IDO=8.

?_PDE_1D_MG_RHS Array of size NEQ holding the linear
system problem right-hand side

PDE_1D_MG_PANIC_FLAG Integer set to a non-zero value only if the
linear system is singular

?_PDE_1D_MG_SOL Array of size NEQ to receive the solution,
after the solving step
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U(1:NPDE+1,1:N)—(Input/Output)
This assumed-shape array specifies Input information about the problem size
and boundaries.  The dimension of the problem is obtained from
NPDE size U+ =1 1( , ) .  The number of grid points is obtained by
N size U= ( , )2 .  Limits for the variable x  are assigned as input in array

locations, U NPDE x U NPDE N xL R+ = + =1 1 1, , ,1 6 1 6 .  It is not required to

define U NPDE j j N( , ), ,...,+ = −1 2 1.  At completion, the array
U(1:NPDE,1:N)contains the approximate solution value

U x TOUT TOUTi j 1 63 8,
 in location U(I,J).  The grid value 

x TOUTj 1 6 is in
location U(NPDE+1,J).  Normally the grid values are equally spaced as the
integration starts.  Variable spaced grid values can be provided by defining
them as Output from the subroutine initial_conditions or during
reverse communication, IDO=5.

Optional Arguments

initial_conditions—(Input)
The name of an external subroutine, written by the user, when using forward
communication.  If this argument is not used, then reverse communication is
used to provide the problem information.  The routine gives the initial values
for the system at the starting independent variable value T0.  This routine can
also provide a non-uniform grid at the initial value.

SUBROUTINE initial_conditions NPDE,N,U

  Integer NPDE, N

  REAL(kind(T0)) U(:,:)

END SUBROUTINE  

0 5

(Optional) Update the grid of values in array locations
U NPDE j j N( , ), ,...,+ = −1 2 1.  This grid is input equally spaced, but can be
updated as desired, provided the values are increasing.

(Required) Provide initial values U j j N(:, ), ,...,= 1  for all components of the

system at the grid of values U NPDE j j N( , ), ,...,+ =1 1 .  If the optional step
of updating the initial grid is performed, then the initial values are evaluated
at the updated grid.

pde_system_definition—(Input)
The name of an external subroutine, written by the user, when using
forward communication.  It gives the differential equation, as expressed in
Equation 2.
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SUBROUTINE pde_system_definition&

 (t, x, NPDE, u, dudx, c, q, r, IRES)

 

  Integer NPDE, IRES

  REAL(kind(T0)) t, x, u(:), dudx(:)

  REAL(kind(T0)) c(:,:), q(:), r(:)

END SUBROUTINE 

Evaluate the terms of the system of Equation 2. A default value of m = 0  is
assumed, but this can be changed to one of the other choices m = 1 2 or .  Use the
optional argument IOPT(:) for that purpose.  Put the values in the arrays as
indicated.

u u j

u

x
u dudx j

c j k C x t u u

r j r x t u u

q j q x t u u

j k NPDE

j

j

x
j

j k x

j x

j x

≡

= ≡

=

=

=

=

( )

( , ): , , ,

: , , ,

: , , ,

, ,...,

,

∂
∂

1 6
1 6

1 6 1 6
1 6 1 6

1

If any of the functions cannot be evaluated, set IRES=3.  Otherwise do not change
its value.

boundary_conditions—(Input)
The name of an external subroutine, written by the user when using forward
communication.  It gives the boundary conditions, as expressed in Equation 2.

u u j

u

x
u dudx j

beta j x t u u

gamma j x t u u

j NPDE

j

j

x
j

j x

j x

≡

= ≡

=

=

=

( )

: , , ,

: , , ,

,...,

∂
∂

β

γ

1 6
1 6 1 6

1 6 1 6
1

The value x x xL R∈ ,; @ , and the logical flag LEFT=.TRUE. for x xL= .  The flag

has the value LEFT=.FALSE. for x xR= .

IOPT—(Input)
Derived type array s_options or d_options, used for passing optional
data to PDE_1D_MG.  See the section Optional Data in the Introduction for
an explanation of the derived type and its use.  It is necessary to invoke a
module, with the statement USE ERROR_OPTION_PACKET, near the second
line of the program unit.  Examples 2-8 use this optional argument. The
choices are as follows:
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Packaged Options for PDE_1D_MG

Option Prefix = ? Option Name Option Value

s_, d_ PDE_1D_MG_CART_COORDINATES 1

s_, d_ PDE_1D_MG_CYL_COORDINATES 2

s_, d_ PDE_1D_MG_SPH_COORDINATES 3

s_, d_ PDE_1D_MG_TIME_SMOOTHING 4

s_, d_ PDE_1D_MG_SPATIAL_SMOOTHING 5

s_, d_ PDE_1D_MG_MONITOR_REGULARIZING 6

s_, d_ PDE_1D_MG_RELATIVE_TOLERANCE 7

s_, d_ PDE_1D_MG_ABSOLUTE_TOLERANCE 8

s_, d_ PDE_1D_MG_MAX_BDF_ORDER 9

s_, d_ PDE_1D_MG_REV_COMM_FACTOR_SOLVE 10

s_, d_ PDE_1D_MG_NO_NULLIFY_STACK 11

IOPT(IO) = PDE_1D_MG_CART_COORDINATES

Use the value m = 0  in Equation 2.  This is the default.

IOPT(IO) = PDE_1D_MG_CYL_COORDINATES

Use the value m = 1 in Equation 2.  The default value is m = 0 .

IOPT(IO) = PDE_1D_MG_SPH_COORDINATES

Use the value m = 2  in Equation 2.  The default value is m = 0 .

IOPT(IO) =
?_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,TAU)

This option resets the value of the parameter τ ≥ 0, described above.
The default value is τ = 0.

IOPT(IO) =
?_OPTIONS(PDE_1D_MG_SPATIAL_SMOOTHING,KAP)

This option resets the value of the parameter κ ≥ 0, described above.
The default value is κ = 2 .

IOPT(IO) =
?_OPTIONS(PDE_1D_MG_MONITOR_SMOOTHING,ALPH)

This option resets the value of the parameter α ≥ 0, described above.
The default value is α = 0 01. .

IOPT(IO) = ?_OPTIONS
(PDE_1D_MG_RELATIVE_TOLERANCE,RTOL)

This option resets the value of the relative accuracy parameter used in
DASPG.  The default value is RTOL=1E-2 for single precision and
RTOL=1D-4 for double precision.

IOPT(IO) = ?_OPTIONS
(PDE_1D_MG_ABSOLUTE_TOLERANCE,ATOL)

This option resets the value of the absolute accuracy parameter used in



IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations • 275

DASPG.  The default value is ATOL=1E-2 for single precision and
ATOL=1D-4 for double precision.

IOPT(IO) = PDE_1D_MG_MAX_BDF_ORDER
IOPT(IO+1) = MAXBDF

Reset the maximum order for the BDF formulas used in DASPG.  The default
value is MAXBDF=2.  The new value can be any integer between 1 and 5.
Some problems will benefit by making this change.  We used the default
value due to the fact that DASPG may cycle on its selection of order and step-
size with orders higher than value 2.

IOPT(IO) = PDE_1D_MG_REV_COMM_FACTOR_SOLVE

The calling program unit will solve the banded linear systems required in the
stiff differential-algebraic equation integrator.  Values of IDO=8, 9 will
occur only when this optional value is used.

IOPT(IO) = PDE_1D_MG_NO_NULLIFY_STACK

To maintain an efficient interface, the routine PDE_1D_MG collapses the
subroutine call stack with CALL_E1PSH(“NULLIFY_STACK”) .  This implies
that the overhead of maintaining the stack will be eliminated, which may be
important with reverse communication.  It does not eliminate error
processing.  However, precise information of which routines have errors will
not be displayed.  To see the full call chain, this option should be used.
Following completion of the integration, stacking is turned back on with
CALL_E1POP(“NULLIFY_STACK”) .

Remarks on the Examples
Due to its importance and the complexity of its interface, this subroutine is
presented with several examples.  Many of the program features are exercised.
The problems complete without any change to the optional arguments, except
where these changes are required to describe or to solve the problem.

In many applications the solution to a PDE is used as an auxiliary variable,
perhaps as part of a larger design or simulation process.  The truncation error of
the approximate solution is commensurate with piece-wise linear interpolation on
the grid of values, at each output point.  To show that the solution is reasonable, a
graphical display is revealing and helpful.  We have not provided graphical
output as part of our documentation, but users may already have the Visual
Numerics, Inc. product, PV-WAVE, not included with Fortran 90 MP Library.
Examples 1-8 write results in files “PDE_ex0?.out”  that can be visualized with
PV-WAVE.  We provide a script of commands, “pde_1d_mg_plot.pro” , for
viewing the solutions (see example below).  The grid of values and each
consecutive solution component is displayed in separate plotting windows.  The
script and data files written by examples 1-8 on a SUN-SPARC system are in the
directory for Fortran 90 MP Library examples.  When inside PV_WAVE, execute
the command line “pde_1d_mg_plot,filename=’PDE_ex0?.out’”  to view
the output of a particular example.



276 • Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

Code for PV-WAVE  Plotting (Examples Directory)
PRO PDE_1d_mg_plot, FILENAME = filename, PAUSE = pause
;
   if keyword_set(FILENAME) then file = filename else file = "res.dat"
   if keyword_set(PAUSE) then twait = pause else twait = .1
;
;      Define floating point variables that will be read
;      from the first line of the data file.
   xl = 0D0
   xr = 0D0
   t0 = 0D0
   tlast = 0D0
;
;      Open the data file and read in the problem parameters.
   openr, lun, filename, /get_lun
   readf, lun, npde, np, nt, xl, xr, t0, tlast

;      Define the arrays for the solutions and grid.
   u = dblarr(nt, npde, np)
   g = dblarr(nt, np)
   times = dblarr(nt)
;
;      Define a temporary array for reading in the data.
   tmp = dblarr(np)
   t_tmp = 0D0
;
;      Read in the data.
   for i = 0, nt-1 do begin     ; For each step in time
    readf, lun, t_tmp
    times(i) = t_tmp

    for k = 0, npde-1 do begin  ;    For each PDE:
       rmf, lun, tmp
       u(i,k,*) = tmp           ;    Read in the components.
    end

    rmf, lun, tmp
    g(i,*) = tmp                ;    Read in the grid.
   end
;
;      Close the data file and free the unit.
   close, lun
   free_lun, lun
;
;      We now have all of the solutions and grids.
;
;      Delete any window that is currently open.
   while (!d.window NE -1) do WDELETE
;
;      Open two windows for plotting the solutions
;      and grid.
   window, 0, xsize = 550, ysize = 420
   window, 1, xsize = 550, ysize = 420
;
;       Plot the grid.
   wset, 0
   plot, [xl, xr], [t0, tlast], /nodata, ystyle = 1, $
         title = "Grid Points", xtitle = "X", ytitle = "Time"
   for i = 0, np-1 do begin
      oplot, g(*, i), times, psym = -1
   end
;
;      Plot the solution(s):
   wset, 1
   for k = 0, npde-1 do begin
      umin = min(u(*,k,*))
      umax = max(u(*,k,*))
      for i = 0, nt-1 do begin
         title = strcompress("U_"+string(k+1), /remove_all)+ $
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                 " at time "+string(times(i))
         plot, g(i, *), u(i,k,*), ystyle = 1, $
               title = title, xtitle = "X", $
               ytitle = strcompress("U_"+string(k+1), /remove_all), $
               xr = [xl, xr], yr = [umin, umax], $
               psym = -4
         wait, twait
      end
   end

end

Example 1 - Electrodynamics Model

This example is from Blom and Zegeling (1994).  The system is

u pu g u v

v pv g u v

g z z z

x t

u v x

u v x

p

t xx

t xx

x

x

= − −

= + −

= − −
≤ ≤ ≤ ≤

= = =
= = =
= = =

ε

η η

ε η

1 6
1 6

1 6 1 6 1 6
,
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,
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We make the connection between the model problem statement and the example:

C I
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The boundary conditions are

β β γ γ
β β γ γ
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R

at 

at 

Rationale

This is a non-linear problem with sharply changing conditions near t = 0.  The
default settings of integration parameters allow the problem to be solved.  The use
of PDE_1D_MG with forward communication requires three subroutines provided
by the user to describe the initial conditions, differential equations, and boundary
conditions.

     program PDE_EX1

! Electrodynamics Model:

        USE PDE_1d_mg_int

        IMPLICIT NONE

        INTEGER, PARAMETER :: NPDE=2, N=51, NFRAMES=5
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        INTEGER I, IDO

! Define array space for the solution.

        real(kind(1d0)) U(NPDE+1,N), T0, TOUT

        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, &

          DELTA_T=10D0, TEND=4D0

        EXTERNAL IC_01, PDE_01, BC_01

! Start loop to integrate and write solution values.

        IDO=1

        DO

           SELECT CASE (IDO)

! Define values that determine limits.

           CASE (1)

              T0=ZERO

              TOUT=1D-3

              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE

              OPEN(FILE=’PDE_ex01.out’,UNIT=7)

              WRITE(7, "(3I5, 4F10.5)") NPDE, N, NFRAMES,&

                U(NPDE+1,1), U(NPDE+1,N), T0, TEND

! Update to the next output point.

! Write solution and check for final point.

           CASE (2)

              WRITE(7,"(F10.5)")TOUT

              DO I=1,NPDE+1

                WRITE(7,"(4E15.5)")U(I,:)

              END DO

              T0=TOUT;TOUT=TOUT*DELTA_T

              IF(T0 >= TEND) IDO=3

              TOUT=MIN(TOUT, TEND)

! All completed.  Solver is shut down.

           CASE (3)

              CLOSE(UNIT=7)

              EXIT

           END SELECT

! Forward communication is used for the problem data.
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           CALL PDE_1D_MG (T0, TOUT, IDO, U,&

             initial_conditions= IC_01,&

             PDE_system_definition= PDE_01,&

             boundary_conditions= BC_01)

        END DO

     END

     SUBROUTINE IC_01(NPDE, NPTS, U)

! This is the initial data for Example 1.

        IMPLICIT NONE

        INTEGER NPDE, NPTS

        REAL(KIND(1D0)) U(NPDE+1,NPTS)

        U(1,:)=1D0;U(2,:)=0D0

     END SUBROUTINE

     SUBROUTINE PDE_01(T, X, NPDE, U, DUDX, C, Q, R, IRES)

! This is the differential equation for Example 1.

        IMPLICIT NONE

        INTEGER NPDE, IRES

        REAL(KIND(1D0)) T, X, U(NPDE), DUDX(NPDE),&

          C(NPDE,NPDE), Q(NPDE), R(NPDE)

        REAL(KIND(1D0)) :: EPS=0.143D0, P=0.1743D0,&

          ETA=17.19D0, Z, TWO=2D0, THREE=3D0

        C=0D0;C(1,1)=1D0;C(2,2)=1D0

        R=P*DUDX;R(1)=R(1)*EPS

        Z=ETA*(U(1)-U(2))/THREE

        Q(1)=EXP(Z)-EXP(-TWO*Z)

        Q(2)=-Q(1)

     END SUBROUTINE

     SUBROUTINE BC_01(T, BETA, GAMMA, U, DUDX, NPDE, LEFT,
IRES)

! These are the boundary conditions for Example 1.

        IMPLICIT NONE

        INTEGER NPDE, IRES

        LOGICAL LEFT

        REAL(KIND(1D0)) T, BETA(NPDE), GAMMA(NPDE),&

          U(NPDE), DUDX(NPDE)
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        IF(LEFT) THEN

           BETA(1)=1D0;BETA(2)=0D0

           GAMMA(1)=0D0;GAMMA(2)=U(2)

        ELSE

           BETA(1)=0D0;BETA(2)=1D0

           GAMMA(1)=U(1)-1D0;GAMMA(2)=0D0

        END IF

     END SUBROUTINE

Example 2 - Inviscid Flow on a Plate

This example is a first order system from Pennington and Berzins, (1994).  The
equations are

u v
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Following elimination of w, there remain NPDE = 2  differential equations. The
variable t is not time, but a second space variable. The integration goes from
t = 0 to t = 5.  It is necessary to truncate the variable x at a finite value,

sayx xRmax = = 25.  In terms of the integrator, the system is defined by letting
m = 0  and
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We use N = + =10 51 61 grid points and output the solution at steps of ∆t = 01. .

Rationale

This is a non-linear boundary layer problem with sharply changing conditions
near t = 0.   The problem statement was modified so that boundary conditions are
continuous near t = 0.  Without this change the underlying integration software,
DASPG,  cannot solve the problem.  The continuous blending function
u t− −exp 201 6 is arbitrary and artfully chosen.  This is a mathematical change to



IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations • 281

the problem, required because of the stated discontinuity at t = 0.  Reverse
communication is used for the problem data.  No additional user-written
subroutines are required when using reverse communication.  We also have

chosen 10 of the initial grid points to be concentrated near xL = 0 , anticipating
rapid change in the solution near that point.  Optional changes are made to use a
pure absolute error tolerance and non-zero time-smoothing.

        program PDE_1D_MG_EX02
! Inviscid Flow Over a Plate
        USE PDE_1d_mg_int
        USE ERROR_OPTION_PACKET
        IMPLICIT NONE

        INTEGER, PARAMETER :: NPDE=2, N1=10, N2=51, N=N1+N2
        INTEGER I, IDO, NFRAMES
! Define array space for the solution.
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT, DX1, DX2, DIFF
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-1,&
          TEND=5D0, XMAX=25D0
        real(kind(1d0)) :: U0=1D0, U1=0D0, TDELTA=1D-1, TOL=1D-2
        TYPE(D_OPTIONS) IOPT(3)
! Start loop to integrate and record solution values.
        IDO=1
        DO
           SELECT CASE (IDO)
! Define values that determine limits and options.
           CASE (1)
              T0=ZERO
              TOUT=DELTA_T
              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=XMAX
              OPEN(FILE=’PDE_ex02.out’,UNIT=7)
              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND
              DX1=XMAX/N2;DX2=DX1/N1
              IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)
              IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,TOL)
              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3)

! Update to the next output point.
! Write solution and check for final point.
           CASE (2)
              T0=TOUT
              IF(T0 <= TEND) THEN
                 WRITE(7,"(F10.5)")TOUT
                 DO I=1,NPDE+1
                    WRITE(7,"(4E15.5)")U(I,:)
                 END DO
                 TOUT=MIN(TOUT+DELTA_T,TEND)
                 IF(T0 == TEND)IDO=3
              END IF

! All completed.  Solver is shut down.
           CASE (3)

              CLOSE(UNIT=7)
              EXIT
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! Define initial data values.
           CASE (5)
              U(:NPDE,:)=ZERO;U(1,:)=ONE
              DO I=1,N1
                 U(NPDE+1,I)=(I-1)*DX2
              END DO
              DO I=N1+1,N
                 U(NPDE+1,I)=(I-N1)*DX1
              END DO
              WRITE(7,"(F10.5)")T0
              DO I=1,NPDE+1
                 WRITE(7,"(4E15.5)")U(I,:)
              END DO

! Define differential equations.
           CASE (6)
              D_PDE_1D_MG_C=ZERO
              D_PDE_1D_MG_C(1,1)=ONE
              D_PDE_1D_MG_C(2,1)=D_PDE_1D_MG_U(1)

              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(2)
              D_PDE_1D_MG_R(2)= D_PDE_1D_MG_DUDX(1)

              D_PDE_1D_MG_Q(1)= ZERO
              D_PDE_1D_MG_Q(2)= &
                D_PDE_1D_MG_U(2)*D_PDE_1D_MG_DUDX(1)
! Define boundary conditions.
           CASE (7)
              D_PDE_1D_MG_BETA=ZERO
              IF(PDE_1D_MG_LEFT) THEN
                 DIFF=EXP(-20D0*D_PDE_1D_MG_T)
! Blend the left boundary value down to zero.
                 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-
DIFF,D_PDE_1D_MG_U(2)/)
              ELSE
                 D_PDE_1D_MG_GAMMA=(/D_PDE_1D_MG_U(1)-
ONE,D_PDE_1D_MG_DUDX(2)/)
              END IF
           END SELECT

! Reverse communication is used for the problem data.
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
        END DO
     end program
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Example 3 - Population Dynamics

This example is from Pennington and Berzins (1994).  The system is
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− − + −1  across the entire domain.  The software can solve
the problem by introducing two dependent algebraic equations:
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In the interface to the evaluation of the differential equation  and boundary
conditions, it is necessary to evaluate the integrals, which are computed with the

values of u x t,1 6 on the grid.  The integrals are approximated using the trapezoid
rule, commensurate with the truncation error in the integrator.

Rationale

This is a non-linear integro-differential problem involving non-local conditions
for the differential equation and boundary conditions.  Access to evaluation of



284 • Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

these conditions is provided using reverse communication.  It is not possible to
solve this problem with forward communication, given the current subroutine
interface.  Optional changes are made to use an absolute error tolerance and non-
zero time-smoothing.  The time-smoothing valueτ = 1 prevents grid lines from
crossing.

     program PDE_1D_MG_EX03
! Population Dynamics Model.
        USE PDE_1d_mg_int
        USE ERROR_OPTION_PACKET
        IMPLICIT NONE
        INTEGER, PARAMETER :: NPDE=1, N=101
        INTEGER IDO, I, NFRAMES
! Define array space for the solution.
        real(kind(1d0)) U(NPDE+1,N), MID(N-1), T0, TOUT, V_1, V_2
        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0,&
          TWO=2D0, FOUR=4D0, DELTA_T=1D-1,TEND=5D0, A=5D0
        TYPE(D_OPTIONS) IOPT(3)
! Start loop to integrate and record solution values.
        IDO=1
        DO
           SELECT CASE (IDO)
! Define values that determine limits.
           CASE (1)
              T0=ZERO
              TOUT=DELTA_T
              U(NPDE+1,1)=ZERO;U(NPDE+1,N)=A
              OPEN(FILE=’PDE_ex03.out’,UNIT=7)
              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND
              IOPT(1)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)
              IOPT(2)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)
              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D0)
! Update to the next output point.
! Write solution and check for final point.
           CASE (2)
              T0=TOUT
              IF(T0 <= TEND) THEN
                WRITE(7,"(F10.5)")TOUT
                DO I=1,NPDE+1
                  WRITE(7,"(4E15.5)")U(I,:)
                END DO
                TOUT=MIN(TOUT+DELTA_T,TEND)
                IF(T0 == TEND)IDO=3
              END IF
! All completed.  Solver is shut down.
           CASE (3)
              CLOSE(UNIT=7)
              EXIT
! Define initial data values.
           CASE (5)
              U(1,:)=EXP(-U(2,:))/(TWO-EXP(-A))
              WRITE(7,"(F10.5)")T0
              DO I=1,NPDE+1
                WRITE(7,"(4E15.5)")U(I,:)
              END DO
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! Define differential equations.
           CASE (6)
              D_PDE_1D_MG_C(1,1)=ONE
              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_U(1)
! Evaluate the approximate integral, for this t.
              V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*&
                          (U(2,2:N) - U(2,1:N-1)))
              D_PDE_1D_MG_Q(1)=V_1*D_PDE_1D_MG_U(1)
! Define boundary conditions.
           CASE (7)
              IF(PDE_1D_MG_LEFT) THEN
! Evaluate the approximate integral, for this t.
! A second integral is needed at the edge.
              V_1=HALF*SUM((U(1,1:N-1)+U(1,2:N))*&
                          (U(2,2:N) - U(2,1:N-1)))
              MID=HALF*(U(2,2:N)+U(2,1:N-1))
              V_2=HALF*SUM(MID*EXP(-MID)*&
              (U(1,1:N-1)+U(1,2:N))*(U(2,2:N)-U(2,1:N-1)))
                 D_PDE_1D_MG_BETA=ZERO

D_PDE_1D_MG_GAMMA=G(ONE,D_PDE_1D_MG_T)*V_1*V_2/(V_1+ONE)**2-&
                   D_PDE_1D_MG_U
              ELSE
                 D_PDE_1D_MG_BETA=ZERO
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1)
              END IF
            END SELECT
! Reverse communication is used for the problem data.
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
        END DO
CONTAINS
        FUNCTION G(z,t)
        IMPLICIT NONE
          REAL(KIND(1d0)) Z, T, G
          G=FOUR*Z*(TWO-TWO*EXP(-A)+EXP(-T))**2
          G=G/((ONE-EXP(-A))*(ONE-(ONE+TWO*A)*&
            EXP(-TWO*A))*(1-EXP(-A)+EXP(-T)))
        END FUNCTION
     end program

Example 4 - A Model in Cylindrical Coordinates

This example is from Blom and Zegeling (1994).  The system models a reactor-
diffusion problem:
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The axial direction z  is treated as a time coordinate.  The radius r  is treated as
the single space variable.
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Rationale

This is a non-linear problem in cylindrical coordinates. Our example illustrates
assigning m = 1 in Equation 2.  We provide an optional argument that resets this
value from its default, m = 0 .  Reverse communication is used to interface with
the problem data.

     program PDE_1D_MG_EX04
! Reactor-Diffusion problem in cylindrical coordinates.
        USE pde_1d_mg_int
        USE error_option_packet
        IMPLICIT NONE
        INTEGER, PARAMETER :: NPDE=1, N=41
        INTEGER IDO, I, NFRAMES
! Define array space for the solution.
        real(kind(1d0)) T(NPDE+1,N), Z0, ZOUT
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_Z=1D-1,&
          ZEND=1D0, ZMAX=1D0, BETA=1D-4, GAMMA=1D0, EPS=1D-1
        TYPE(D_OPTIONS) IOPT(1)
! Start loop to integrate and record solution values.
        IDO=1
        DO
           SELECT CASE (IDO)
! Define values that determine limits.
           CASE (1)
              Z0=ZERO
              ZOUT=DELTA_Z
              T(NPDE+1,1)=ZERO;T(NPDE+1,N)=ZMAX
              OPEN(FILE=’PDE_ex04.out’,UNIT=7)
              NFRAMES=NINT((ZEND+DELTA_Z)/DELTA_Z)
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
                T(NPDE+1,1), T(NPDE+1,N), Z0, ZEND
              IOPT(1)=PDE_1D_MG_CYL_COORDINATES
! Update to the next output point.
! Write solution and check for final point.
           CASE (2)
              IF(Z0 <= ZEND) THEN
                WRITE(7,"(F10.5)")ZOUT
                DO I=1,NPDE+1
                  WRITE(7,"(4E15.5)")T(I,:)
                END DO
                ZOUT=MIN(ZOUT+DELTA_Z,ZEND)
                IF(Z0 == ZEND)IDO=3
              END IF
! All completed.  Solver is shut down.
           CASE (3)
              CLOSE(UNIT=7)
              EXIT
! Define initial data values.
           CASE (5)
              T(1,:)=ZERO
              WRITE(7,"(F10.5)")Z0
              DO I=1,NPDE+1
                WRITE(7,"(4E15.5)")T(I,:)
              END DO
! Define differential equations.
           CASE (6)
              D_PDE_1D_MG_C(1,1)=ONE
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              D_PDE_1D_MG_R(1)=BETA*D_PDE_1D_MG_DUDX(1)
              D_PDE_1D_MG_Q(1)= -GAMMA*EXP(D_PDE_1D_MG_U(1)/&
                (ONE+EPS*D_PDE_1D_MG_U(1)))
! Define boundary conditions.
           CASE (7)
              IF(PDE_1D_MG_LEFT) THEN
                 D_PDE_1D_MG_BETA=ONE; D_PDE_1D_MG_GAMMA=ZERO
              ELSE
                 D_PDE_1D_MG_BETA=ZERO; D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1)
              END IF
           END SELECT
! Reverse communication is used for the problem data.
! The optional derived type changes the internal model
! to use cylindrical coordinates.
           CALL PDE_1D_MG (Z0, ZOUT, IDO, T, IOPT=IOPT)
        END DO
     end program

Example 5 - A Flame Propagation Model

This example is presented more fully in Verwer, et al., (1989).  The system is a

normalized problem relating mass density u x t,1 6 and temperature v x t,1 6 :
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Rationale

This is a non-linear problem.  The example shows the model steps for replacing
the banded solver in the software with one of the user’s choice.  Reverse
communication is used for the interface to the problem data and the linear solver.
Following the computation of the matrix factorization in DL2CRB, we declare the
system to be singular when the reciprocal of the condition number is smaller than
the working precision.  This choice is not suitable for all problems.  Attention
must be given to detecting a singularity when this option is used.

     program PDE_1D_MG_EX05
! Flame propagation model
        USE pde_1d_mg_int
        USE ERROR_OPTION_PACKET
        USE Numerical_Libraries, ONLY :&
         dl2crb, dlfsrb
        IMPLICIT NONE
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        INTEGER, PARAMETER :: NPDE=2, N=40, NEQ=(NPDE+1)*N
        INTEGER I, IDO, NFRAMES, IPVT(NEQ)

! Define array space for the solution.
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT
! Define work space for the banded solver.
        real(kind(1d0)) WORK(NEQ), RCOND
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-4,&
          TEND=6D-3, XMAX=1D0, BETA=4D0, GAMMA=3.52D6
        TYPE(D_OPTIONS) IOPT(1)
! Start loop to integrate and record solution values.
        IDO=1
        DO
           SELECT CASE (IDO)

! Define values that determine limits.
           CASE (1)
              T0=ZERO
              TOUT=DELTA_T
              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX
              OPEN(FILE=’PDE_ex05.out’,UNIT=7)
              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND
              IOPT(1)=PDE_1D_MG_REV_COMM_FACTOR_SOLVE
! Update to the next output point.
! Write solution and check for final point.
           CASE (2)
             T0=TOUT
              IF(T0 <= TEND) THEN
                WRITE(7,"(F10.5)")TOUT
                DO I=1,NPDE+1
                  WRITE(7,"(4E15.5)")U(I,:)
                END DO
                TOUT=MIN(TOUT+DELTA_T,TEND)
                IF(T0 == TEND)IDO=3
              END IF

! All completed.  Solver is shut down.
           CASE (3)
              CLOSE(UNIT=7)
              EXIT

! Define initial data values.
           CASE (5)
              U(1,:)=ONE; U(2,:)=2D-1
              WRITE(7,"(F10.5)")T0
              DO I=1,NPDE+1
                WRITE(7,"(4E15.5)")U(I,:)
              END DO
! Define differential equations.
           CASE (6)
              D_PDE_1D_MG_C=ZERO
              D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE

              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX

              D_PDE_1D_MG_Q(1)=  D_PDE_1D_MG_U(1)*F(D_PDE_1D_MG_U(2))



IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations • 289

              D_PDE_1D_MG_Q(2)= -D_PDE_1D_MG_Q(1)
! Define boundary conditions.
           CASE (7)
              IF(PDE_1D_MG_LEFT) THEN
                 D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX
              ELSE
                 D_PDE_1D_MG_BETA(1)=ONE
                 D_PDE_1D_MG_GAMMA(1)=ZERO
                 D_PDE_1D_MG_BETA(2)=ZERO
                 IF(D_PDE_1D_MG_T >= 2D-4) THEN
                   D_PDE_1D_MG_GAMMA(2)=12D-1
                 ELSE
                   D_PDE_1D_MG_GAMMA(2)=2D-1+5D3*D_PDE_1D_MG_T
                 END IF
                 D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_GAMMA(2)-&
                  D_PDE_1D_MG_U(2)
              END IF
           CASE(8)
! Factor the banded matrix.  This is the same solver used
! internally but that is not required.  A user can substitute
! one of their own.
             call dl2crb (neq, d_pde_1d_mg_a, pde_1d_mg_lda,
pde_1d_mg_iband,&
               pde_1d_mg_iband, d_pde_1d_mg_a, pde_1d_mg_lda, ipvt, rcond,
work)
             IF(rcond <= EPSILON(ONE)) pde_1d_mg_panic_flag = 1
           CASE(9)
! Solve using the factored banded matrix.
             call dlfsrb(neq, d_pde_1d_mg_a, pde_1d_mg_lda,
pde_1d_mg_iband,&
               pde_1d_mg_iband, ipvt, d_pde_1d_mg_rhs, 1, d_pde_1d_mg_sol)
           END SELECT

! Reverse communication is used for the problem data.
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
        END DO
CONTAINS
        FUNCTION F(Z)
        IMPLICIT NONE
        REAL(KIND(1D0)) Z, F
          F=GAMMA*EXP(-BETA/Z)
        END FUNCTION
     end program

Example 6 - A ‘Hot Spot’ Model

This example is presented more fully in Verwer, et al., (1989).  The system is a

normalized problem relating the temperature u x t,1 6, of a reactant in a chemical

system.  The formula for h z1 6 is equivalent to their example.
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Rationale

This is a non-linear problem.  The output shows a case where a rapidly changing
front, or hot-spot, develops after a considerable way into the integration.  This
causes rapid change to the grid.  An option sets the maximum order BDF formula
from its default value of 2 to the theoretical stable maximum value of 5.

        USE pde_1d_mg_int
        USE error_option_packet
        IMPLICIT NONE

        INTEGER, PARAMETER :: NPDE=1, N=80
        INTEGER I, IDO, NFRAMES

! Define array space for the solution.
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0, DELTA_T=1D-2,&
          TEND=29D-2, XMAX=1D0, A=1D0, DELTA=2D1, R=5D0
        TYPE(D_OPTIONS) IOPT(2)
! Start loop to integrate and record solution values.
        IDO=1
        DO
           SELECT CASE (IDO)

! Define values that determine limits.
           CASE (1)
              T0=ZERO
              TOUT=DELTA_T
              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX
              OPEN(FILE=’PDE_ex06.out’,UNIT=7)
              NFRAMES=(TEND+DELTA_T)/DELTA_T
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND
! Illustrate allowing the BDF order to increase
! to its maximum allowed value.
              IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER
                IOPT(2)=5
! Update to the next output point.
! Write solution and check for final point.
           CASE (2)
              T0=TOUT
              IF(T0 <= TEND) THEN
                WRITE(7,"(F10.5)")TOUT
                DO I=1,NPDE+1
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                  WRITE(7,"(4E15.5)")U(I,:)
                END DO
                TOUT=MIN(TOUT+DELTA_T,TEND)
                IF(T0 == TEND)IDO=3
              END IF
! All completed.  Solver is shut down.
           CASE (3)
              CLOSE(UNIT=7)
              EXIT

! Define initial data values.
           CASE (5)
              U(1,:)=ONE
              WRITE(7,"(F10.5)")T0
              DO I=1,NPDE+1
                WRITE(7,"(4E15.5)")U(I,:)
              END DO
! Define differential equations.
           CASE (6)
              D_PDE_1D_MG_C=ONE
              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX
              D_PDE_1D_MG_Q= - H(D_PDE_1D_MG_U(1))

! Define boundary conditions.
           CASE (7)
              IF(PDE_1D_MG_LEFT) THEN
                 D_PDE_1D_MG_BETA=ZERO
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX
              ELSE

                 D_PDE_1D_MG_BETA=ZERO
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U(1)-ONE
              END IF
           END SELECT

! Reverse communication is used for the problem data.
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
        END DO
CONTAINS
        FUNCTION H(Z)
        real(kind(1d0)) Z, H
          H=(R/(A*DELTA))*(ONE+A-Z)*EXP(-DELTA*(ONE/Z-ONE))
        END FUNCTION
     end program

Example 7 - Traveling Waves

This example is presented more fully in Verwer, et al., (1989).  The system is a

normalized problem relating the interaction of two waves, u x t,1 6 and v x t,1 6
moving in opposite directions.  The waves meet and reduce in amplitude, due to
the non-linear terms in the equation.  Then they separate and travel onward, with
reduced amplitude.
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Rationale

This is a non-linear system of first order equations.

     program PDE_1D_MG_EX07
! Traveling Waves
        USE pde_1d_mg_int
        USE error_option_packet
        IMPLICIT NONE

        INTEGER, PARAMETER :: NPDE=2, N=50
        INTEGER I, IDO, NFRAMES

! Define array space for the solution.
        real(kind(1d0)) U(NPDE+1,N), TEMP(N), T0, TOUT
        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, &
          ONE=1D0, DELTA_T=5D-2,TEND=5D-1, PI
        TYPE(D_OPTIONS) IOPT(5)
! Start loop to integrate and record solution values.
        IDO=1
        DO
           SELECT CASE (IDO)

! Define values that determine limits.
           CASE (1)
              T0=ZERO
              TOUT=DELTA_T
              U(NPDE+1,1)=-HALF; U(NPDE+1,N)=HALF
              OPEN(FILE=’PDE_ex07.out’,UNIT=7)
              NFRAMES=(TEND+DELTA_T)/DELTA_T
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND
              IOPT(1)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,1D-3)
              IOPT(2)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)
              IOPT(3)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-3)
              IOPT(4)=PDE_1D_MG_MAX_BDF_ORDER
                IOPT(5)=3
! Update to the next output point.
! Write solution and check for final point.
           CASE (2)
              T0=TOUT
              IF(T0 <= TEND) THEN
                WRITE(7,"(F10.5)")TOUT
                DO I=1,NPDE+1
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                  WRITE(7,"(4E15.5)")U(I,:)
                END DO
                TOUT=MIN(TOUT+DELTA_T,TEND)
                IF(T0 == TEND)IDO=3
              END IF

! All completed.  Solver is shut down.
           CASE (3)
              CLOSE(UNIT=7)
              EXIT

! Define initial data values.
           CASE (5)
              TEMP=U(3,:)
              U(1,:)=PULSE(TEMP); U(2,:)=U(1,:)
              WHERE (TEMP < -3D-1 .or. TEMP > -1D-1) U(1,:)=ZERO
              WHERE (TEMP <  1D-1 .or. TEMP >  3D-1) U(2,:)=ZERO
              WRITE(7,"(F10.5)")T0
              DO I=1,NPDE+1
                WRITE(7,"(4E15.5)")U(I,:)
              END DO

! Define differential equations.
           CASE (6)
              D_PDE_1D_MG_C=ZERO
              D_PDE_1D_MG_C(1,1)=ONE; D_PDE_1D_MG_C(2,2)=ONE

              D_PDE_1D_MG_R=D_PDE_1D_MG_U
              D_PDE_1D_MG_R(1)=-D_PDE_1D_MG_R(1)

              D_PDE_1D_MG_Q(1)= 100D0*D_PDE_1D_MG_U(1)*D_PDE_1D_MG_U(2)
              D_PDE_1D_MG_Q(2)= D_PDE_1D_MG_Q(1)

! Define boundary conditions.
           CASE (7)
              D_PDE_1D_MG_BETA=ZERO;D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U

           END SELECT

! Reverse communication is used for the problem data.
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
        END DO
CONTAINS
        FUNCTION PULSE(Z)
        real(kind(1d0)) Z(:), PULSE(SIZE(Z))
          PI=ACOS(-ONE)
          PULSE=HALF*(ONE+COS(10D0*PI*Z))
        END FUNCTION
     end program

Example 8 - Black-Scholes

The value of a European “call option,” c s t,1 6 , with exercise price e and
expiration date T , satisfies the “asset-or-nothing payoff ”
c s T s s e s e, , ; ,1 6 = ≥ = <0 .  Prior to expiration c s t,1 6  is estimated by the Black-
Scholes differential equation
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c s c rsc rc c s c r sc rct ss s t s s s+ + − ≡ + + − − =σ σ σ
2

2
2

2 2

2 2
04 9 4 9

.  The parameters in
the model are the risk-free interest rate, r , and the stock volatility,σ .  The

boundary conditions are c t0 0,1 6 =  and c s t ss , ,1 6 ≈ → ∞1 .  This development is
described in Wilmott, et al. (1995), pages 41-57.  There are explicit solutions for
this equation based on the Normal Curve of Probability.  The normal curve, and
the solution itself, can be efficiently computed with the IMSL function ANORDF,
IMSL (1994), page 186.  With numerical integration the equation itself or the

payoff can be readily changed to include other formulas, c s T,1 6, and
corresponding boundary conditions.  We use
e r T t s sL R= = − = = = =100 0 08 0 25 0 04 0 1502, . , . , . , ,σ  and .

Rationale

This is a linear problem but with initial conditions that are discontinuous.  It is
necessary to use a positive time-smoothing value to prevent grid lines from

crossing.  We have used an absolute tolerance of 10 3− .  In $US, this is one-tenth
of a cent.

     program PDE_1D_MG_EX08
! Black-Scholes call price
        USE pde_1d_mg_int
        USE error_option_packet
        IMPLICIT NONE

        INTEGER, PARAMETER :: NPDE=1, N=100
        INTEGER I, IDO, NFRAMES

! Define array space for the solution.
        real(kind(1d0)) U(NPDE+1,N), T0, TOUT, SIGSQ, XVAL
        real(kind(1d0)) :: ZERO=0D0, HALF=5D-1, ONE=1D0, &
          DELTA_T=25D-3, TEND=25D-2, XMAX=150, SIGMA=2D-1, &
          R=8D-2, E=100D0
        TYPE(D_OPTIONS) IOPT(5)
! Start loop to integrate and record solution values.
        IDO=1
        DO
           SELECT CASE (IDO)

! Define values that determine limits.
           CASE (1)
              T0=ZERO
              TOUT=DELTA_T
              U(NPDE+1,1)=ZERO; U(NPDE+1,N)=XMAX
              OPEN(FILE=’PDE_ex08.out’,UNIT=7)
              NFRAMES=NINT((TEND+DELTA_T)/DELTA_T)
              WRITE(7, "(3I5, 4D14.5)") NPDE, N, NFRAMES,&
                U(NPDE+1,1), U(NPDE+1,N), T0, TEND
                SIGSQ=SIGMA**2
! Illustrate allowing the BDF order to increase
! to its maximum allowed value.
              IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER
                IOPT(2)=5
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              IOPT(3)=D_OPTIONS(PDE_1D_MG_TIME_SMOOTHING,5D-3)
              IOPT(4)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,ZERO)
              IOPT(5)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)
! Update to the next output point.
! Write solution and check for final point.
           CASE (2)
              T0=TOUT
              IF(T0 <= TEND) THEN
                WRITE(7,"(F10.5)")TOUT
                DO I=1,NPDE+1
                  WRITE(7,"(4E15.5)")U(I,:)
                END DO
                TOUT=MIN(TOUT+DELTA_T,TEND)
                IF(T0 == TEND)IDO=3
              END IF
! All completed.  Solver is shut down.
           CASE (3)
              CLOSE(UNIT=7)
              EXIT

! Define initial data values.
           CASE (5)
              U(1,:)=MAX(U(NPDE+1,:)-E,ZERO)  ! Vanilla European Call
              U(1,:)=U(NPDE+1,:)              ! Asset-or-nothing Call
              WHERE(U(1,:) <= E) U(1,:)=ZERO  ! on these two lines
              WRITE(7,"(F10.5)")T0
              DO I=1,NPDE+1
                WRITE(7,"(4E15.5)")U(I,:)
              END DO
! Define differential equations.
           CASE (6)
              XVAL=D_PDE_1D_MG_X
              D_PDE_1D_MG_C=ONE
              D_PDE_1D_MG_R=D_PDE_1D_MG_DUDX*XVAL**2*SIGSQ*HALF
              D_PDE_1D_MG_Q=-(R-SIGSQ)*XVAL*D_PDE_1D_MG_DUDX+R*D_PDE_1D_MG_U
! Define boundary conditions.
           CASE (7)
              IF(PDE_1D_MG_LEFT) THEN
                 D_PDE_1D_MG_BETA=ZERO
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_U
              ELSE

                 D_PDE_1D_MG_BETA=ZERO
                 D_PDE_1D_MG_GAMMA=D_PDE_1D_MG_DUDX(1)-ONE
              END IF
           END SELECT

! Reverse communication is used for the problem data.
           CALL PDE_1D_MG (T0, TOUT, IDO, U, IOPT=IOPT)
        END DO

     end program

Example 9 - Electrodynamics, Parameters Studied with MPI

This example, described above in Example 1, is from Blom and Zegeling (1994).

The system parameters ε η, ,p  and , are varied, using uniform random
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numbers.  The intervals studied are 01 0 2 01 0 2 10 20. . , . . ,≤ ≤ ≤ ≤ ≤ ≤ε ηp  and .
Using N = 21 grid values and other program options, the elapsed time, parameter

values, and the value 
v x t

x t
,

,
1 6 = =1 4 are sent to the root node.  This information is

written on a file.  The final summary includes the minimum value of 
v x t

x t
,

,
1 6 = =1 4,

and the maximum and average time per integration, per node.

Rationale

This is a non-linear simulation problem.  Using at least two integrating processors
and MPI allows more values of the parameters to be studied in a given time than
with a single processor.  This code is valuable as a study guide when an
application needs to estimate timing and other output parameters.  The simulation
time is controlled at the root node.  An integration is started, after receiving
results, within the first SIM_TIME seconds.  The elapsed time will be longer than
SIM_TIME by the slowest processor’s time for its last integration.

     program PDE_1D_MG_EX09
! Electrodynamics Model, parameter study.
        USE PDE_1d_mg_int
        USE MPI_SETUP_INT
        USE RAND_INT
        USE SHOW_INT
        IMPLICIT NONE
        INCLUDE "mpif.h"
        INTEGER, PARAMETER :: NPDE=2, N=21
        INTEGER I, IDO, IERROR, CONTINUE, STATUS(MPI_STATUS_SIZE)
        INTEGER, ALLOCATABLE :: COUNTS(:)
! Define array space for the solution.
        real(kind(1d0)) :: U(NPDE+1,N), T0, TOUT
        real(kind(1d0)) :: ZERO=0D0, ONE=1D0,DELTA_T=10D0, TEND=4D0
! SIM_TIME is the number of seconds to run the simulation.
        real(kind(1d0)) :: EPS, P, ETA, Z, TWO=2D0, THREE=3D0,
SIM_TIME=60D0
        real(kind(1d0)) :: TIMES, TIMEE, TIMEL, TIME, TIME_SIM, V_MIN,
DATA(5)
        real(kind(1d0)), ALLOCATABLE :: AV_TIME(:), MAX_TIME(:)
        TYPE(D_OPTIONS) IOPT(4), SHOW_IOPT(2)
        TYPE(S_OPTIONS) SHOW_INTOPT(2)
        MP_NPROCS=MP_SETUP(1)
        MPI_NODE_PRIORITY=(/(I-1,I=1,MP_NPROCS)/)
! If NP_NPROCS=1, the program stops.  Change
! MPI_ROOT_WORKS=.TRUE. if MP_NPROCS=1.
        MPI_ROOT_WORKS=.FALSE.
        IF(.NOT. MPI_ROOT_WORKS .and. MP_NPROCS == 1) STOP
        ALLOCATE(AV_TIME(MP_NPROCS), MAX_TIME(MP_NPROCS),
COUNTS(MP_NPROCS))
! Get time start for simulation timing.
        TIME=MPI_WTIME()
        IF(MP_RANK == 0) OPEN(FILE=’PDE_ex09.out’,UNIT=7)
 SIMULATE: DO
! Pick random parameter values.
           EPS=1D-1*(ONE+rand(EPS))
           P=1D-1*(ONE+rand(P))



IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations • 297

           ETA=10D0*(ONE+rand(ETA))
! Start loop to integrate and communicate solution times.
           IDO=1
! Get time start for each new problem.
           DO
              IF(.NOT. MPI_ROOT_WORKS .and. MP_RANK == 0) EXIT
              SELECT CASE (IDO)
! Define values that determine limits.
              CASE (1)
                 T0=ZERO
                 TOUT=1D-3
                 U(NPDE+1,1)=ZERO;U(NPDE+1,N)=ONE
                 IOPT(1)=PDE_1D_MG_MAX_BDF_ORDER
                 IOPT(2)=5
                 IOPT(3)=D_OPTIONS(PDE_1D_MG_RELATIVE_TOLERANCE,1D-2)
                 IOPT(4)=D_OPTIONS(PDE_1D_MG_ABSOLUTE_TOLERANCE,1D-2)

                 TIMES=MPI_WTIME()
! Update to the next output point.
! Write solution and check for final point.
              CASE (2)
                 T0=TOUT;TOUT=TOUT*DELTA_T
                 IF(T0 >= TEND) IDO=3
                 TOUT=MIN(TOUT, TEND)
! All completed.  Solver is shut down.
              CASE (3)
                 TIMEE=MPI_WTIME()
                 EXIT
! Define initial data values.
              CASE (5)
                 U(1,:)=1D0;U(2,:)=0D0
! Define differential equations.
              CASE (6)

D_PDE_1D_MG_C=0D0;D_PDE_1D_MG_C(1,1)=1D0;D_PDE_1D_MG_C(2,2)=1D0

D_PDE_1D_MG_R=P*D_PDE_1D_MG_DUDX;D_PDE_1D_MG_R(1)=D_PDE_1D_MG_R(1)*EPS
                 Z=ETA*(D_PDE_1D_MG_U(1)-D_PDE_1D_MG_U(2))/THREE
                 D_PDE_1D_MG_Q(1)=EXP(Z)-EXP(-TWO*Z)
                 D_PDE_1D_MG_Q(2)=-D_PDE_1D_MG_Q(1)
! Define boundary conditions.
              CASE (7)
                 IF(PDE_1D_MG_LEFT) THEN
                    D_PDE_1D_MG_BETA(1)=1D0;D_PDE_1D_MG_BETA(2)=0D0

D_PDE_1D_MG_GAMMA(1)=0D0;D_PDE_1D_MG_GAMMA(2)=D_PDE_1D_MG_U(2)
                 ELSE
                    D_PDE_1D_MG_BETA(1)=0D0;D_PDE_1D_MG_BETA(2)=1D0
                    D_PDE_1D_MG_GAMMA(1)=D_PDE_1D_MG_U(1)-
1D0;D_PDE_1D_MG_GAMMA(2)=0D0
                 END IF
              END SELECT
! Reverse communication is used for the problem data.
              CALL PDE_1D_MG (T0, TOUT, IDO, U)
           END DO
           TIMEL=TIMEE-TIMES
           DATA=(/EPS, P, ETA, U(2,N), TIMEL/)
           IF(MP_RANK > 0) THEN
! Send parameters and time to the root.
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              CALL MPI_SEND(DATA, 5, MPI_DOUBLE_PRECISION,0, MP_RANK,
MP_LIBRARY_WORLD, IERROR)
! Receive back a "go/stop" flag.
              CALL MPI_RECV(CONTINUE, 1, MPI_INTEGER, 0, MPI_ANY_TAG,
MP_LIBRARY_WORLD, STATUS, IERROR)
! If root notes that time is up, it sends node a quit flag.
              IF(CONTINUE == 0) EXIT SIMULATE
           ELSE
! If root is working, record its result and then stand ready
! for other nodes to send.
              IF(MPI_ROOT_WORKS) WRITE(7,*) MP_RANK, DATA
! If all nodes have reported, then quit.
              IF(COUNT(MPI_NODE_PRIORITY >= 0) == 0) EXIT SIMULATE
! See if time is up. Some nodes still must report.
              IF(MPI_WTIME()-TIME >= SIM_TIME) THEN
                 CONTINUE=0
              ELSE
                 CONTINUE=1
              END IF
! Root receives simulation data and finds which node sent it.
              IF(MP_NPROCS > 1) THEN
                 CALL MPI_RECV(DATA, 5,
MPI_DOUBLE_PRECISION,MPI_ANY_SOURCE, MPI_ANY_TAG, MP_LIBRARY_WORLD,
STATUS, IERROR)
                 WRITE(7,*) STATUS(MPI_SOURCE), DATA
! If time at the root has elapsed, nodes receive signal to stop.
! Send the reporting node the "go/stop" flag.
! Mark if a node has been stopped.
                 CALL MPI_SEND(CONTINUE, 1, MPI_INTEGER,
STATUS(MPI_SOURCE), 0, MP_LIBRARY_WORLD, IERROR)
                 IF (CONTINUE == 0)
MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1) =-
MPI_NODE_PRIORITY(STATUS(MPI_SOURCE)+1)-1
              END IF
              IF (CONTINUE == 0) MPI_NODE_PRIORITY(1)=-1
           END IF
        END DO SIMULATE
        IF(MP_RANK == 0) THEN
           ENDFILE(UNIT=7);REWIND(UNIT=7)
! Read the data. Find extremes and averages.
           MAX_TIME=ZERO;AV_TIME=ZERO;COUNTS=0;V_MIN=HUGE(ONE)
           DO
              READ(7,*, END=10) I, DATA
              COUNTS(I+1)=COUNTS(I+1)+1
              AV_TIME(I+1)=AV_TIME(I+1)+DATA(5)
              IF(MAX_TIME(I+1) < DATA(5)) MAX_TIME(I+1)=DATA(5)
              V_MIN=MIN(V_MIN, DATA(4))
           END DO
10         CONTINUE
           CLOSE(UNIT=7)
! Set printing Index to match node numbering.
           SHOW_IOPT(1)= SHOW_STARTING_INDEX_IS
           SHOW_IOPT(2)=0
           SHOW_INTOPT(1)=SHOW_STARTING_INDEX_IS
           SHOW_INTOPT(2)=0
           CALL SHOW(MAX_TIME,"Maximum Integration Time, per
process:",IOPT=SHOW_IOPT)
           AV_TIME=AV_TIME/MAX(1,COUNTS)
           CALL SHOW(AV_TIME,"Average Integration Time, per
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process:",IOPT=SHOW_IOPT)
           CALL SHOW(COUNTS,"Number of Integrations",IOPT=SHOW_INTOPT)
           WRITE(*,"(1x,A,F6.3)") "Minimum value for v(x,t),at
x=1,t=4:  ",V_MIN
        END IF
        MP_NPROCS=MP_SETUP("Final")
     end program
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Chapter 9: Error Handling and
Messages - The Parallel Option

Introduction

MPI REQUIRED

This chapter describes the error-handling system used from within the  IMSL
Fortran 90 MP Library.   Errors of differing types may need to be reported from
several nodes.  We have developed an error processor that uses MPI, when it is
appropriate, for communication of error messages to the root node, which then does
the printing to an open output unit.  We encourage users to include this error
processor in their own applications that use MPI for distributed computing.

VNI started its development with the IMSL FORTRAN error processor (see Aird
and Howell, 1992), in use with the Fortran Numerical Libraries.  This was
influenced by early work (see Fox, Hall, and Schryer, 1978) from Bell
Laboratories’ PORT Library.  Linked data structures have replaced fixed-size tables
within the routines.  Now applications may avoid jumbling lines of error text output
if different threads and nodes generate independent errors.  Users are not required
to be aware of any difference in the use of the two versions.  Each version is
packaged into a separate library file.  A user can safely call or link with the newer
version for all applications, even though their codes might not be using MPI code.
A drawback is that the code is longer than it needs to be due to the unused MPI
subprograms now in the linked executable.  If the extra size of the executable is a
problem, then link with the older version.

The user is cautioned about manipulating these routines beyond specification.
Disabling the printing of messages or the subprogram stack handler can mask
serious error conditions.  Modification or replacement of functionality by the user
within Fortran 90 MP Library can cause problems that are elusive and is definitely
not recommended.  The routines described in this chapter are an integral part of the
IMSL Fortran 90 MP Library and are subject to change by Visual Numerics, Inc.
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Error Classes
The routines in the IMSL FORTRAN Libraries give rise to three classes of
error conditions: informational, terminal, and global. The correct processing of
an error condition depends on its class. The classes are defined as follows:

• Information Class: During processing, certain exceptional conditions arise
which may be interpreted as errors. The detection of singularity by a linear
equation solver is an example. It is appropriate for the routine detecting a
condition to inform the calling routine of the existence of the exception by
setting an appropriate error state and then returning. The calling routine is
then able to interpret the information and decide on the appropriate action.
If recovery is possible and desirable, then corrective action can be taken.
Otherwise the calling routine may pass the error state up one more level.
The severity of these conditions varies from “note” to “fatal.”  For each
condition there is a possibility that corrective action can be taken by the
calling routine and that the recovery option is desirable. Only one such
informational error state can be handled in this manner. Situations
involving multiple errors require alternative mechanisms such as extra
arguments, and that is not implemented.

• Terminal Class:  Usage errors such as incorrect or inconsistent argument
values are in this class.  In most cases, these errors result from blunders in
developing software.  In normal processing, a message is issued and
execution is terminated by the calling routine detecting the error. Serious
error conditions are classified as terminal if, in the opinion of the routine
designer, there is no reasonable chance or need for automatic recovery by
the calling routine. The calling routine or program needs revision and
recompilation in order to correct the error.

• Global Class: These error conditions are handled in a global manner.
A message is issued by the routine detecting the error, but processing
continues.  The decision on whether or not to terminate execution is made
later by an upper-level routine, usually the main program, at the end of a
processing step.

The error-handling routines and procedures discussed in this
chapter are designed to work well for these three classes of
errors.

IMSL Code and User Code
In this chapter, user code refers to routines written by the user and referenced
by IMSL routines.  Designating these sections as user code allows the error
handler to use error handling attributes set by the user. See the discussion of
ElUSR in the “Error Control” section of this chapter.
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Type Class and Severity

Information Class

1. Informational/note: A note is issued to indicate the possibility of a trivial
error or simply to provide information about the computations.

Default attributes: PRINT=NO, STOP=NO

2. Informational/alert: This error type indicates that a function value has been
set to zero due to underflow.

Default attributes: PRINT=NO, STOP=NO

3. Informational/warning: This error type indicates the existence of a condition
that may require corrective action by the user or calling routine. Usually the
condition can be ignored.

Default attributes (user code): PRINT=YES, STOP=NO

Default attributes (IMSL code): PRINT=NO, STOP=NO

4. Informational/fatal: This error type indicates the existence of a condition that
may be a serious error. In most cases, the user or calling routine must take
corrective action to recover.

Default attributes (user code): PRINT=YES, STOP=NO

Default attributes (IMSL code): PRINT=NO, STOP=NO

Terminal Class

5. Terminal/terminal: This error type indicates the existence of a serious error
condition. In normal use, execution is terminated.

Default attributes: PRINT=YES, STOP=YES

Global Class

6. Global/warning: This error type indicates the existence of a condition that
may require corrective action by the user or calling routine. Usually the
condition can be ignored. The stop-or-continue decision is made at the end of
the processing step (by calling N1RGB, see “Error Types and Attributes” ).

 Default attributes: PRINT=YES, STOP=NO

7. Global/fatal: This error type indicates a condition that may be a serious
error.  In most cases, the user or calling routine must take corrective action to
recover. The stop-or-continue decision is made at the end of the processing step
(by calling N1RGB, see “Error Types and Attributes” ).

Default attributes: PRINT=YES, STOP=YES
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PRINT and STOP attributes

The programmer  or user can set PRINT and STOP attributes by calling ElPOS
as follows:

CALL ElPOS (i, pattr, sattr)

where the change only applies to a single type i error, 1 ≤ i ≤ 7.

• If i =0, the change applies to all error types.

• If  -7 ≤ i ≤ -1, the current attribute settings for the error
type -i are returned in pattr and sattr.

• As input values, pattr or  sattr =

-1 for no change

 0 assign NO

 1 assign YES

 2 assign default settings

In IMSL routines, the routine E1PSH (defined in the “Error Control” section)
sets the default PRINT and STOP attributes and ElPOS is usually not needed.
This routine provides the flexibility to handle special cases.  The Library user
can set PRINT and STOP attributes by calling ERSET as follows:

CALL ERSET (i, ipact, isact)

where the change only applies to a single type i error, 1 ≤ i ≤ 5, corresponding
to severity Note, Alert, Warning, Fatal, and Terminal.  Calls to ERSET() are
defined only after at least one routine name has been pushed onto the
subprogram stack.  There is no restriction for calls to E1POS().

• If i =0, the change applies to all error types.

• As input values, pattr or sattr =

-1 for no change

 0 assign NO

 1 assign YES

 2 assign default settings

The routine ERSET is specifically designed to be an easy-to-
use interface to the PRINT and STOP tables for Library users.
If i = 3, then the specified attributes are set for error types 3
and 6. Similarly, if i = 4, then the specified attributes are set
for error types 4 and 7.  The PRINT and STOP attribute
settings, user default values, and values used by IMSL routines
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are listed below. In an IMSL routine, error types 5, 6, and 7 are
handled according to the PRINT and STOP attributes set by the
user. IMSL routines must handle all informational errors, of
types 1 to 4, that are returned to them by other IMSL routines
that they reference.

User Default IMSL Routine

Type PRINT STOP PRINT STOP

1 NO NO NO NO

2 NO NO NO NO

3 YES NO NO NO

4 YES YES YES YES

5 YES YES

6 YES YES

7 YES YES

Error Types and Attributes
Seven error types are defined. Each error type has associated PRINT and STOP
attributes. These flags have default settings (YES or NO) and may be set by the
user. The purpose of having multiple error types is to provide independent
control, default and user-defined,  for errors of different types.  In the parallel
version, a STOP attribute of YES means that after all messages are sent to the
root node for printing, the root node will broadcast STOP after printing the entire
suite of  messages if any node has a STOP attribute of YES . Then MPI will be
finalized, if it has ever been initialized, and the STOP executed.  To avoid shutting
down MPI all processors must have their STOP attributes set to NO after printing
error messages.

Error Control
Control is provided for error handling by a stack with four values for each level.
The values are routine name, error type, error code, and an attribute flag that
selects either the user PRINT and STOP attributes or the IMSL routine
attributes.  The error-control stack is pushed by referencing the subroutine in
the following call:

CALL ElPSH (‘name’)

This reference performs the following tasks:

• Increments the stack pointer by 1.

• Places name on the stack.
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• Sets error type and error code to 0 for the current level.

• Sets the attribute flag so that the PRINT and STOP
attributes for IMSL routines are used for error types 1 to 4.
The user level attributes are used for types 5 to 7.

In addition to the error-control stack, there is an error message with maximum
length 1,024. The most recently issued message is retained in the message
structure until it is either printed or deleted.  The error-control stack is popped
by referencing the subroutine E1POP as follows:

CALL ElPOP (‘name’)

This reference performs the following tasks:

• Compares name with the name for the current level.

• Moves the error type and error code values to the previous level.

• Decreases the stack pointer by 1.   Printing of error messages is triggered
by the stack pointer reaching a return to user code, called Level 1.

• If the user attributes have been selected, decides whether or not the
message should be printed for error states of type 1 to 4 based on the
PRINT attribute for the current error type.

• Decides to stop or continue for error states based on the STOP attribute for
the errors.

• If the user attributes have been selected, decides to stop or continue for
error states of type 1 to 4 based on the STOP attribute for the current error
type.

• If in Library mode and if popping to user code, a stop-or-continue decision
is made based on a reference to N1RGB.

• If an IMSL routine references user-written code, the error handler uses the
PRINT and STOP attributes set by the user. This is accomplished by calling
the routine E1USR. A typical set of statements follow:

CALL ElUSR (’ON’)
[Reference to user-written code]
CALL ElUSR (’OFF’)

The user’s code is referenced between calls to ElUSR. If the user's code calls
other IMSL routines and if those routines encounter error conditions, then they
will be handled properly. If the user does not “handle” an error, a type 4 error
for example, then the message will be printed and execution stopped when the
“CALL ElPOP” is executed by an IMSL routine and reaches Level 1.  If the
user has changed the attributes for type 4 errors, the user is responsible for
handling the recovery from such errors.  A stop-or-continue decision can be
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made for type 6 and type 7 errors by using the function N1RGB as follows:

If (NlRGB(0).NE.0) STOP

The function N1RGB returns 1 if any type 6 or type 7 error states have been set
since the previous N1RGB reference or since the beginning of execution and if
the STOP attribute for that error type is set to YES.

Calls to routines E1PSH() and E1POP() are expensive since they require
allocation of linked derived data types internal to the package.  We have provided a
special name that ignores all stack manipulation until this name is popped from the
stack.  Whence calls to the function N1RTY, N1RCD and IERCD return the
maximum error type or corresponding code, regardless of the argument.  The case of
the letters in the name is ignored.  Thus a typical set of statements are:

CALL E1PSH (‘NULLIFY_STACK’)
[Reference to code that contains no call stack information but
has other error processing.]
CALL E1POP (‘NULLIFY_STACK’)

Error States
• The subroutine reference:

Call ElMES (errtype, errcode, ’message’)

is used to set an error state for the current level in the stack. At least
one routine name must be on the stack for this subprogram call to be
defined.  The message is printed when control returns to Level 1, if the
print attribute for that type is YES.  The printed message width can be
shortened by subroutine E1HDR. The name associated with the current
stack level is combined with the message when it is printed. Once an
error state has been set, any one of the settings, error type, error code,
or error message can be changed without changing the others. An
actual argument value of -1 for the error type or error code causes
the particular item to retain its current setting.

• The next reference changes the message and retains the type and code
settings:

CALL ElMES (-1, -1, ‘new-message’)

• The next reference changes the error code and retains the type and
message settings:

CALL ElMES (-1, errcode, ' ')

• The next reference removes the error state:

CALL ElMES (0, 0, ' ')
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• Values can be inserted into messages by the use of one of the
following subroutines:

CALL E1STL (ii, literalstring)
CALL E1STA (ai, characterarray)
CALL E1STI (ii, ivalue)
CALL E1STR (ri, rvalue)
CALL E1STD (di, dvalue)
CALL ElSTC (ci, cvalue)
CALL E1STZ (zi, zvalue)

The current values of the parameters are expanded and placed in the
text of the message. This happens at the respective places indicated
with the symbols %(Li), %(Ai), %(Ii), %(Ri), %(Di), %(Ci),
and %(Zi). Case of the letters L, A, I, R, D, C and Z is not
important.  The trailing indices i are integers between 1 and 9, with
one exception: Use of a negative value for ii in a call to E1STL keeps
trailing blanks in literalstring. To improve readability of
messages, we have provided that when the string %/ is embedded in
any message, a new line immediately starts.

• The routines E1ST<L, A, I, R, D, C, Z> are called before
calling ElMES to issue an error message. The values defined by
these routines are discarded after the reference to E1MES.

• The function reference NlRCD(i) returns the error code. If i=0,
the code for the current level is returned; if i=1, the code for the
most recently called routine (last pop) is returned.

• Likewise, NlRTY(i) returns the error type.

• The function reference IERCD() returns N1RCD(1) if NlRTY(l)
is 1 to 4, and 0 otherwise.

• The INTEGER functions IERCD, N1RCD, and N1RTY return
current information about the status of an error if the stack is not
empty. In the scalar version of the error message code, this stack
was always kept with at least one name pushed on it. In the
parallel version of the error message library, this is not so, due to
the need for synchronization of error printing. If a call to IERCD,
N1RCD, or N1RTY is being made to handle the occurrence of an
error in a top-level routine, then the programmer should first call
E1PSH(‘ROUTINE_NAME’)  before the call to the subprogram
in question. Here ROUTINE_NAME can be any name. After the
call to IERCD, N1RCD, or N1RTY, the programmer should make
a call to E1POP(‘ROUTINE_NAME’) . This is not an issue for
code bracketed between calls to MP_SETUP() and
MP_SETUP(‘Final’) .
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Traceback Option
The traceback option is set to ON or OFF by ElTRB:

CALL E1TRB (i, tset),

where the traceback option only applies to type i errors, if 1 7≤ ≤i .
If i = 0  the selection applies to all error types. For tset = 0 the
traceback is OFF. For tset = 1 the traceback is ON. The traceback is
ON for all error types. This routine is provided for compatibility with
the previous version of the error processor.

Guidelines for Writing Error Messages

• Error messages should be written in correct and complete
sentences.

• Capitalize the first letter of the message.

• Type two spaces after the period at the end of the sentence.

• Use present tense whenever possible.

• Variable length items,  included by (%Ai), should be placed at the
end of the message without a period. Entire messages are limited to
1,024 characters and long variable items in the middle could cause
critical parts of the message to be truncated. A period at the end
could cause confusion if it is interpreted as part of data items.

• Messages should describe both the observed error condition and
the expected condition. For example: “A procedure name is
expected, but the following entity has been encountered: %(A1)”.

• Whenever possible, and especially when it is not obvious, the
message should provide information about correcting the error
condition.

• Avoid calls to E1PSH() and E1POP() if this routine is at the most
forward level of the call chain and there is no error condition. Use
of these routines is expensive.  Consider using the
‘nullify_stack’  argument for operational use.  When this
special name is an argument to E1PSH() , the package ceases
stacking names. When it is an argument to E1POP() , resume
stacking names and print any error messages at Level 1.
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Error Message Formats and Examples
Error messages are developed from arguments in the program unit that
calls E1MES(). Additional information is inserted into the text
including drop-in values used to clarify the error type, meaning,
subprogram name where the error occurred, and node names and ranks
where the application is executing. The message is printed by lines,
breaking on a blank, if possible. The number of columns in a line has
the default value SCREEN_SIZE=72. This can be reset using the
routine E1HDR() as follows:

CALL E1HDR(NEW_SCREEN_SIZE)

The sign of the INTEGER variable NEW_SCREEN_SIZE determines the
action. If its value is non-positive then the argument is an output,
assigned the current value of SCREEN_SIZE. For positive values of the
argument, the value of SCREEN_SIZE is set to the smaller of
NEW_SCEEN_SIZE and 72. All error message output is written to unit
number given by the INTEGER variable ERROR_UNIT. This value is
obtained in the package by:

CALL UMACH (3, ERROR_UNIT)

If the value of ERROR_UNIT is non-positive, nothing is printed. This
test is made only on the root node. The user, or the defaults provided by
the operating system, must open the external file corresponding to
ERROR_UNIT.

We now give examples that show how to use the error processor in
applications. Small program units are listed followed by the output.
Each example is executed in an MPI application with two nodes. When
using more than two nodes messages may appear from each node. If
that node has no messages, nothing is printed.

Example 1

This program calls a subprogram that makes an error. The error occurs after a
call to MP_SETUP(). Messages and traceback information are gathered from
the nodes and printed at the root. Note that the names for the nodes are
dependent on the local operating environment and hence will vary.

   program errpex1
    USE MPI_SETUP_INT
    IMPLICIT NONE
!
! Make calls to the VNI error processor while using MPI.
! The error type shown is type 4 or FATAL.

! An example is a call to a routine that expects a positive
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! value for the INTEGER argument.
    MP_NPROCS=MP_SETUP()

    CALL A_Name(0)

! Finalize MPI and print any error messages.
! The programs STOP by default.
    MP_NPROCS=MP_SETUP(‘Final’)
   END PROGRAM

   SUBROUTINE A_Name(I)
! This routine generates an error message.
   IMPLICIT NONE

   INTEGER I
   IF(I <= 0 ) THEN

! Push the name onto the stack.
    CALL E1PSH('A_Name')
! Drop a value into the message.
    CALL E1STI(1,I)
! Prepare the message for printing.
    CALL E1MES(4,1,&
    'The agument should be positive.'//&
    ' It now has value %(i1).')

! Pop the name off the stack.
    CALL E1POP('A_Name')
! Had an invalid argument so RETURN.
    RETURN
   END IF

   END SUBROUTINE

Output for Example 1

 *** FATAL ERROR 1 on rank 1, torski.rd.imsl.com from: A_Name. The
    agument should be positive. It now has value 0.
    FORWARD Calls:              Error Types and Codes:
     MP_SETUP                 0     0
     A_Name                   4     1

 *** FATAL ERROR 1 on rank 0, texas.rd.imsl.com from: A_Name. The
    agument should be positive. It now has value 0.
    FORWARD Calls:              Error Types and Codes:
     MP_SETUP                 0     0
      A_Name                  4     1
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Example 2

This program is Example 1 with a different message from each
node. The messages are gathered from the nodes and printed at
the root.

   program errpex2
    USE MPI_SETUP_INT
    IMPLICIT NONE
!
! Make calls to the VNI error processor while using MPI.
! The error types are WARNING and FATAL.

! An example is a call to a routine that expects a positive
! value for the INTEGER argument.
    MP_NPROCS=MP_SETUP()

    CALL B_Name(0)
! Finalize MPI and print any error messages.
! The program STOPs by default.
    MP_NPROCS=MP_SETUP(‘Final’)
   END PROGRAM

   SUBROUTINE B_Name(I)
   USE MPI_NODE_INT
! This routine generates an error message.
   IMPLICIT NONE
   INTEGER I, TYPE
! Different types of errors occur at different nodes.
   TYPE=4
   IF(MP_RANK == 1) TYPE=3
   IF(I <= 0 ) THEN

! Push the name onto the stack.
    CALL E1PSH('B_Name')
! Drop a value into the message.
    CALL E1STI(1,I)
! Prepare the message for printing.
    CALL E1MES(TYPE,2,&
    'The agument should be positive.'//&
    ' It now has value %(i1).')

! Pop the name off the stack.
    CALL E1POP('B_Name')
! Had an invalid argument so RETURN.
    RETURN
   END IF

   END SUBROUTINE
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Output for Example 2

 *** WARNING 2 on rank 1, torski.rd.imsl.com from: B_Name. The
     agument should be positive. It now has value 0.
     FORWARD Calls:              Error Types and Codes:
     MP_SETUP                 0     0
      B_Name                  3     2

 *** FATAL ERROR 2 on rank 0, texas.rd.imsl.com from: B_Name. The
    agument should be positive. It now has value 0.
    FORWARD Calls:              Error Types and Codes:
     MP_SETUP                 0     0
     B_Name                   4     2

Example 3

This example shows an error when the program unit is in three states.
The STOP conditions for all error types are changed to NO using the
call to routine E1POS():

• In the first state MPI has not been initialized. Thus each node
writes its own identical copy of the error message. The lines may
be jumbled in some environments, even though that is not the case
here. There is no indication about the node where the message
occurred.

• In the second state MPI is initialized. Error messages are gathered
and printed as shown in Example 1.

• In the third state MPI has been used and finalized. The executable
running on the alternate node is gone and further calls to MPI
routines are invalid. One error message from the remaining
executable prints.

   program errpex3
    USE MPI_SETUP_INT
    IMPLICIT NONE
!
! Make calls to the VNI error processor before, while
! and after using MPI.

! An example is a call to a routine that expects a positive
! value for the INTEGER argument.

! Set STOP attribute to NO.
    CALL E1POS (0,1,0)

! Before MPI is initialized each node prints
! the error. Lines may be jumbled.
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    CALL C_name(-2)

! Initialize MPI and then make an error.
    MP_NPROCS=MP_SETUP()
    CALL C_Name(0)

! Finalize MPI and print any error messages
! that occurred since the last printing.
! All nodes report errors to the root node.
    MP_NPROCS=MP_SETUP(’Final’)

! After MPI is finalized a single set of
! messages print. The other nodes are inoperative.
    CALL C_Name(-1)
   END PROGRAM

   SUBROUTINE C_Name(I)
   USE MPI_NODE_INT
! This routine generates an error message.
   IMPLICIT NONE
   INTEGER I, TYPE

   TYPE=4
   IF(I <= 0 ) THEN

! Push the name onto the stack.
    CALL E1PSH(’C_Name’)
! Drop a value into the message.
    CALL E1STI(1,I)
! Prepare the message for printing.
    CALL E1MES(TYPE,3,&
    ’The agument should be positive.’//&
    ’ It now has value %(i1).’)

! Pop the name off the stack.
    CALL E1POP(’C_Name’)
! Had an invalid argument so RETURN.
    RETURN
   END IF

   END SUBROUTINE

Output for Example 3

 *** FATAL ERROR 2 from: C_Name. The agument should be positive. It
    now has value -2.
    FORWARD Calls:              Error Types and Codes:
     C_Name                   4     3

 *** FATAL ERROR 2 from: C_Name. The agument should be positive. It
    now has value -2.
    FORWARD Calls:              Error Types and Codes:
    C_Name                    4     3

 *** FATAL ERROR 2 on rank 1, torski.rd.imsl.com from: C_Name. The



IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option • 315

    agument should be positive. It now has value 0.
    FORWARD Calls:              Error Types and Codes:
     MP_SETUP                 0     0
     C_Name                   4     3

 *** FATAL ERROR 2 on rank 0, texas.rd.imsl.com from: C_Name. The
    agument should be positive. It now has value 0.
    FORWARD Calls:              Error Types and Codes:
     MP_SETUP                 0     0
     C_Name                   4     3

 *** FATAL ERROR 2 from: C_Name. The agument should be positive. It
    now has value -1.
    FORWARD Calls:              Error Types and Codes:
     C_Name                    4     3
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Questions and Answers
Q 1: When do I need to use E1PSH and E1POP?

A: They are not needed in every routine. They should be used in every
subprogram that calls ElMES either directly or indirectly. This is
important during application debugging. To ignore further calls the user
can call E1PSH with the special name ‘nullify_stack’. The name
stacking is restored with a call to E1POP using the same special name.

Q 2: How can I tell if an error condition has occurred in a lower level
routine?

A: When an error state has been set the error type may be retrieved by
referencing the INTEGER function N1RTY(1). The corresponding
error code is retrieved by referencing the function NlRCD(1). The
purpose of the error code is to allow the programmer to distinguish
more than one error condition of the same type. Note that the error code
is printed with the message for all types.

Q 3: What are global errors?

A: Error types 6 and 7 are global in the sense that E1POP never decides
to stop based on their occurrence. The function N1RGB(1) returns a 1
if processing should stop due to a global error. Also, N1RGB clears the
global error indicators.

Q 4: Does ElMES actually print the message or just store it?

A: All error messages are stored and printed, if the user desires, when
the subprogram call stack returns to Level 1.

Q 5: To store an integer and a real number for use in a message, must
unique positional index numbers be used?

A: No, for example:

CALL E1STI (1, 123 )
CALL E1STR (1, 456.0)
CALL ElMES (5, 2, ’%(R1) is more than %(I1) ’ )

Q 6: How do I disable an error state?

A: CALL ElMES (0, 0, ’ ’ )

Note that any of the settings can be changed. In the following example,
the error type is reset to 5 and the other settings are left unchanged:

CALL ElMES (5, -1, ’ ’)

Q 7: How long can the message be?

A: An expanded message will be truncated after 1,024 characters. For
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this reason, long variable-length items, included by %(A1), %(L1), etc.,
should be placed at the end of the message.

Q 8: Why is it that when I call E1POS to turn off printing and then call
E1MES, it prints anyway?

A:When E1POS is called to change PRINT or STOP attributes, errors at
the current level are not affected. Also note the following: Calls to
E1MES at Level 1 should be surrounded by calls to E1PSH and ElPOP
so that the user can control printing and stopping. If a PRINT or STOP
attribute is set to NO, for example by the user at Level 1, then it cannot
be set to YES at any level greater than 1.

Q 9: Are tracebacks on for all messages?

A: Traceback is ON all error types, but tracebacks are given only if
printing occurs.

Q 10: How can I force a specific portion of my message to begin on a
new line?

A: Insert the following two characters in the message: %/

For example:

CALL E1PSH(‘MYSUB’)
CALL ElMES (4, 104, 'Line one. %/This is ‘// &
  'a new line.’)
CALL E1POP(‘MYSUB’)

The resulting message might look like the following:

***FATAL ERROR 104 from: MYSUB. Line one.
This is a new line.

Q 11: Is there a way to avoid having trailing blanks removed from a
string inserted into a message?

A:Yes, use a negative index. For example:
CALL E1STL (-2, 'string with trailing blanks  ')

Q 12: Why do error messages not print when the PRINT attributes are
set to YES?

A: They should print when E1POP has reached Level 1, so that no
more routine names remain on the stack.

Q 13: I used the error printing routine E1MES in my code. My function
call to N1RTY(1) returned the correct error type, but no message
printed. What is going on?

A: This is will happen when no name was pushed on the stack.  Before
your call to E1MES, call E1PSH(‘ROUTINE_NAME’) , where
ROUTINE_NAME is any name you choose. Then after the return from
the routine, call E1POP(‘ROUTINE_NAME’) . The message will print
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at this synchronization point.

Q 14: Please explain the difference between the function values
N1RTY(0) and N1RTY(1).

A: The value N1RTY(1) is the maximum error type noted in any
routine called by a user’s code.  More precisely this is the maximum
error type bracketed by a call to E1PSH and E1POP, which could be in
a user’s code. The value N1RTY(0) is the maximum error type noted
before a call to E1POP.  This allows a programmer to make a series of
tests and possible calls to E1MES.  Then the value N1RTY(0) is used
to indicate what error condition occurred in the tests.

Support for Threads
Our design supports multiple threads at each node of a distributed
machine.  These features are not yet fully tested. We have used calls to
routines that provide a simple interface to threaded computations. The
routines are:

CALL E1LOCK(LOCK_STATE)

If LOCK_STATE = 1, allow exactly one execution access from this
point forward.

If LOCK_STATE = 0, give up the exclusive execution access from this
point forward.

HANDLE = N1THRD()

This INTEGER function gives a handle for purposes of identifying the
execution thread. The default routine returns HANDLE = 1.

TEST = N1MTCH(HANDLE_1, HANDLE_2)

This INTEGER function compares two thread handles for equality. The
default routines returns the bit-wise exclusive or value, N1MTCH =
ieor (HANDLE_1, HANDLE_2).
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Appendix A: List of Subprograms
and GAMS Classification

The routines listed below are the generic names typically called by
users in their codes.  In fact, there is no external library name in
IMSL F90 MP Library that matches these generic names.  The generic
name is associated at compile time with a specific external name that is
appropriate for that data type.  The specific external names are not listed
below.  (Note that * appearing in the Chapter column means that the
routine is not intended to be user-callable.)

Routine Purpose Chapter GAMS

error_post Prints error messages that are generated
by IMSL Library routines.

See Chapter 5 R3

fast_dft Computes the Discrete Fourier
Transform (DFT) of a rank-1 complex
array, x.

See Chapter 3 J1a2

fast_2dft Computes the Discrete Fourier
Transform (DFT) of a rank-2 complex
array, x.

See Chapter 3 J1b

fast_3dft Computes the Discrete Fourier
Transform (DFT) of a rank-3 complex
array, x.

See Chapter 3 J1b

isNaN Detect an IEEE NaN (not-a-number). See Chapter 6 R1

lin_eig_gen Computes the eigenvalues of an n × n
matrix, A. Optionally, the eigenvectors of

A or A7 are computed. Using the
eigenvectors of A gives the
decomposition AV = VE, where V is an n
× n complex matrix of eigenvectors, and
E is the complex diagonal matrix of
eigenvalues. Other options include the
reduction of A to upper triangular or
Schur form, reduction to block upper
triangular form with 2 × 2 or unit sized
diagonal block matrices, and reduction to
upper Hessenberg form.

See Chapter 2 D4a2
D4a4
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lin_eig_self Computes the eigenvalues of a self-
adjoint matrix, A. Optionally, the
eigenvectors can be computed. This

gives the decomposition A = VDV7,
where V is an n × n orthogonal matrix
and D is a real diagonal matrix.

See Chapter 2 D4a1
D4a3

lin_geig_gen Computes the generalized eigenvalues of
an n × n matrix pencil, Av ≅ λBv.
Optionally, the generalized eigenvectors
are computed. If either of A or B is
nonsingular, there are diagonal matrices
α and β and a complex matrix V
computed such that AVβ = BVα.

See Chapter 2 D4b1
D4b2
D4b4

lin_sol_gen Solves a general system of linear
equations Ax = b. Using optional
arguments, any of several related
computations can be performed. These
extra tasks include computing the LU
factorization of A using partial pivoting,
representing the determinant of A,

computing the inverse matrix A��, and

solving A7x = b or Ax = b given the LU
factorization of A.

See Chapter 1 D2a1
D2c1

lin_sol_lsq Solves a rectangular system of linear
equations
Ax ≅ b, in a least-squares sense. Using
optional arguments, any of several
related computations can be performed.
These extra tasks include computing and
saving the factorization of A using
column and row pivoting, representing
the determinant of A, computing the
generalized inverse matrix A†, or
computing the least-squares solution of

Ax ≅ b or A7y ≅ d given the factorization
of A. An optional argument is provided
for computing the following unscaled

covariance matrix: C = (A7A)��

See Chapter 1 D9a1
D9c
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lin_sol_self Solves a system of linear equations Ax =
b, where A is a self-adjoint matrix. Using
optional arguments, any of several
related computations can be performed.
These extra tasks include computing and
saving the factorization of A using
symmetric pivoting, representing the
determinant of A, computing the inverse

matrix A��, or computing the solution of
Ax = b given the factorization of A. An
optional argument is provided indicating
that A is positive definite so that the
Cholesky decomposition can be used.

See Chapter 1 D2b1a
D2b1b
D2d1a
D2d1b

lin_sol_svd Solves a rectangular least-squares system
of linear equations Ax ≅ b using singular

value decomposition, A = USV7. Using
optional arguments, any of several
related computations can be performed.
These extra tasks include computing the
rank of A, the orthogonal m × m and n ×
n matrices U and V, and the m × n
diagonal matrix of singular values, S.

See Chapter 1 D9a1
D6

lin_sol_tri Solves multiple systems of linear
equations AMxM = yM, j = 1, …, k. Each
matrix AM is tridiagonal with the same
dimension, n: The default solution
method is based on LU factorization
computed using cyclic reduction. An
option is used to select Gaussian
elimination with partial pivoting.

See Chapter 1 D2a2a
D2c2a

lin_svd Computes the singular value
decomposition (SVD) of a rectangular
matrix, A. This gives the decomposition

A = USV7, where V is an n × n
orthogonal matrix, U is an m × m
orthogonal matrix, and S is a real,
rectangular diagonal matrix.

See Chapter 2 D6

NaN Returns, as a scalar function, a value
corresponding to the IEEE 754 Standard
format of floating point (ANSI/IEEE
1985) for NaN.

See Chapter 6 R1

parallel_&

nonnegative_lsq

Parallel routines for non-negative
constrained linear-least squares based on
a descent algorithm.

See Chapter 7 K1a2

parallel_&

bounded_lsq

Parallel routines for simple bounded
constrained linear-least squares based on
a descent algorithm.

See Chapter 7 K1a2
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rand_gen Generates a rank-1 array of random
numbers. The output array entries are
positive and less than 1 in value.

See Chapter 5 L6a
L6c

ScaLAPACK_Read Read matrix data from a file and place in
a two-dimensional block-cyclic form on
a process grid.

See Chapter 7 N1

ScaLAPACK_Write Write matrix data to a file, starting with a
two-dimensional block-cyclic form on a
process grid.

See Chapter 7 N1

show Print rank-1 and rank-2 arrays with
indexing and text.

See Chapter 5 N1

sort_real Sorts a rank-1 array of real numbers x so
the y results are algebraically
nondecreasing,  y y yn1 2≤ ≤K

See Chapter 5 N6a1b

spline_fitting Solves constrained least-squares fitting
of one-dimensional data by B-splines.

See Chapter 4 E1a

surface_fitting Solves constrained least-squares fitting
of two-dimensional data by tensor
products of B-splines.

See Chapter 4 E2a

balanc, cbalanc Balances a general matrix before
computing the eigenvalue-eigenvector
decomposition.

* D4c

norm2, cnorm2
mnorm2, cmnorm2
nrm2, cnrm2

Computes the Euclidean length of a
vector or matrix, avoiding out-of-scale
intermediate subexpressions.

* D1a3b

build_error_structure Fills in flags, values and update the data
structure for error conditions that occur
in Library routines. Prepares the
structure so that calls to routine
error_post will display the reason
for the error.

* R3

perfect_shift Computes eigenvectors using actual
eigenvalue as an explicit shift. Called by
lin_eig_self.

* D4c

pwk A rational QR algorithm for computing
eigenvalues of real, symmetric tri-
diagonal matrices. Called by lin_svd
and lin_eig_self.

* D4c

tri_solve A real, tri-diagonal, multiple system
solver. Uses both cyclic reduction and
Gauss elimination. Similar in function to
lin_sol_tri.

* D2a2a

french_curve Constrained weighted least-squares
fitting of B-splines to discrete data, with
covariance matrix.and constraints at
points.

* K1a1a1
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spline_support B-spline function and derivative
evaluation package

* E1a

surface_fairing Constrained weighted least-squares
fitting of tensor product B-splines to
discrete data, with covariance matrix and
constraints at points.

* E2b,
K1a1b

lin_sol_lsq_con
lin_sol_lsq_inq
least_proj_distance

Routines for constrained linear-least
squares based on a least-distance, dual
algorithm.

* K1a2

band_accumulation
band_solve
house_holder

Routines to accumulate and solve
banded least-squares problem using
Householder transformations.

* D9a1

Parallel_nonnegative_lsq Routines for solving a large least-squares
system with non-negative constraints,
using parallel computing.

See Chapter 7 K1a2a

Parallel_bounded_lsq Routines for solving a large least-squares
system with simple bounds, using
parallel computing.

See Chapter 7 K1a2a

ScaLAPACK_READ Move data from a file to Block-Cyclic
form, for use in ScaLAPACK

See Chapter 7 N4

ScaLAPACK_WRITE Move data from Block-Cyclic form,
following use in  ScaLAPACK, to a file.

See Chapter 7 N4

pde_1d_mg Routine for integrating an initial-value
PDE problem with one space variable.

See Chapter 8 I2a1

I2a2

Remarks

The GAMS classification scheme is detailed in Boisvert et al. (1985).
Other categories for mathematical software are available on the Internet
through the World Wide Web. The current address is
http://gams.nist.gov/.
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Appendix B: List of Examples

Readers can locate a sample program that will help them when using
IMSL Fortran 90 MP Library within their application codes.  Not all
examples are listed here.  Note the Operator Examples section in
Chapter 6.  The 37 programs in this suite use defined operations and
generic functions to implement many of the examples shown below.  The
Parallel Examples section of Chapter 6 lists 18 programs that use IMSL
defined operations and generic functions applied to the box data type.
The final two examples show how to choreograph printed output from
each parallel process, and a surface fitting problem, which uses four
processes.

Example Description Chapter

lin_sol_gen_ex1 Solve a system with random data. 1

lin_sol_gen_ex2 Invert a random matrix; evaluate its determinant. 1

lin_sol_gen_ex3 Solve a random system with iterative refinement. 1

lin_sol_gen_ex4 Evaluate a random matrix exponential. 1

lin_sol_self_ex1 Solve a symmetric system of normal equations with random data. 1

lin_sol_self_ex2 Solve normal equations using Cholesky method; compute
covariance uses random data.

1

lin_sol_self_ex3 Inverse iteration for an eigenvector of a symmetric matrix with
random data.

1

lin_sol_self_ex4 Solve a least-squares problem using iterative refinement, with
random data.

1

lin_sol_lsq_ex1 Solve a least-squares problem of data fitting a Chebyshev series to
a given function with random independent variable values.

1

lin_sol_lsq_ex2 Solve a data-fitting problem, as in lin_sol_lsq_ex1, using
the generalized inverse for computing the coefficients.

1

lin_sol_lsq_ex3 Two-dimensional least-squares data fitting of radial basis functions
to a given function. Uses random data.

1

lin_sol_lsq_ex4 Least-squares fitting with an equality constraint by heavy
weighting uses random data.

1

lin_sol_svd_ex1 Solve a least-squares system with random data. 1

lin_sol_svd_ex2 Compute the polar decomposition of a square matrix with random
data.

1
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lin_sol_svd_ex3 Compress an image, the black interior of an approximate circle,
using SVD.

1

lin_sol_svd_ex4 Inversion of the Laplace Transform of a unit step function, using
SVD.

1

lin_sol_tri_ex1 Solve many tridiagonal systems using cyclic reduction with
random data.

1

lin_sol_tri_ex2 Solve many tridiagonal systems, using iterative refinement. Switch
solution method from Cyclic Reduction to Gaussian Elimination, if
required. Uses random data.

1

lin_sol_tri_ex3 Solve for selected eigenvectors of a tridiagonal matrix. Switch
solution method from Cyclic Reduction to Gaussian Elimination, if
required. Uses random data.

1

lin_sol_tri_ex4 Solve a One-Dimensional diffusion PDE. Uses the IMSL/MATH
LIBRARY DAE solver D2SPG. Solves the tridiagonal corrector
equations in reverse communication mode. Outer loop solves a
boundary value problem.

1

lin_svd_ex1 Compute SVD of a square matrix with random data. 2

lin_svd_ex2 Use SVD to solve linear least-squares problem with a quadratic
constraint. Uses random data.

2

lin_svd_ex3 Use SVD to compute a GSVD of two random matrices. 2

lin_svd_ex4 Use SVD to solve a linear least-squares problem based on ridge
regression, as cross-validation. Uses random data.

2

lin_eig_self_ex1 Compute eigenvalues of a self-adjoint matrix with random data.
Compare values with magnitudes of singular values.

2

lin_eig_self_ex2 Compute complete eigenexpansions of a self-adjoint matrix with
random data.

2

lin_eig_self_ex3 Compute eigenvalues of self-adjoint matrix. Compute some
eigenvectors using inverse iteration and a symmetric solver. Uses
random data.

2

lin_eig_self_ex4 Compute solution of a self-adjoint generalized problem by
reduction to an ordinary self-adjoint problem.

2

lin_eig_gen_ex1 Compute the eigenexpansion of a real matrix with random data. 2

lin_eig_gen_ex2 Compute the roots of a complex polynomial equation with random
coefficients.

2

lin_eig_gen_ex3 Solve linear systems with a scalar diagonal parameter with random
data.

2

lin_eig_gen_ex4 Compute condition numbers of eigenvalues to estimate their
accuracy with random data.

2

lin_geig_gen_ex1 Compute the generalized eigenvalues of a matrix pencil with
random data.

2

lin_geig_gen_ex2 Compute the eigenexpansion of a self-adjoint matrix pencil with
random data. Uses options.

2

lin_geig_gen_ex3 Test for solvability of a DAE system with random data. 2

lin_geig_gen_ex4 Compute eigenexpansion of a matrix pencil, where the second
matrix may be singular. Uses random data.

2
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fast_dft_ex1 Compute FFT of a complex vector. Transform forward, then
backwards. Uses random data.

3

fast_dft_ex2 Compute the FFT of a linear function plus harmonic terms.
Remove the linear trend and transform the residuals. Uses random
data.

3

fast_dft_ex3 Compute the FFT of a complex vector. Precompute the multipliers
and internal data for later efficiency. Uses random data.

3

fast_dft_ex4 Compute the convolution of two periodic sequences.  Uses random
data.

3

fast_2dft_ex1 Compute FFT of a complex array. Transform forward, then
backwards. Uses random data.

3

fast_2dft_ex2 Compute the FFT of a linear function plus harmonic terms.
Remove the linear trend and transform the residuals. Uses random
data.

3

fast_2dft_ex3 Compute the FFT of a complex vector. Precompute the multipliers
and internal data for later efficiency. Uses random data.

3

fast_3dft_ex1 Compute FFT of a complex array. Transform forward, then
backwards. Uses random data.

3

rand_gen_ex1 Compute the running mean and variance of a sequence of random
numbers.

5

rand_gen_ex2 Start the random number generation with a known seed. Reset the
generator after obtaining some numbers.

5

rand_gen_ex3 Generate integers with the same frequency as a given histogram.
Executes until the results are ‘steady-state’ and then lists twenty
samples.

5

rand_gen_ex4 Generate random numbers using the PDF function
1 2+ − ≤ ≤cos / ,x x0 51 6 π π π , listing thirty samples.

5

sort_real_ex1 Sort an array of random numbers so they are non-decreasing. 5

sort_real_ex2 Sort any array so it is nonincreasing. Move columns of a matrix
using the output permutation.

5

nan_ex1 Generate arrays of single and double precision NaNs. Uses the
function isNaN() to detect the NaNs.

6

show_ex1 Print all types of rank-1 and rank-2 intrinsic arrays.  Reset
precision and subscripts for one type.

5

show_ex2 Prepare output in a CHARACTER array.  Reset precision,
subscripts  and end-of-line sequence for one type.

5

spline_fitting_ex1 Natural B-spline interpolation to the function

f x x x0 5 3 8= − ≥exp / ,2 2 0 .

4

spline_fitting_ex2 Shape the B-spline curve that least-squares fits

f x x x0 5 3 8= − ≥exp / ,2 2 0 , with function and derivative

constraints matching f x0 5.

4
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spline_fitting_ex3 Use B-spline interpolation, Gauss-Legendre quadrature and
uniform random numbers to generate random numbers according

to the distribution f x x x0 5 3 8= − − ≤ ≤exp / ,2 2 1 1.

4

spline_fitting_ex4 Use piece-wise linear B-splines to fit a periodic curve, the
perimeter of a box in two dimensions.

4

surface_fitting_ex1 Use tensor product B-splines to least-squares fit

f x y x y x y, exp , ,0 5 3 8= − − ≥ ≥2 2 0 0.

4

surface_fitting_ex2 Use tensor product B-splines to least-squares fit the standard
spherical coordinate parametric representation of a sphere.
Remove regularization.

4

surface_fitting_ex3 Use tensor product B-splines to least-squares fit

f x y x y x y, exp , ,0 5 3 8= − − ≥ ≥2 2 0 0.  Constraints are

f
f

x

f

y
0 0 1 0 0 0 0 0 0, , , , ,1 6 1 6 1 6= = =∂

∂
∂
∂

 and .

4

surface_fitting_ex4 Use tensor product B-splines to least-squares fit a data set
historically due to Ferguson.  Reset regularization and constrain
the surface to be non-negative.  Surface is fit twice.

4

scpk_ex1 Transpose a distributed matrix, in place. 7

scpk_ex2 Compute product of distributed matrices. 7

scpk_ex3 Solve a distributed linear system with ScaLAPACK. 7

pnlsq_ex1 Solve a large system of linear inequalities. 7

pnlsq_ex2 Solve a large linear least-squares system with non-negativity
constraints.

7

pblsq_ex1 Solve a large system with linear equality and inequality
constraints.

7

pblsq_ex2 Solve a large non-linear equation with bounded least-squares as
step control.

7

pde_ex1 Solve an electrodynamics model PDE problem. 8

pde_ex2 Solve for inviscid flow on a plate, a model PDE problem. 8

pde_ex3 Solve a population dynamics simulation, an integro-differential
PDE problem.

8

pde_ex4 Solve a model PDE problem in cylindrical coordinates. 8

pde_ex5 Solve a flame propagation model PDE problem. 8

pde_ex6 Solve a ‘hot-spot’ model PDE problem. 8

pde_ex7 Solve for interacting waves, a model PDE problem. 8

pde_ex8 Solve the Black-Scholes PDE for a European call option. 8

pde_ex9 Study many values of a parameter found in example pde_ex1.
Use several processes and MPI for communicating results.

8
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Appendix D: Benchmarking or
Timing Programs

Scalar Program Descriptions
An important question for users concerns the performance of Fortran 90
subprograms compared to equivalent subprograms from the FORTRAN 77
IMSL MATH/LIBRARY.

We have provided a set of main programs shown in Table B. These main
programs call Fortran 90 array functions, in single and double precision,
that compares a Fortran 90 routine with a FORTRAN 77 counterpart. The
main program reads single lines of input:

NSIZE NTRIES PREC “Description”

NSIZE NTRIES PREC “Description”
...

QUIT

The parameters NSIZE and NTRIES appear in the summary tables.  The
parameter PREC has values 1, 2 or 3.  The choice depends on whether the
user wants precision of single, double or both versions timed.  The array
functions return a
6 × 2 summary table of values:

F90 Version F77 Equivalent
1. Average time Average time

2. Standard deviation Standard deviation

3. Total time Total time

4. nsize nsize

5. ntries ntries

6. Time Units/Sec. Time Units/Sec.
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As an example, the program time_rand_gen is compiled and linked
with the single and double precision timing functions
s_rand_gen_bench and d_rand_gen_bench.

The two lines of input are:
100000 5 3 “Random Number Benchmarks”

QUIT

This routine evaluates the elapsed time to compute 100,000 random
numbers obtained with rand_gen  from the Fortran 90 MP Library and
rnun  (drnun ) from the IMSL MATH/LIBRARY. The “Average” is the
mean of the individual elapsed times for 5 calls to the routines, obtaining
100,000 random numbers in each call. The “St. Dev.” is the standard
deviation for that “Average”. This value indicates the variability of the
“Average”. In order for this value to provide any useful information it is
necessary for |NTRIES| > 1. The value |NTRIES| = 1 is acceptable, but
only one time sample and no standard deviation is obtained. Values of
NTRIES > 0 result in the printing of results as shown in Table A.  The
numbers in the table will vary depending on the machine and other
factors that impact performance of Fortran codes.

Benchmark of rand_gen (F90) and rnun (F77):

Date of benchmark, (Y, Mo, D, H, M, S): 1994  5 11    8  58  58

1 3.6000E+00 3.2000E+00 Average

2 4.8990E−01 4.0000E−01 St. Dev.

3 1.8000E+01 1.6000E+01 Total Ticks

4 1.0000E+04 1.0000E+04 Size

5 5.0000E+00 5.0000E+00 Repeats

6 5.0000E+01 5.0000E+01 Ticks per sec.

Benchmark of rand_gen (F90) and drnun (F77):

Date of benchmark, (Y, Mo, D, H, M, S): 1994  5 11    8  58  59

1 2.8000E+00 3.2000E+00 Average

2 4.0000E−01 4.0000E−01 St. Dev.

3 1.4000E+01 1.6000E+01 Total Ticks

4 1.0000E+04 1.0000E+04 Size

5 5.0000E+00 5.0000E+00 Repeats

6 5.0000E+01 5.0000E+01 Ticks per sec.

Table A: Benchmark Summary: rand_gen, rnun, (drnun)
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If NTRIES < 0 the 6 × 2 functions return the tabular values shown, with
|NTRIES| samples. No printing is performed with NTRIES < 0.

To compute a related benchmark such as the rate “random numbers per
second” for single precision rand_gen, separately calculate

rate = size × ticks per sec./average
= 104 × 50/3.6
= 138,889. numbers/sec.
= 0.139 million numbers/sec.

Number Program Units
Fortran 90 Codes

Timed
FORTRAN 77 Codes

Timed

1 time_dft.f90,
s_dft_bench.f90,

d_dft_bench.f90

fast_dft fftcf, fftcb

dfftcf, dfftcb

2 time_eig_gen.f90,

s_eig_gen_bench.f90,

d_eig_gen_bench.f90

lin_eig_gen e8crg, de8crg

3 time_eig_self.f90,

s_eig_self_bench.f90,

d_eig_self_bench.f90

lin_eig_self e5csf, de5csf

4 time_geig_gen.f90,

s_geig_gen_bench.f90,

d_geig_gen_bench.f90

lin_geig_gen g8crg, dg8crg

5 time_inv_chol.f90,

s_inv_chol_bench.f90,

d_inv_chol_bench.f90

lin_sol_self l2nds, dl2nds

6 time_inv_gen.f90,

s_inv_gen_bench.f90,

d_inv_gen_bench.f90

lin_sol_gen l2nrg, dl2nrg

7 time_inv_lsq.f90,

s_inv_lsq_bench.f90,

d_inv_lsq_bench.f90

lin_sol_lsq lsgrr, dlsgrr

8 time_inv_self.f90,

s_inv_self_bench.f90,

d_inv_self_bench.f90

lin_sol_self lftsf, lfssf

dlftsf, dlfssf

9 time_rand_gen.f90,

s_inv_rand_bench.f90,

d_inv_rand_bench.f90

rand_gen rnun, drnun

Table B: Fortran 90 and FORTRAN 77 Comparisons
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Number Program Units
Fortran 90 Codes

Timed
Fortran 77 Codes

Timed

10 time_sol_chol.f90,

s_inv_sol_chol.f90,

d_inv_sol_chol.f90

lin_sol_self lftds, lfsds

dlftds, dlfsds

11 time_sol_gen.f90,

s_sol_gen_bench.f90,

d_sol_gen_bench.f90

lin_sol_gen lftrg, lfsrg

dftrg, dlfsrg

12 time_sol_lsq.f90,

s_sol_lsq_bench.f90,

d_sol_lsq_bench.f90

lin_sol_lsq l2rrv, dl2rrv

13 time_sol_self.f90,

s_sol_self_bench.f90,

d_sol_self_bench.f90

lin_sol_self lftsf, lfssf,

dlftsf, dlfssf

14 time_svd.f90,

s_svd_bench.f90,

d_svd_bench.f90

lin_svd lsvrr, dlsvrr

15 time_tri.f90,

s_tri_bench.f90,

d_tri_bench.f90

lin_sol_tri lslcr, dlslcr

16 time_mult.f90

s_mult_bench.f90

d_mult_bench.f90

A .x. B matmul(D,E)

Table B – continued: Fortran 90 and FORTRAN 77 Comparisons

Notes on the comparable problems:

1. Perform forward and backward DFT of a random complex sequence of
size NSIZE.

2. Compute eigenexpansion of a random real matrix of dimension
NSIZE × NSIZE.

3. Compute eigenexpansion of a random symmetric real matrix of
dimension NSIZE × NSIZE.

4. Compute generalized eigenexpansion of a random matrix pencil of
dimension NSIZE × NSIZE.

5. Compute the inverse of a positive definite real matrix of dimension
NSIZE × NSIZE. Uses Cholesky method.

6. Compute the inverse of a general real random matrix of dimension
NSIZE × NSIZE. Uses LU factorization.
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7. Compute the generalized inverse of a general real random matrix of
dimension (2 × NSIZE) × NSIZE. Uses QR factorization for Fortran 90
and SVD for FORTRAN 77.

8. Compute the inverse of a real, symmetric random matrix of dimension
NSIZE × NSIZE. Uses Aasen’s decomposition for Fortran 90 and Bunch-
Kaufman decomposition for FORTRAN 77.

9. Generate NSIZE random numbers.

10. Solve a single system of linear equations with a positive definite real
random matrix of dimension NSIZE × NSIZE.

11. Solve a single system of linear equations with a general real random
matrix of dimension NSIZE × NSIZE.

12. Solve a single least-squares system of linear equations with a real
random matrix of dimension (2 × NSIZE) × NSIZE.

13. Solve a single system of linear equations with a symmetric real random
matrix of dimension NSIZE × NSIZE.

14. Compute the full singular value decomposition of a general real random
matrix of dimension NSIZE × NSIZE.

15. Solve NSIZE systems of linear equations of a nonsymmetric
NSIZE × NSIZE tridiagonal matrix. Uses cyclic reduction for both
Fortran 90 and FORTRAN 77 versions.

16. Compute products of square matrices of size NSIZE × NSIZE.  The
Fortran 90 version uses the IMSL defined operation C = A .x. B.  The
arrays are assumed shape.  The FORTRAN 77 version uses
F = matmul(D,E) where the arrays are assumed size.  Identical
problems A = D and B = E are timed.

17. Compare times to use SHOW() for writing a random array of size NSIZE
to a CHARACTER buffer vs. writing the same array to a scratch file.

Parallel Program Descriptions
A set of parallel benchmark programs is shown in Table D. These main
programs call Fortran 90 box data type functions, in single and double
precision.  They compare our parallel allocation algorithm to a scalar
sequential method. The main program reads single lines of input:

NSIZE NTIMES NRACKS PREC ROOT_WORKS “Description”

QUIT to Stop

Two initial lines of output echo the “Description” field, whether or not
the root is working, and the number of processors in the MPI
communicator.  The parameters NSIZE,  NTRIES and NRACKS appear
in the summary tables.  The parameter PREC has values 1, 2 or 3.  The
choice depends on whether the user wants precision of single, double or
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both versions timed.  The array functions return a 7× 2 summary table of
values.  The (1:6, 1) and (1:6,2) elements of this array represent the
results and parameters of the benchmark for the parallel and non-parallel
versions.  The (7,1) and (7,2) elements of this array represent the ratio of
the parallel to the scalar times and a first-order approximation to the
variation in the ratio.

Parallel Box Version Scalar Box Equivalent
1. Average time Average time

2. Standard deviation Standard deviation

3. Total Seconds Total Seconds

4. nsize nsize

5. nracks nracks

6. ntries ntries

7. Parallel/Scalar Ratio Variation in Ratio

As an example, the program time_parallel_i is compiled and linked
with the single and double precision timing functions
s_parallel_i_bench and d_parallel_i_bench.

This routine evaluates the time to compute 5 inverse matrices of size 50
by 50 using the defined operator .i. The “Average” is the mean of the
individual elapsed times for 5 calls to the routines, obtaining 5 inverses in
each call. The “St. Dev.” is the standard deviation for that “Average”.
This value indicates the variability of the “Average”. In order for this
value to provide any useful information it is necessary for |NTRIES| > 1.
The value |NTRIES| = 1 is acceptable, but only one time sample and no
standard deviation is obtained. Values of NTRIES > 0 result in the
printing of results as shown in Table C.  The numbers in the table will
vary depending on the machine and other factors that impact performance
of Fortran codes. If NTRIES < 0 the 7 × 2 functions return the tabular
values shown, with |NTRIES| samples. No printing is performed with
NTRIES < 0.
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Single precision benchmark of parallel .i. and non-parallel .i.:

Date of benchmark, (Y, Mo, D, H, M, S): 1996 12 23    10 16 18

Root not working; Number of Processors = 4

1 1.5815E+00 4.0241E+00 Average

2 2.5031E-01 1.8035E-02 St. Dev.

3 7.9077E+00 2.0121E+01 Total Seconds

4 5.0000E+01 5.0000E+01 Size

5 5.0000E+00 5.0000E+00 Racks per box

6 5.0000E+00 5.0000E+00 Repeats

Non-parallel/parallel averages and variation:
2.5444E+00 3.9129E-01

Double precision benchmark of parallel .i. and non-parallel .i.:

Date of benchmark, (Y, Mo, D, H, M, S): 1996 12 23    10 16 48

Root not working; Number of Processors = 4

1 1.6985D+00 4.0372D+00 Average

2 9.8576D-01 2.3836D-02 St. Dev.

3 8.4923D+00 2.0186D+01 Total Seconds

4 5.0000D+01 5.0000D+01 Size

5 5.0000D+00 5.0000D+00 Racks per box

6 5.0000D+00 5.0000D+00 Repeats

Non-parallel/parallel averages and variation:
2.3770D+00 1.2392D-01

Table C: Performance Summary: Box operator .i.
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Below is a list of the performance evaluation programs that time the box data computations using
parallel and non-parallel resources.

Number Program Units Function Timed

1 time_parallel_i.f90,
s_parallel_i_bench.f90,

d_parallel_i_bench.f90

.i. A

2 time_parallel_ix.f90,
s_parallel_ix_bench.f90,

d_parallel_ix_bench.f90

A .ix. B

3 time_parallel_xi.f90,
s_parallel_xi_bench.f90,

d_parallel_xi_bench.f90

B .xi. A

4 time_parallel_x.f90,
s_parallel_x_bench.f90,

d_parallel_x_bench.f90

A .x. B

5 time_parallel_tx.f90,
s_parallel_tx_bench.f90,

d_parallel_tx_bench.f90

A .tx. B

6 time_parallel_xt.f90,
s_parallel_xt_bench.f90,

d_parallel_xt_bench.f90

A .xt. B

7 time_parallel_hx.f90,
s_parallel_hx_bench.f90,

d_parallel_hx_bench.f90

A .hx. B

8 time_parallel_xh.f90,
s_parallel_xh_bench.f90,

d_parallel_xh_bench.f90

A .xh. B

9 time_parallel_chol.f90,
s_parallel_chol_bench.f90,

d_parallel_chol_bench.f90

CHOL(A)

10 time_parallel_cond.f90,
s_parallel_cond_bench.f90,

d_parallel_cond_bench.f90

COND(A)

11 time_parallel_rank.f90,
s_parallel_rank_bench.f90,

d_parallel_rank_bench.f90

RANK(A)

Table D: Parallel and non-Parallel Box Comparisons
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Number Program Units Function Timed

12 time_parallel_det.f90,
s_parallel_det_bench.f90,

d_parallel_det_bench.f90

DET(A)

13 time_parallel_orth.f90,
s_parallel_orth_bench.f90,

d_parallel_orht_bench.f90

ORTH(A,R=R)

14 time_parallel_svd.f90,
s_parallel_svd_bench.f90,

d_parallel_svd_bench.f90

SVD(A,U=U,V=V)

15 time_parallel_norm.f90,
s_parallel_norm_bench.f90,

d_parallel_norm_bench.f90

NORM(A,TYPE=I)

16 time_parallel_eig.f90,
s_parallel_eig_bench.f90,

d_parallel_eig_bench.f90

EIG(A,W=W)

17 time_parallel_fft.f90,
s_parallel_fft_bench.f90,

d_parallel_fft_bench.f90

FFT_BOX(A)

IFFT_BOX(A)

Table D – continued: Parallel and non-Parallel Box Comparisons
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Index

2

2DFT (Discrete Fourier Transform)
86

3

3DFT (Discrete Fourier Transform)
91

A

Aasen' s method 11, 12
accuracy estimates of eigenvalues,

example 47, 69
Adams ii
adjoint eigenvectors, example 47, 69
adjoint matrix iii
ainv= optional argument vi
ANSI ii, 164, 165
argument v
arguments, optional subprogram vi
array function

one-dimensional smoothing 97
two-dimensional smoothing 98

B

bidiagonal matrix 50
BLACS 231
block-cyclic decomposition

reading, writing utility 231
Blocking Output 165
boundary value problem 42
Brenan 43
B-spline 95

C

Campbell 43

changing messages 125
Chebyshev polynomials 19
Cholesky

algorithm 12
decomposition 9, 61, 74
factorization 154
method 13

combining Fortran 90 and
FORTRAN 77 routines viii

companion matrix 67
computing

eigenvalues, example 47, 56
the rank of A 26
the SVD 47, 48

computing eigenvalues, example 47,
63

condition number 70
convolutions, real or complex

periodic sequences 84
covariance matrix 13, 18, 21
cross-validation with weighting,

example 47, 54
cyclic reduction 1, 34, 35, 37
cyclical 2D data, linear trend 88
cyclical data, linear trend 82

D

DASPG routine 43
data fitting

polynomial 18
two dimensional 24

data, optional vi
de Boor 95
decomposition, singular value 26
derived type function

one-dimensional smoothing 96
two-dimensional smoothing 98

derived types
one-dimensional smoothing 96

determinant 156
determinant of A 2
DFT (Discrete Fourier Transform)

79
Differential Algebraic Equations 75
differential-algebraic solver 43
diffusion equation 1, 42
direct- access message file 126
discrete Fourier transform 160, 161,

163
inverse 162
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E

efficient solution method 68
eigenvalue 158
eigenvalue-eigenvector

decomposition 58, 61, 158
expansion (eigenexpansion) 47, 58

eigenvalues, self-adjoint matrix 14,
56, 62

eigenvectors 1, 40, 56, 59, 61, 62
epack= argument v
equality constraint, least squares 25
errors

printing error messages 123, 301
Euclidean length 171, 172
evaluator function

one-dimensional smoothing 97
two-dimensional smoothing 98

EVASB routine 40
example

least-squares, by rows
distributed 251

linear constraints
distributed 256, 257

linear inequalities
distributed 248

linear system
distributed, ScaLAPACK 243

matrix product
distributed, PBLAS 240

Newton's Method
distributed 259

transposing matrix
distributed 236, 237

examples
accuracy estimates of

eigenvalues 69
accurate least-squares solution

with iterative refinement 16
analysis and reduction of a

generalized eigensystem 61
complex polynomial equation

Roots 66
computing eigenvalues 47, 56, 63
computing eigenvectors with

inverse iteration 47, 59
computing generalized

eigenvalues 71
computing the SVD 47, 48
constraining a spline surface to

be non-negative
interpolation to data 120

constraining points using spline
surface 119

convolution with Fourier
Transform 84

cross-validation with weighting
54

cyclical 2D data with a linear
trend 88

cyclical data with a linear trend
82

eigenvalue-eigenvector
expansion of a square matrix
58

evaluating the matrix
exponential 6, 7

Generalized Singular Value
Decomposition 52

generating strategy with a
histogram 130

generating with a Cosine
distribution 132

internal write of an array 139
iterative refinement and use of

partial pivoting 38
Laplace transform solution 31
larger data uncertainty 76
least squares with an equality

constraint 25
least-squares solution of a

rectangular system 27
linear least squares with a

quadratic constraint 50
matrix inversion and

determinant 1, 5
natural cubic spline

interpolation to data 101
parametric representation of a

sphere 116
periodic curves 108
polar decomposition of a square

matrix 29
printing an array 137
reduction of an array of black

and white 30
ridge regression 54
running mean and variance 126
seeding, using, and restoring the

generator 129
selected eigenvectors of

tridiagonal matrices 40
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self-adjoint, positive definite
generalized eigenvalue
problem 74

several 2D transforms with
initialization 90

several transforms with
initialization 83

shaping a curve and its
derivatives 104

solution of multiple tridiagonal
systems 35

solving a linear least squares
system of equations 9, 18

solving a linear system of
equations 2

solving parametric linear
systems with scalar change
68

sort and final move with a
permutation 136

sorting an array 134
splines model a random number

generator 106
system solving with Cholesky

method 13
system solving with the

generalized inverse 1, 22
tensor product spline fitting of

data 113
test for a regular matrix pencil

75
transforming array of random

complex numbers 79, 86, 91
tridiagonal matrix solving 42
two-dimensional data fitting 24
using inverse iteration for an

eigenvector 1, 14
examples list

error messages 310
operator 173
parallel 206

exclusive OR 128

F

factorization, LU 2
FFT (Fast Fourier Transform) 82,

88, 94
FORTRAN 77 40

combining with Fortran 90 ii, viii
interface 40

Fortran 90

combining with FORTRAN 77 viii
language ii
rank-1 array ii
rank-2 array vi
real-time clock 129

Fushimi 128, 129

G

Galerkin principle 43
generalized

eigenvalue 47, 61, 71, 158
feedback shift register (GFSR)

127
inverse

matrix 18, 20, 22
generalized inverse

system solving 1, 22
generator 123, 129, 132
generic root name ii
getting started iv
GFSR algorithm 128
Golub 5, 12, 22, 25, 50, 52, 54, 58,

61, 66
GSVD 52

H

Hanson 58
harmonic series 82, 88
Hessenberg matrix, upper 62, 67
High Performance Fortran

HPF 231
histogram 123, 130
Householder 74

I

IEEE 164, 165
IMSL Fortran 90 MP Library

generic root name ii
infinite eigenvalues 71
initialization, several 2D transforms

90
initialization, several transforms 83
interface block ii
internal write 123, 139
inverse 2

iteration, computing eigenvectors
14, 40, 59

matrix vi, 3, 9, 11, 13
generalized 18, 20
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transform 80, 87, 92
inverse matrix 2
isNaN 165
ISO ii
iterative refinement vi, 1, 38
IVPAG routine 43

K

Kershaw 37

L

Laplace transform solution 31
larger data uncertainty, example 47,

76
least squares 9, 18, 24, 25, 26, 31,

32, 82, 89
library subprograms ii
linear equations 9
linear least-squares with non-

negativity constraints 246,
247, 248, 254, 256

linear solutions
packaged options 4

linear trend, cyclical 2D data 88
linear trend, cyclical data 82
LU factorization of A 2, 3, 4, 149

M

matrices
adjoint iii
covariance 13, 18, 21
inverse vi, 2, 3, 9, 11, 13

generalized 18, 20, 22
inversion and determinant 1, 5
orthogonal iii
poorly conditioned 27
unitary iii
upper Hessenberg 67

matrix pencil 47, 71, 75
means 126
message file

building new direct-access
message file 126

changing messages 125
management 124
private message files 126

Metcalf ii
method of lines 43
mistake

missing argument 233
Type, Kind or Rank

TKR 233
Modified Gram-Schmidt algorithm

167
Moore-Penrose 151, 152
MPI 146, 147

parallelism 146

N

NaN (Not a Number) 165
quiet 164
signaling 164

Newton' s method 32, 50
norm 166
normalize 171

O

object-oriented 141
one-dimensional smoothing, check-

list 96
optional argument vi
optional data iv, vi
optional subprogram arguments vi
ordinary eigenvectors, example 47,

69
orthogonal

decomposition 50
factorization 22
matrix iii

orthogonalized 40, 59

P

parametric linear systems with
scalar change 68

parametric systems 68
partial pivoting 34, 38
PBLAS 231
permutation 136
Petzold 43
piece-wise polynomial 96, 97
piecewise-linear Galerkin 43
pivoting

partial 2, 5, 11
row and column 18, 22
symmetric 9

polar decomposition 29, 38
polynomial degree 96
printing an array, example 123, 137
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printing arrays 137
private message files 126
PV_WAVE 275

Q

QR algorithm 50, 58
double-shifted 66

QR decomposition 156

R

radial-basis functions 24
random complex numbers,

transforming an array 79, 86,
91

random numbers 126
real numbers, sorting 134
record keys, sorting 136
reduction

array of black and white 30
regularizing term 37
Reid ii
required arguments v, vi
reverse communication 43
ridge regression 47, 54

cross-validation
example 47, 54

Rodrigue 37
row and column pivoting 18, 22
row vector, heavily weighted 25

S

ScaLAPACK
contents 231, 232
data types 231, 232
definition of library 231
interface modules 233
reading utility

block-cyclic distributions 233
Schur form 62, 68
self-adjoint

eigenvalue problem 61
linear system 16
matrix 9, 12, 58, 61

eigenvalues 14, 56, 62
tridiagonal 12

Single Program, Multiple Data
SPMD 231

singular value decomposition (SVD)
26, 170

smoothing formulas 22
solvable 75
solving

general system 2
linear equations 9

rectangular
least squares 26
system 18

sorting an array, example 123, 134
square matrices

eigenvalue-eigenvector
expansion 58

polar decomposition 29, 38
subprograms

library ii
optional arguments vi

SVD 48, 52
SVRGN 135

T

testing suite v
transfer 166
transpose 151
tridiagonal 34

matrix 37
matrix solving, example 1, 42

two-dimensional data fitting 24
two-dimensional smoothing, check-

list 97

U

unitary matrix iii
upper Hessenberg matrix 67
using library subprograms ii

V

Van Loan 5, 12, 22, 25, 50, 52, 54,
58, 61, 66

variances 126
variational equation 42

W

World Wide Web
URL for ScaLAPACK User's

Guide 231, 232
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